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Abstract

This paper presents a heuristic to solve the Multidimensional Multiple-choice Knapsack Problem (MMKP), a
variant of the classical 0–1 Knapsack Problem. We apply a transformation technique to map the multidimensional
resource consumption to single dimension. Convex hulls are constructed to reduce the search space to find the
near-optimal solution of the MMKP. We present the computational complexity of solving the MMKP using this
approach. A comparative analysis of different heuristics for solving the MMKP has been presented based on the
experimental results.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction and definition of MMKP

The classical 0–1 Knapsack Problem (KP) is to pick up items for a knapsack for maximum total
value, so that the total resource required does not exceed the resource constraintR of the knapsack.
The classical 0–1 KP and its variants are used in many resource management applications such as cargo
loading, industrial production, menu planning, and resource allocation in multimedia servers[1–3]. Let
there ben itemswith valuesv1, v2, . . . , vn and let the corresponding resources required to pick the items
ber1, r2, . . . , rn, respectively. The items can representservicesand their associated values can be values of
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Fig. 1. Multidimensional Multiple-choice Knapsack Problem.

revenueearned from that service. In mathematical notation, the 0–1 KP is to findV =maximize
∑n

i=1 xivi ,
subject to the constraint

∑n
i=1 xiri �R andxi ∈ {0,1}. The 0–1 KP is an NP-hard problem[4]. There is

a pseudo-polynomial algorithm running inO(nR) time using the concept of dynamic programming.
The Multidimensional Multiple-choice Knapsack Problem (MMKP) is a variant of the classical 0–1

KP. Let there ben groups of items. Groupi hasli items. Each item of the group has a particular value
and it requiresm resources. The objective of the MMKP is to pick exactly one item from each group
for maximum total value of the collected items, subject tom resource constraints of the knapsack. In
mathematical notation, letvij be the value of thej th item of theith group,�rij = (rij1, rij2, . . . , rijm) be
the required resource vector for thej th item of theith group, and�R= (R1, R2, . . . , Rm) be the resource
bound of the knapsack. Now, the problem is to

maximize
n∑

i=1

li∑
j=1

xij vij (objective function),

subject to
n∑

i=1

li∑
j=1

xij rijk�Rk (resource constraints),

whereV is the value of the solution, k = 1,2, . . . , m, xij ∈ {0,1} are the picking variables, and∑li
j=1 xij = 1.

Fig. 1 illustrates an MMKP. We have to pick exactly one item from each group. Each item has two
resources,r1 andr2. The objective of picking items is to maximize the total value of the picked items
subject to the resource constraints of the knapsack, that is

∑
(r1 of picked items)�17 and

∑
(r2 of picked

items)�15. Notably, it may happen that no set of items satisfying the resource constraints exists implying
that no solution will be found.

The rest of the paper is organized as follows. Related research works on MMKP and on the KPs,
in general, have been described in Section 2. We present our main contribution in Section 3, where we
describe the convex hull approach to solve the MMKP. The pseudo-code and corresponding computational
complexity of the heuristic for solving the MMKP have been presented in this section. Section 4 shows the
experimental results in a number of graphs and Section 5 describes the observation from the experimental
results. Section 6 concludes the paper by summarizing the performance and applications of this heuristic.
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2. Literature review

There are various algorithms for solving variants of KPs[4]. The Multidimensional Knapsack Problem
(MDKP) is one kind of KP where the resources are multidimensional, i.e. there are multiple resource
constraints for the knapsack. The Multiple Choice Knapsack Problem (MCKP) is another KP, where
the picking criteria for items are restricted. In this variant of KP there are one or more groups of items
with the constraint that exactly one item has to be picked from each group. Actually, the MMKP is the
combination of the MDKP and the MCKP. It is worth mentioning here that there is another variant of
KPs in the literature very similar to MMKP, where the restriction of picking exactly one item from each
group is relaxed, i.e. you can either pick one item from a group or leave it. This variant of KP seems to be
easier than the MMKP since we can exclude items from one or more groups if they are non-profitable.

Depending on the nature of the solution, the algorithms for MMKP can be divided into two groups,
namely exact algorithms, which strive for exact solutions, and heuristic algorithms, where we are satisfied
in near-optimal solutions. Finding exact solutions is NP-hard. Using the Branch and Bound with Linear
Programming (BBLP) technique, Kolesar[5], Shih[6], Nauss[7] and Khan[3] presented exact algorithms
for 0–1 KP, MDKP, MCKP and MMKP, respectively. It may be noted in this regard that although the
search space for a solution in MMKP is smaller than the search space in other variants of KP, exact
algorithms are not applicable to the various practical problems, e.g. on-line admission control problem.
This is because of the existence of more restriction of picking items from a group in an MMKP instance.
Experimental results in[8] present the time requirements for BBLP algorithms. Interested readers are
referred to[9] for the new trends of exact algorithms.

On the other hand, there exist a number of heuristics in the literature for MMKP and for KPs in general.
For example, a greedy approach has been proposed[4,10] to find near-optimal solutions of KPs. For a 0–1
KP as described in the previous section, items are picked from the top of a list sorted in descending order on
vi/ri (value per unit resource) because these items seem to be the valuable and profitable items. To apply
the greedy method to the MDKP, Toyoda proposed a measurement calledaggregate resource consumption
[11]. Khan[3] has applied the concept of aggregate resource consumption to pick a new candidate item in
a group to solve the MMKP. This heuristic, named HEU, finds a solution by only upgrading the selected
items of each group. Again, in[12], a modified version of HEU named M-HEU was presented, where
a pre-processing step to find a feasible solution and a post-processing step to improve the total value
of the solution with one upgrade followed by one or more downgrades were added. M-HEU provides
solutions with total value on average equal to 96% of the optimum, with a worst-case time complexity of
O(mn2(l−1)2). Here,n is the number of groups,l the number of items in each group (assumed constant
for convenience of analysis) andm the resource dimension.

Magazine and Oguz[1] proposed another heuristic based on Lagrange multipliers to solve the MDKP.
Moser’s[13] heuristic also used the concept of graceful degradation from the most valuable items based
on Lagrange multipliers to solve the MMKP.

Various other techniques like tabu search[14], simulated annealing[15] and genetic algorithms[16]
can also be applied to solve the variants of KP. The genetic algorithm has the exponential worst-case
complexity—it can explore all the items. Tabu search and simulated annealing are based on looking at the
neighbours. These are costlier than the greedy approach used in HEU. HEU uses a two-way interchange
approach and searches candidates in the neighbourhood which yield better revenue, and changes one
selection to another. But in tabu search, simulated annealing and genetic algorithm approach, current
solution is moved to another solution by upgrading some and downgrading some. This upgrade and
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downgrade at the same step requires more time because we have to search all neighbouring combinations
of current solution. In the next section, we present our main contribution by presenting a new heuristic
to solve MMKP by constructing convex hulls.

3. Solving the MMKP by constructing convex hulls

Theconvex hullof the points in a two-dimensional space is defined by the smallest convex polygon
containing those points. There are two different groups of line segments in the convex hull connecting
the bottommost and the topmost points. Each of these groups of line segments are calledfrontier of
the convex hull. In[17], Lee has efficiently used the idea of convex hull to solve the quality of service
(QoS) management problem of the Multiple Resource Multiple Dimension (MRMD) systems. The QoS
controller, proposed by Lee, of the MRMD system transforms each multidimensional resource to a single
dimension by multiplying a penalty vector. Now each QoS level for each session represents a point in the
two-dimensional space. The offered bid price represents they co-ordinate and the transformed resource
represents thex co-ordinate. A convex hull is constructed for each session with the points represented
by the QoS levels. Admission control and QoS adaptation of a session are done based on the gradient of
the segments of theefficient convex hull frontier[18], whereGradient is a vector that always points in
the direction of maximum change, with a magnitude equal to the slope of the tangent to the curve at the
point, and the efficient convex hull frontier is the frontier, which earns more revenue in terms of resource
usage.

The QoS management problem of the MRMD system can be easily mapped to an MMKP as is evident
from Fig. 2. So the solution algorithm proposed by Lee can be applied to solve the MMKP. However,
the MRMD system has some restrictions between required resources for a QoS level (an item in a group
of the MMKP) and associated utility (value associated with the items). The QoS levels follow a special
monotone feasibility order, i.e., a QoS level with higher utility must require higher resource requirements.
As a result, for the MRMD system the gradients of these segments never become negative, which may
not necessarily be the case for an MMKP instance. In particular, this algorithm is not applicable for those
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Fig. 3. Convex hulls of the items of two groups.

MMKPs where some higher-valued items require less resource consumptions than lower-valued items
because they will create negative gradients and hence the corresponding segments will be at the end of the
sorted list; whereas since they give higher utility using less resources, they should be considered first and
hence should be at the front of the sorted list. We use a different sorting criterion to make it applicable for
the MMKP as follows. We sort the segments according to the angle between the positivex-axis and the
segment. Thus, the negative gradients are mapped to angles higher than 180◦, which ensures their place in
the beginning of the sorted (sorted in descending order) list. Therefore, these are selected for upgrading
in the beginning. This makes the selection criterion reasonable because items with higher values and
lower resource requirements (which causes the gradients to be negative) are always preferable for the
maximization of total values.Fig. 3shows two convex hulls. The dotted lines show the efficient convex
hull frontier. The efficient convex hull frontier of Group 1 has some segments with negative gradients,
which give more utility with less resource. On the other hand, the efficient convex hull frontier for Group
2 follows the monotone feasibility property. Every segment on this convex hull frontier has a positive and
non-increasing gradient. The use of angles instead of gradient removes all the problems of picking items
in the generalized MMKP. The next subsection presents the algorithm for solving the MMKP using the
convex hulls.

3.1. Heuristic algorithm for solving the MMKP using convex hull approach (C-HEU)

Below, we present the heuristic algorithm for solving MMKP using the convex hull approach. The
pseudo-code of the devised algorithm presented below is preceded by the definitions of some variables
used in the algorithm.

current_sol, saved_sol: The solution vector containing the indices of the selected items.
snf: The Boolean variable (snf indicates “solution not found”) indicating whethercurrent_sol is feasible
or not.
penalty: The transformation vector to transform multidimensional resource to single dimension (see
Remark 1).
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Feasible( ): A function returning true if the solution under consideration does not violate any resource
constraints and false otherwise.
Utility ( ): A function returning the total value earned from the selected items.
initial_penalty( ): Returns the initial penalty vector (see Remark 2).
adjust_penalty( ): Returns the penalty vector based on the current resource usage (see Remark 2).
list_of_frontier_segments, ch_frontier: Lists of the frontier segments. A segment is a vector with two
items representing a straight line.
p1,p2: Items representing points in two-dimensional space. The associated value represents they co-
ordinate and the transformed single-dimensional resource represents thex co-ordinate.
current_group: Group of a currently selected point.
current_item: Currently selected item of a group.
p_item: Item denoted by pointp.
rsum: Vector summation of resource vectors.
Begin Procedure adjust_selected_item(p)
/*This procedure selects a new item of a group that contains the item corresponding top. The procedure
ignores pointp if the resource consumption would become infeasible from a feasible solution by selecting
this item. However, in the case when no solution is found yet, it selects the item anyway, in the hope to
find a feasible solution in the future. */

1. current_group← the group that contains the item corresponding top.
2. current_item←the currently selected item of groupcurrent_group.
3. p_item←item of groupcurrent_groupdenoted by pointp.
4. fp← feasibility of the resource consumption after selecting the item denoted byp.
5. if (fp = true) then
6. snf← false//solution found
7. change the selection of groupcurrent_groupfrom current_itemto p_item
8. updatecurrent_sol
9. else if (fp = f alse and snf= true)
10. change the selection of groupcurrent_groupfrom current_itemto p_item
11. updatecurrent_sol
12. //whenfp = f alse, solution not found but trying to find a feasible solution.
13. endif // otherwise leave the feasible solution as it is.
End Procedure
Begin Procedure initial_penalty( )
/*Calculate the initial penalty vector using an appropriate formula*/
1. rsum←vector summation of resource vectors of each item in each group.
2. q ← apply appropriate formula (see Remark 2 below) on vectorrsumand total resource vector.
3. return q.
End Procedure
Begin Procedure adjust_penalty(q)
/*Updates the penalty vector using the information about the available residual resources*/
1. q ′ ← apply appropriate formula (see Remark 2 below) on vectorq, total resource

vector and available resource vector.
2. returnq ′;
end procedure
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Begin Procedure C_HEU ( )
1. current_sol← The item with lowest value from each group;
2. if feasible(current_sol) =false then
3. snf←true //Solution not yet found
4. endif
5. penalty= initial_penalty( )
6. for repeat← 1 to 3do //only three iterations for finding solution
7. saved_sol← current_sol //saving the current solution
8. u← Utility (current_sol) //saving utility
9. for each group in the MMKPdo
10. Transform each resource consumption vector of each item to single dimension

using vectorpenalty(see Remark 1 below).
11. ch_frontier← efficient convex hull frontier of the items of the group
12. list_of_frontier_segments← list_of_frontier_segments + ch_frontier
13. endfor
14. Sort the segments oflist_of_frontier_segmentsin descending order according to the angle of each

segment
15. for each segment in thelist_of_frontier_segments do
16. p1, p2← The items associated with the segment.
17. adjust_selected_item(p1)
18. adjust_selected_item(p2)
19. end for.
20. if Utility (current_sol) < u then // New solution is inferior than the saved one
21. current_sol←saved_sol
22. endif
23. penalty← adjust_penalty(penalty) //adjust penalty for the next iteration
24. end for
25. if snf= true then
26. Solution Not found
27. else
28. current_sol is the final solution.
29. endif
end Procedure.

Remark 1. The vectorpenalty, as noted above, is used as a transformation vector to transform from mul-
tidimensional resource to single dimension. An explanation of this transformation is in order. The vector
penaltyis used to give a “price” to each resource combination. Specifically, let�q=(q1, q2, . . . , qm) be the
penalty vector; then the penalized resource vector may have the form�RP = (R1.q1, R2.q2, . . . , Rm.qm).
And finally the transformation to single dimension can use the following form:R∗ = ‖ �RP ‖ =√
R2
P1
+ R2

P2
+ . . .+ R2

Pm
.

Remark 2. The responsibility of the procedureinitial_penalty( ) is to calculate the initial penalty. On the
other hand, the procedureadjust_penalty( ) updates the penalty vector using information about the residual
resources from the previous iteration. Many different formulas can be used in these two procedures. In[17],
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the following two formulas are used, respectively, in procedureinitial_penalty( ) andadjust_penalty( ).
LetR andR′ denote, respectively, the total and available (residual) resource vector. Then the formula for
calculating thekth component forinitial_penalty( ) can have the following form:qk = (rsumk/Rk)+ 1.
On the other hand, a possible formula foradjust_penalty( ) would be:

qk = Rk

R′k + Rk

∗ qk + 1.

Recall thatrsumandq are defined in the pseudo-code. It may be noted here that in the analysis of these
two procedures, as performed in the following section, these definitions of the formulas are assumed to
be adopted.

Remark 3. The sorting in line #14 requires some explanation for better implementation.The time required
by line #14 as listed in the algorithm isO(nl lg nl). However, by clever implementation it can be reduced
toO(nl 1gn). The modification will be as follows. First, remember that the usual two-dimensional convex
hull algorithms can output the frontier segments as a sorted list. So, in Line #12 we do not concatenate
these lists, but we just store these lists independently.After Line #13, we haven sorted lists, each of which
has at mostl elements. Therefore, the task is the merging problem: “givenn sorted lists withl elements,
we want to merge them into a single sorted list”. This can be done inO(nl 1gn) with the use of a heap.
For the sake of clarity, the above implementation is avoided in the algorithm listed.

Remark 4. In ProcedureC-HEU( ) we repeat thefor loop in Lines 6–24 only 3 times. In a few cases,
more than three iterations might give us a better solution. Experimental results show that in most of the
cases solution value does not improve after 3 iterations.

Remark 5. It is worth mentioning here that the algorithmC-HEUcan be used with minor modifications
to solve another variant of KP, which is almost similar to MMKP. This variant, as indicated in Section
2, differs from the MMKP in that the restriction in MMKP of picking exactly one item from each group
is relaxed here. In order to solve this variant we artificially include in each group a “null” item, which
consumes no resource and gives no value. It is clear that the initial solution set will be comprised of these
artificial items from each group and if in the final solution one of them still remain present, it will mean
that no item should be taken from that group.

3.2. Computational complexity and lower bound

The worst-case complexity of finding the solution of an MMKP using C-HEU can be obtained as
follows.Assume that there arengroups each havingl items (in case of different number of items per group,
assume thatl is the maximum number of elements in a group) and letm be the dimension of resource
consumption vector. It is easy to verify that the procedureinitial_penaltyand adjust_penalty takes,
respectively,O(nl + m) andO(m) operations. The time complexity of procedureadjust_selected_item
is determined by the number of operations required by the feasibility check at Line #4 of that procedure,
which can be done inO(m) (the dimension of resource vector ism) as follows. We keep track of the
current resource consumption and just deduct the current item’s (item denoted byp) resource. Note
carefully that the determination of the group in Line #1 can be done in constant time by keeping the group
info into the data structure representing the segments. Now we are ready to analyze our main procedure
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C-HEU. Note that there are a constant number of iterations in thefor loop at Lines #6–#24 and hence
can be ignored from the analysis. The functionUtility ( ) in Line #8 requiresO(n) running time. The
for loop at Lines #9–#13 iteratesn times. Since there are at mostl items per group, Lines #10 and #11
take, respectively,O(lm) (see Remark 1 above) andO(l 1gl) (see[18] for convex hull algorithms). So
the total time required by this loop isO(nlm + nl 1gl). The sorting at Line #14 can be performed in
O(nl 1gn) as explained in Remark 3 above. The followingfor loop executes forO(nl) times. Since the
operations required by the procedureadjust_selected_itemisO(m) (as deduced above), the total running
time of this for loop isO(nlm). So the overall running time of the procedure C-HEU can be deduced as
follows:

O(nl +m)+O(n)+O(nlm+ nl 1gl)+O(nl 1gn)+O(nlm)+O(m)

=O(nlm+ nl 1gl + nl 1gn).

The lower bound of the achieved total value for the Single Resource Multiple Dimension (SRMD)
System[17] using the approximation algorithm by constructing convex hulls isVlower=(Uoptimal−pmax),
wherepmax is the change of total value for any upgrade, i.e., the maximum difference of values of any two
items of any group, andUoptimal is the optimal total value achieved by using the exact algorithms. Please
refer to[17,19,20]for the proof of this lower bound. The problem solved by this approximation algorithm
is actually an MCKP, where the resource dimension is single and this is a special case of MMKP, where the
resource dimension might be multiple. Our heuristic algorithm uses the same approach by constructing
the convex hull and we can expect the same lower bound if it is executed for an MCKP. Although this
is not the lower bound of achieved total value for an MMKP, we can easily speculate on the behaviour
of the achieved optimality for an MMKP using the convex hull approach, as MMKP is the generalized
variant of MCKP.

The algorithm will definitely show better results for a larger problem size, i.e., if the number of groups
and total amount of resources are increased.Uoptimal increases with a greater number of groups as we get
more selected items. Sincepmax remains the same and depends on the characteristics of the distribution
of the items, the ratioVlower/Uoptimal will increase.

4. Experimental results

In order to study the run-time performance of C-HEU, we implemented C-HEU along with four other
algorithms

(1) Vopt_est, anestimate of the optimal solutionbased on a branch-and-bound search using linear pro-
gramming. This is actually the first iteration of BBLP and this estimate must be higher than the
optimal solution. Only one iteration using linear programming determines this estimate, whereas an
indefinite number of iterations determines the optimal solution. The subsequent iterations generate
estimates closer to the optimal total solution value.

(2) Moser’s heuristic, based on Lagrange relaxation.
(3) M-HEU, a heuristic based on the aggregate resource consumption.
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(4) Greedy approach, based on a linear search of all the items of each group. It picks the highest-valued
feasible item from each group. In this paper, we call this heuristic G-HEU.

We implemented all the algorithms using the Visual C++ programming language. For simplicity of
implementation, we assumed that each group has the same number of items, i.e.,l1 = l2 = · · · = ln. We
used the Simplex Method code from[10] for linear programming. We ran the algorithms on a Pentium
III IBM Think Pad 700 MHz with 192 MB of RAM running Windows 2000. Two categories of data sets
were used in the performance study of C-HEU, namely, randomly generated and correlated data sets (see
[21] for benchmark data sets on the MMKP). For each set of parametersn, l andm, we generated 10
MMKP instances in which the values are correlated with resource requirements and 10 random MMKP
instances in which the values are not correlated with resource requirements. We ran the algorithms on all
10 instances, and plotted the averages of solution-value and execution time.

4.1. Test pattern generation

The data sets for testing the performance of different heuristics were initialized as follows:

Rc: maximum amount of a resource consumption by an item.
Pc: maximum cost per unit resource.
Ri : total amount of theith resource—n×Rc× 0.5. Here we assumeRc× 0.5 amount resource for each
item.
Pi : cost of theith resource—Random(Pc)—a uniform discrete random number from 0 to (Pc− 1).
rijk: kth resource of thej th item of theith group—Random(Rc). As the total resource for each item is
Rc × 0.5, we can say approximately 50% solutions are infeasible because there is a chance that items
with resource consumption betweenRc× 0.5 toRc may be infeasible.
vij : value of thej th item of theith group—Random(m× (Rc/2)× (Pc/2))× (j + 1)/ l, when the item
values are not correlated with the resource requirement.
vij :

∑
rijk × Pk + Random(m × 3× (Rc/10) × (Pc/10)), when there is a linear correlation between

the resource consumption and item values.

4.2. Test results

The graphs ofFigs. 4–6compare the optimality achieved by the different heuristics with the increase in
number of groups, number of items in each group and number of resource dimensions. For the experiments
done with larger data sets, the computation times for the optimal solution by BBLP are too large for
practical interest, as it takes too long (days or years) on the average to do the computation. So the solution
values of the heuristics have been normalized by theestimated optimum total value, which is calculated
as follows. The branch and bound algorithm for the MMKP involves the iterative generation of asearch
tree. A nodeof the tree is expanded by selecting an item of a particular group, calledbranching group. At
a node, if the items of a group are not selected then the group is calledfree group. Initially, there is only
one node in the tree where all the groups are free. Applying linear programming technique on the free
groups of a node, we can determine anestimate of optimum total valueas well as the branching group of
a node. The use of linear programming to determine the branching group reduces the time requirement in
the average case. In each iteration the node with the highest upper bound is explored. The nodes, which
do not give any solution value using linear programming, are considered as infeasible. These nodes are
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deleted from the tree.A solution is found when a node without any free group has the maximum estimated
total value.

The graphs ofFigs. 7–9compare the time required by different heuristics. We have not plotted the time
required by G-HEU as it takes a very insignificant time for this range of data sets. All the plotted data in
the above-mentioned graphs are the average of 10 problem sets.



1270 Md Mostofa Akbar et al. / Computers & Operations Research 33 (2006) 1259–1273

88

90

92

94

96

98

100

51 01 52 02 53 03 54 04 55 0

Number of resource dimensions (m )

O
pt

im
al

ity
 

ac
hi

ev
ed

 (
%

)

Greedy (correlated)

Greedy (uncorrelated)

Convex Hull (correlated)

Convex Hull
(uncorrelated)

Moser's Heuristic
(correlated)

Moser's Heuristic
(uncorrelated)

M-HEU (correlated)

M-HEU (uncorrelated)

Fig. 6. Performance of different heuristics normalized with the estimated optimal total value for the MMKP data sets withn=200
andl = 10.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

40 70 100 130 160 190 220 250 280 310 340 370 400

Number of groups (n )

T
im

e 
re

qu
ire

m
en

ts
 (

m
s)

Convex Hull (correlated)

Convex Hull (uncorrelated)

Mosers Heuristic
(correlated)

Moser's Heuristic
(uncorrelated)

M-HEU (correlated)

M-HEU (uncorrelated)

Fig. 7. Time required by different heuristics for the MMKP data sets withm= 10 andl = 10.

5. Observations

One can make the following observations from the presented tables and figures.

• The heuristics produce solutions that are close to the optimal solutions provided by the algorithm
BBLP. M-HEU produces the solution nearest to the optimal solution among all the heuristics.
• We find fromFigs. 4–6 that M-HEU, Moser’s heuristic and C-HEU give better results for uncorrelated

data sets than correlated data sets. C-HEU gives better results than Moser’s heuristic for uncorrelated
data sets. This is remarkable as C-HEU withO(nlm + nl 1gl + nl 1gn) is giving better results than
Moser’s heuristic withO(mn2(l − 1)2).
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• We also find fromFigs. 7–9that for correlated data sets, all algorithms take more time than uncorrelated
data sets. Please see[12] for a plausibility argument of the behavioural differences between correlated
and uncorrelated data sets in solving the MMKP.
• In M-HEU, Moser’s heuristic and C-HEU, the most profitable items with large values and a small

resource requirement are given priority for picking, so we obtain the same behaviour for these heuristics.
• Fig. 4 shows that for a smaller problem set the optimality achieved by different heuristics increases

with the increase in problem set size. But for larger problem sets the optimality remains almost stable.
We find almost the same trend for an increase in the number of resource dimensions inFig. 6.
• Fig. 5 shows that the achieved optimality decreases with an increase in the number of items in each

group. This degradation is the worst for C-HEU. This is likely because we completely ignore some
items from the search space of each group by constructing convex hulls. In other heuristics we ignore
some items while picking items but not at all.
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• Figs. 7and8 show that the time requirements of M-HEU and Moser’s heuristic increase quadratically
with an increase in group size (number of groups) and the number of items in each group. The time
requirement for C-HEU is much less than for the heuristics of quadratic complexity such as M-HEU and
Moser’s heuristic, implying that it is not quadratic. Recall that the theoretical analysis shows that the
worst-case running time C-HEU isO(nlm+nl 1gl+nl 1gn). Fig. 9shows how the time requirements
increase almost linearly with an increase in the number resource dimensions of the MMKP.
• We find some irregularities in the data for computation time. As the computation time required by

the heuristic and BBLP depends on the contents of the data set, it may happen that smaller data sets
take longer than larger data sets. We find such irregularities inFig. 7(n= 280–370, uncorrelated data
sets) andFig. 9(m= 25–50, uncorrelated data sets) for Moser’s heuristics. Similar irregularities were
observed and reported by Khan et al. in[3].

6. Conclusion

C-HEU is a heuristic withO(nlm+nl 1g l+nl 1g n) complexity to solve the MMKP. The experimental
data show that the optimality achieved by this heuristic lies between 88% and 98%. This heuristic is
definitely more scalable than other heuristics with quadratic complexity. It also achieves better optimality
than some heuristic with quadratic complexity for the problem sets where the values associated with the
items are not correlated with the resource consumption. It can be applied successfully for the admission
controllers for multimedia systems that require quicker response time than M-HEU or Moser’s heuristic.
C-HEU is especially applicable for the systems where the requested QoS levels are not proportional to
the resource requirement to serve those QoS levels.
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