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Abstract

This paper presents a heuristic to solve the Multidimensional Multiple-choice Knapsack Problem (MMKP), a
variant of the classical 0—1 Knapsack Problem. We apply a transformation technique to map the multidimensional
resource consumption to single dimension. Convex hulls are constructed to reduce the search space to find the
near-optimal solution of the MMKP. We present the computational complexity of solving the MMKP using this
approach. A comparative analysis of different heuristics for solving the MMKP has been presented based on the
experimental results.
© 2004 Elsevier Ltd. All rights reserved.

Keywords:Algorithms; Convex hull; Heuristics; MMKP; Multimedia systems

1. Introduction and definition of MMKP

The classical 0-1 Knapsack Problem (KP) is to pick up items for a knapsack for maximum total
value, so that the total resource required does not exceed the resource coRsthihe knapsack.
The classical 0—1 KP and its variants are used in many resource management applications such as carg
loading, industrial production, menu planning, and resource allocation in multimedia garv&}d et
there ben itemswith valuesvs, v, .. ., v, and let the corresponding resources required to pick the items
bery, ro, ..., ry, respectively. The items can repressenvicesind their associated values can be values of
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Fig. 1. Multidimensional Multiple-choice Knapsack Problem.

revenuesarned from that service. In mathematical notation, the 0-1 KP is t&fiachaximize) ";_; x;v;,
subject to the constrait’;_; x;r; <R andx; € {0, 1}. The 0-1 KP is an NP-hard problddi. There is
a pseudo-polynomial algorithm running ih(n R) time using the concept of dynamic programming.

The Multidimensional Multiple-choice Knapsack Problem (MMKP) is a variant of the classical 0-1
KP. Let there ben groups of itemsGroupi has!; items. Each item of the group has a particular value
and it requiresn resources. The objective of the MMKP is to pick exactly one item from each group
for maximum total value of the collected items, subjectt@esource constraints of the knapsack. In
mathematical notation, let; be the value of thgth item of theith group,r;; = (rij1. rij2, . . ., rijm) be
the required resource vector for tlgh item of theith group, andk = (R1, R, .

.., R;;) be the resource
bound of the knapsack. Now, the problem is to

n l,‘

maximize Z Z x;jv;; (objective function,
im1 =1

n l,‘

subject to Z Z xijrije < Ry (resource constraints
im1 j=1

where V is the value of the solutionk = 1,2,...,m,x;; € {0, 1} are the picking variables, and
l;
Zj:l x,-j = 1.

Fig. lillustrates an MMKP. We have to pick exactly one item from each group. Each item has two
resourcesy1 andrz. The objective of picking items is to maximize the total value of the picked items
subject to the resource constraints of the knapsack, thatis of picked itemsk 17 and) _(r» of picked
items)<15. Notably, it may happen that no set of items satisfying the resource constraints exists implying
that no solution will be found.

The rest of the paper is organized as follows. Related research works on MMKP and on the KPs,
in general, have been described in Section 2. We present our main contribution in Section 3, where we
describe the convex hull approach to solve the MMKP. The pseudo-code and corresponding computationa
complexity of the heuristic for solving the MMKP have been presented in this section. Section 4 shows the
experimental results in a number of graphs and Section 5 describes the observation from the experimente
results. Section 6 concludes the paper by summarizing the performance and applications of this heuristic
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2. Literature review

There are various algorithms for solving variants of K4sThe Multidimensional Knapsack Problem
(MDKP) is one kind of KP where the resources are multidimensional, i.e. there are multiple resource
constraints for the knapsack. The Multiple Choice Knapsack Problem (MCKP) is another KP, where
the picking criteria for items are restricted. In this variant of KP there are one or more groups of items
with the constraint that exactly one item has to be picked from each group. Actually, the MMKP is the
combination of the MDKP and the MCKP. It is worth mentioning here that there is another variant of
KPs in the literature very similar to MMKP, where the restriction of picking exactly one item from each
group is relaxed, i.e. you can either pick one item from a group or leave it. This variant of KP seems to be
easier than the MMKP since we can exclude items from one or more groups if they are non-profitable.

Depending on the nature of the solution, the algorithms for MMKP can be divided into two groups,
namely exact algorithms, which strive for exact solutions, and heuristic algorithms, where we are satisfied
in near-optimal solutions. Finding exact solutions is NP-hard. Using the Branch and Bound with Linear
Programming (BBLP) technique, Kolegat, Shih[6], Nausg7] and Khar{3] presented exact algorithms
for 0-1 KP, MDKP, MCKP and MMKP, respectively. It may be noted in this regard that although the
search space for a solution in MMKP is smaller than the search space in other variants of KP, exact
algorithms are not applicable to the various practical problems, e.g. on-line admission control problem.
This is because of the existence of more restriction of picking items from a group in an MMKP instance.
Experimental results if8] present the time requirements for BBLP algorithms. Interested readers are
referred tg9] for the new trends of exact algorithms.

On the other hand, there exist a number of heuristics in the literature for MMKP and for KPs in general.
For example, a greedy approach has been proddsHe] to find near-optimal solutions of KPs. For a 0—1
KP as described inthe previous section, items are picked from the top of a list sorted in descending order on
v; /r; (value per unit resource) because these items seem to be the valuable and profitable items. To apply
the greedy method to the MDKP, Toyoda proposed a measurementagdjefjate resource consumption
[11]. Khan[3] has applied the concept of aggregate resource consumption to pick a new candidate item in
a group to solve the MMKP. This heuristic, named HEU, finds a solution by only upgrading the selected
items of each group. Again, if12], a modified version of HEU named M-HEU was presented, where
a pre-processing step to find a feasible solution and a post-processing step to improve the total value
of the solution with one upgrade followed by one or more downgrades were added. M-HEU provides
solutions with total value on average equal to 96% of the optimum, with a worst-case time complexity of
O (mn?(l — 1)%). Here n is the number of groupsthe number of items in each group (assumed constant
for convenience of analysis) andthe resource dimension.

Magazine and Ogufd] proposed another heuristic based on Lagrange multipliers to solve the MDKP.
Moser’s[13] heuristic also used the concept of graceful degradation from the most valuable items based
on Lagrange multipliers to solve the MMKP.

Various other techniques like tabu sea[tH], simulated annealinfil5] and genetic algorithmid 6]
can also be applied to solve the variants of KP. The genetic algorithm has the exponential worst-case
complexity—it can explore all the items. Tabu search and simulated annealing are based on looking at the
neighbours. These are costlier than the greedy approach used in HEU. HEU uses a two-way interchange
approach and searches candidates in the neighbourhood which yield better revenue, and changes on
selection to another. But in tabu search, simulated annealing and genetic algorithm approach, current
solution is moved to another solution by upgrading some and downgrading some. This upgrade and
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downgrade at the same step requires more time because we have to search all neighbouring combinatior
of current solution. In the next section, we present our main contribution by presenting a new heuristic
to solve MMKP by constructing convex hulls.

3. Solving the MMKP by constructing convex hulls

The convex hullof the points in a two-dimensional space is defined by the smallest convex polygon
containing those points. There are two different groups of line segments in the convex hull connecting
the bottommost and the topmost points. Each of these groups of line segments ardraatiedof
the convex hull. I17], Lee has efficiently used the idea of convex hull to solve the quality of service
(QoS) management problem of the Multiple Resource Multiple Dimension (MRMD) systems. The QoS
controller, proposed by Lee, of the MRMD system transforms each multidimensional resource to a single
dimension by multiplying a penalty vector. Now each QoS level for each session represents a pointin the
two-dimensional space. The offered bid price represents ttieordinate and the transformed resource
represents the co-ordinate. A convex hull is constructed for each session with the points represented
by the QoS levels. Admission control and QoS adaptation of a session are done based on the gradient ¢
the segments of thefficient convex hull frontief18], whereGradientis a vector that always points in
the direction of maximum change, with a magnitude equal to the slope of the tangent to the curve at the
point, and the efficient convex hull frontier is the frontier, which earns more revenue in terms of resource
usage.

The QoS management problem of the MRMD system can be easily mapped to an MMKP as is evident
from Fig. 2 So the solution algorithm proposed by Lee can be applied to solve the MMKP. However,
the MRMD system has some restrictions between required resources for a QoS level (an item in a groug
of the MMKP) and associated utility (value associated with the items). The QoS levels follow a special
monotone feasibility order, i.e., a QoS level with higher utility must require higher resource requirements.
As a result, for the MRMD system the gradients of these segments never become negative, which may
not necessarily be the case for an MMKP instance. In particular, this algorithm is not applicable for those

QoS level 3
Bid Value: $10

The value of ltem
of Group 1

QoS level 2
CPU: 30 1/0: 10
(30,10) is the resour
consumption of ltem
2 of Group 1

QoS level 3
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I/O BW: 50 Mbps

o Represents the total

QoS level QoS level 2 resource consumption gf
the knapsack
QoS level 1 QoS level boS level 1
An item of a grou MRMD Server

Represents the

ion 1 Session 2 Session 3 knapsack
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Fig. 2. Mapping of MRMD system to the MMKP.
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Fig. 3. Convex hulls of the items of two groups.

MMKPs where some higher-valued items require less resource consumptions than lower-valued items
because they will create negative gradients and hence the corresponding segments will be at the end of the
sorted list; whereas since they give higher utility using less resources, they should be considered first and
hence should be at the front of the sorted list. We use a different sorting criterion to make it applicable for
the MMKP as follows. We sort the segments according to the angle between the positiisand the
segment. Thus, the negative gradients are mapped to angles higher thamHi80 ensures their place in

the beginning of the sorted (sorted in descending order) list. Therefore, these are selected for upgrading
in the beginning. This makes the selection criterion reasonable because items with higher values and
lower resource requirements (which causes the gradients to be negative) are always preferable for the
maximization of total valuedrig. 3shows two convex hulls. The dotted lines show the efficient convex

hull frontier. The efficient convex hull frontier of Group 1 has some segments with negative gradients,
which give more utility with less resource. On the other hand, the efficient convex hull frontier for Group

2 follows the monotone feasibility property. Every segment on this convex hull frontier has a positive and
non-increasing gradient. The use of angles instead of gradient removes all the problems of picking items
in the generalized MMKP. The next subsection presents the algorithm for solving the MMKP using the
convex hulls.

3.1. Heuristic algorithm for solving the MMKP using convex hull approach (C-HEU)

Below, we present the heuristic algorithm for solving MMKP using the convex hull approach. The
pseudo-code of the devised algorithm presented below is preceded by the definitions of some variables
used in the algorithm.

current _sol, savedsol: The solution vector containing the indices of the selected items.

snf The Boolean variables@findicates “solution not found”) indicating whetheurrent solis feasible

or not.

penalty The transformation vector to transform multidimensional resource to single dimension (see
Remark 1).
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Feasibld): A function returning true if the solution under consideration does not violate any resource
constraints and false otherwise.

Utility (): A function returning the total value earned from the selected items.

initial _penalty ): Returns the initial penalty vector (see Remark 2).

adjust penalty ): Returns the penalty vector based on the current resource usage (see Remark 2).
list_of frontier_ segmentsch frontier: Lists of the frontier segments. A segment is a vector with two
items representing a straight line.

p1,p2: ltems representing points in two-dimensional space. The associated value represents-the
ordinate and the transformed single-dimensional resource representsdgr@dinate.

current_group Group of a currently selected point.

current_ item Currently selected item of a group.

p_item Item denoted by poing.

rsum Vector summation of resource vectors.

Begin Procedure adjusselecteditem(p)

[*This procedure selects a new item of a group that contains the item corresponginfhte procedure
ignores poinp if the resource consumption would become infeasible from a feasible solution by selecting
this item. However, in the case when no solution is found yet, it selects the item anyway, in the hope to
find a feasible solution in the future. */

current group<— the group that contains the item corresponding to
current item<«—the currently selected item of grogprrent group.
p_item«—item of groupcurrent groupdenoted by poinp.
fp < feasibility of the resource consumption after selecting the item denoted by
if (fp=true)then
snf « false//solution found
change the selection of groeprrent groupfrom current itemto p_item
updatecurrent sol
9. elseif(fp = false and snf= true)
10. change the selection of groeprrent groupfrom current_itemto p_item
11 updatecurrent sol
12. Ilwhen fp = false, solution not found but trying to find a feasible solution.
13. endif // otherwise leave the feasible solution as.it is
End Procedure
Begin Procedure initialpenalty )
[*Calculate the initial penalty vector using an appropriate formula*/
1.  rsum<«-vector summation of resource vectors of each item in each group.
2. g < apply appropriate formula (see Remark 2 below) on vestiomand total resource vector.
3. returng
End Procedure
Begin Procedure adjuspenalty(g)
[*Updates the penalty vector using the information about the available residual resources*/
1. ¢’ < apply appropriate formula (see Remark 2 below) on vegtdotal resource
vector and available resource vector.
2. returng’;
end procedure

NGO A~WNE
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Begin Procedure CHEU ()
current sol«— The item with lowest value from each group;
if feasibl€current sol) =false then
snf«true //Solution not yet found
endif
penalty= initial_penalty)
for repeat<— 1to 3do //only three iterations for finding solution
savedsol < current sol //saving the current solution
u < Utility (current sol)  //saving utility
for each group in the MMKRIo
0. Transform each resource consumption vector of each item to single dimension
using vectompenalty(see Remark 1 below).
11 ch frontier < efficient convex hull frontier of the items of the group
12.  list_of frontier_segments— list_of frontier_segments + chrontier

ROOONOUORWDNE

13. endfor
14. Sort the segments &ikt_of frontier_segmentin descending order according to the angle of each
segment

15. for each segment in tHest_of frontier_ segments do

16. p1, p2 < The items associated with the segment.

17. adjust selecteditem(p1)

18. adjust selecteditem(p2)

19. end for

20. if Utility (current sol) < u then // New solution is inferior than the saved one
21. current sol«—savedsol

22. endif
23. penaltk— adjust penaltyfpenalty //adjust penalty for the next iteration
24. end for

25. if snf= true then

26. Solution Not found

27. else

28. current solis the final solution.
29. endif

end Procedure

Remark 1. The vectoipenalty as noted above, is used as a transformation vector to transform from mul-
tidimensional resource to single dimension. An explanation of this transformation is in order. The vector
penaltyis used to give a “price” to each resource combination. Specifically2ey1, g2, . . . , gm) be the
penalty vector; then the penalized resource vector may have theRiprma(R1.g1, R2.92, ..., Ry .gm)-

And finally the transformation to single dimension can use the following foRh:= ||ﬁp|| =
\/Rl%l +R% +...+RE .

Remark 2. The responsibility of the proceduirtial _penalty) is to calculate the initial penalty. On the
other hand, the proceduaéjust penalty ) updates the penalty vector using information about the residual
resources fromthe previous iteration. Many different formulas can be used in these two proce{lLifgs. In
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the following two formulas are used, respectively, in procediiteal _penalty) andadjust penalty).

Let R andR’ denote, respectively, the total and available (residual) resource vector. Then the formula for
calculating thekth component fomitial _penalty() can have the following formy; = (rsumy/Ry) + 1.

On the other hand, a possible formula &fjust penalty ) would be:

Ry

= g+l
R+ Ry 1

dk
Recall tharsumandg are defined in the pseudo-code. It may be noted here that in the analysis of these
two procedures, as performed in the following section, these definitions of the formulas are assumed to
be adopted.

Remark 3. The sortinginline #14 requires some explanation for better implementation. The time required
by line #14 as listed in the algorithm(n! Ig nl). However, by clever implementation it can be reduced

to O (nl 1gn). The modification will be as follows. First, remember that the usual two-dimensional convex
hull algorithms can output the frontier segments as a sorted list. So, in Line #12 we do not concatenate
these lists, but we just store these lists independently. After Line #13, welsavied lists, each of which

has at most elements. Therefore, the task is the merging problem: “giveorted lists with elements,

we want to merge them into a single sorted list”. This can be dor#(iri 1gn) with the use of a heap.

For the sake of clarity, the above implementation is avoided in the algorithm listed.

Remark 4. In ProcedureC-HEU( ) we repeat théor loop in Lines 6—24 only 3 times. In a few cases,
more than three iterations might give us a better solution. Experimental results show that in most of the
cases solution value does not improve after 3 iterations.

Remark 5. Itis worth mentioning here that the algoritttaHEU can be used with minor modifications

to solve another variant of KP, which is almost similar to MMKP. This variant, as indicated in Section
2, differs from the MMKP in that the restriction in MMKP of picking exactly one item from each group

is relaxed here. In order to solve this variant we artificially include in each group a “null” item, which
consumes no resource and gives no value. Itis clear that the initial solution set will be comprised of these
artificial items from each group and if in the final solution one of them still remain present, it will mean
that no item should be taken from that group.

3.2. Computational complexity and lower bound

The worst-case complexity of finding the solution of an MMKP using C-HEU can be obtained as
follows. Assume that there anggroups each havirnigtems (in case of different number of items per group,
assume thatis the maximum number of elements in a group) andrddie the dimension of resource
consumption vector. It is easy to verify that the proceduigal penalty and adjust penaltytakes,
respectively,0 (nl + m) and O (m) operations. The time complexity of procedadjust selecteditem
is determined by the number of operations required by the feasibility check at Line #4 of that procedure,
which can be done i@ (m) (the dimension of resource vectorng as follows. We keep track of the
current resource consumption and just deduct the current item’s (item denotgdrbgource. Note
carefully that the determination of the group in Line #1 can be done in constant time by keeping the group
info into the data structure representing the segments. Now we are ready to analyze our main procedure
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C-HEU. Note that there are a constant number of iterations ifiathiop at Lines #6—#24 and hence
can be ignored from the analysis. The functigtility ( ) in Line #8 requiresO (n) running time. The

for loop at Lines #9—#13 iteratestimes. Since there are at mdstems per group, Lines #10 and #11
take, respectively) (im) (see Remark 1 above) amll 1g/) (see[18] for convex hull algorithms). So

the total time required by this loop @ (nim + nl 1gl). The sorting at Line #14 can be performed in

O (nl 1gn) as explained in Remark 3 above. The followfiog loop executes foD (nl) times. Since the
operations required by the procedadjust selecteditemis O (m) (as deduced above), the total running
time of this for loop isO (rlm). So the overall running time of the procedure C-HEU can be deduced as
follows:

Oml +m)+ Om)+ Omlm + nllgl) + Ol 1gn) + O(nim) + O(m)
= O(nlm + nl 19l 4 nl 1gn).

The lower bound of the achieved total value for the Single Resource Multiple Dimension (SRMD)
Systen{17] using the approximation algorithm by constructing convex huMiger= (Uoptimal— Pmax),
wherepmaxis the change of total value for any upgrade, i.e., the maximum difference of values of any two
items of any group, anoptimal is the optimal total value achieved by using the exact algorithms. Please
refer to[17,19,20]for the proof of this lower bound. The problem solved by this approximation algorithm
is actually an MCKP, where the resource dimension is single and this is a special case of MMKP, where the
resource dimension might be multiple. Our heuristic algorithm uses the same approach by constructing
the convex hull and we can expect the same lower bound if it is executed for an MCKP. Although this
is not the lower bound of achieved total value for an MMKP, we can easily speculate on the behaviour
of the achieved optimality for an MMKP using the convex hull approach, as MMKP is the generalized
variant of MCKP.

The algorithm will definitely show better results for a larger problem size, i.e., if the number of groups
and total amount of resources are increagkgkimal increases with a greater number of groups as we get
more selected items. Singg,ax remains the same and depends on the characteristics of the distribution
of the items, the rati®jower/ Uoptimal Will increase.

4. Experimental results

In order to study the run-time performance of C-HEU, we implemented C-HEU along with four other
algorithms

(1) Vopt_est anestimate of the optimal solutidmased on a branch-and-bound search using linear pro-
gramming. This is actually the first iteration of BBLP and this estimate must be higher than the
optimal solution. Only one iteration using linear programming determines this estimate, whereas an
indefinite number of iterations determines the optimal solution. The subsequent iterations generate
estimates closer to the optimal total solution value.

(2) Mosers heuristi¢c based on Lagrange relaxation.

(3) M-HEU, a heuristic based on the aggregate resource consumption.
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(4) Greedy approachbased on a linear search of all the items of each group. It picks the highest-valued
feasible item from each group. In this paper, we call this heuristic G-HEU.

We implemented all the algorithms using the Visual C++ programming language. For simplicity of
implementation, we assumed that each group has the same number of itefis+ile.—= - - - = [,,. We
used the Simplex Method code frdid0] for linear programming. We ran the algorithms on a Pentium
[ IBM Think Pad 700 MHz with 192 MB of RAM running Windows 2000. Two categories of data sets
were used in the performance study of C-HEU, namely, randomly generated and correlated data sets (se
[21] for benchmark data sets on the MMKP). For each set of parametérandm, we generated 10
MMKP instances in which the values are correlated with resource requirements and 10 random MMKP
instances in which the values are not correlated with resource requirements. We ran the algorithms on al
10 instances, and plotted the averages of solution-value and execution time.

4.1. Test pattern generation

The data sets for testing the performance of different heuristics were initialized as follows:

R¢: maximum amount of a resource consumption by an item.

Pz maximum cost per unit resource.

R;: total amount of théth resource-# x R; x 0.5. Here we assumi. x 0.5 amount resource for each
item.

P;: cost of theith resource—Random (P;)—a uniform discrete random number from 0 #® (— 1).

rijk- kth resource of thgth item of theith group—Random(Rc). As the total resource for each item is
R¢ x 0.5, we can say approximately 50% solutions are infeasible because there is a chance that item:
with resource consumption betwegg x 0.5 to R may be infeasible.

v;j: value of thejth item of theith group—Random (m x (R¢/2) x (Pc/2)) x (j + 1)/, when the item
values are not correlated with the resource requirement.

vij: Y rijk X P + Random(m x 3 x (Rc/10) x (Pc/10)), when there is a linear correlation between
the resource consumption and item values.

4.2. Test results

The graphs oFigs. 4—6compare the optimality achieved by the different heuristics with the increase in
number of groups, number of items in each group and number of resource dimensions. For the experiment
done with larger data sets, the computation times for the optimal solution by BBLP are too large for
practical interest, as it takes too long (days or years) on the average to do the computation. So the solutior
values of the heuristics have been normalized byestenated optimum total valuehich is calculated
as follows. The branch and bound algorithm for the MMKP involves the iterative generaticseafeh
tree A nodeof the tree is expanded by selecting an item of a particular group, dakedhing groupAt
a node, if the items of a group are not selected then the group is é&&edroup Initially, there is only
one node in the tree where all the groups are free. Applying linear programming technique on the free
groups of a node, we can determineestimate of optimum total valaes well as the branching group of
a node. The use of linear programming to determine the branching group reduces the time requirement ir
the average case. In each iteration the node with the highest upper bound is explored. The nodes, whicl
do not give any solution value using linear programming, are considered as infeasible. These nodes are
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andm = 10.

deleted from the tree. A solution is found when a node without any free group has the maximum estimated
total value.

The graphs oFigs. 7-Scompare the time required by different heuristics. We have not plotted the time
required by G-HEU as it takes a very insignificant time for this range of data sets. All the plotted data in
the above-mentioned graphs are the average of 10 problem sets.
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Fig. 6. Performance of different heuristics normalized with the estimated optimal total value for the MMKP data sets2th
and/ = 10.
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Fig. 7. Time required by different heuristics for the MMKP data sets with 10 and/ = 10.

5. Observations
One can make the following observations from the presented tables and figures.

e The heuristics produce solutions that are close to the optimal solutions provided by the algorithm
BBLP. M-HEU produces the solution nearest to the optimal solution among all the heuristics.

e We find fromFigs. 4-6 that M-HEU, Moser’s heuristic and C-HEU give better results for uncorrelated
data sets than correlated data sets. C-HEU gives better results than Moser’s heuristic for uncorrelatec
data sets. This is remarkable as C-HEU witknim + nl 1gl + nl 1gn) is giving better results than
Moser’s heuristic withO (mn2(l — 1)?).
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Fig. 8. Time required by different heuristics for the MMKP data sets with200 andn = 10.
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Fig. 9. Time required by different heuristics for the MMKP data sets with200 and = 10.

We also find fronfigs. 79that for correlated data sets, all algorithms take more time than uncorrelated
data sets. Please 9d2] for a plausibility argument of the behavioural differences between correlated
and uncorrelated data sets in solving the MMKP.

In M-HEU, Moser’s heuristic and C-HEU, the most profitable items with large values and a small
resource requirementare given priority for picking, so we obtain the same behaviour for these heuristics.
Fig. 4 shows that for a smaller problem set the optimality achieved by different heuristics increases
with the increase in problem set size. But for larger problem sets the optimality remains almost stable.
We find almost the same trend for an increase in the number of resource dimendtansin

Fig. 5shows that the achieved optimality decreases with an increase in the number of items in each
group. This degradation is the worst for C-HEU. This is likely because we completely ignore some
items from the search space of each group by constructing convex hulls. In other heuristics we ignore
some items while picking items but not at all.
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e Figs. 7and8 show that the time requirements of M-HEU and Moser’s heuristic increase quadratically
with an increase in group size (number of groups) and the number of items in each group. The time
requirement for C-HEU is much less than for the heuristics of quadratic complexity such as M-HEU and
Moser’s heuristic, implying that it is not quadratic. Recall that the theoretical analysis shows that the
worst-case running time C-HEU &(nlm +nl 19l +nl 1gn). Fig. 9shows how the time requirements
increase almost linearly with an increase in the number resource dimensions of the MMKP.

e We find some irregularities in the data for computation time. As the computation time required by
the heuristic and BBLP depends on the contents of the data set, it may happen that smaller data set
take longer than larger data sets. We find such irregularitiegin7 (n = 280—370, uncorrelated data
sets) andrig. 9 (m = 25-50, uncorrelated data sets) for Moser’s heuristics. Similar irregularities were
observed and reported by Khan et al[3h.

6. Conclusion

C-HEU is a heuristic wittO (nlm +nl 1g [ +nl 1g n) complexity to solve the MMKP. The experimental

data show that the optimality achieved by this heuristic lies between 88% and 98%. This heuristic is
definitely more scalable than other heuristics with quadratic complexity. It also achieves better optimality
than some heuristic with quadratic complexity for the problem sets where the values associated with the
items are not correlated with the resource consumption. It can be applied successfully for the admission
controllers for multimedia systems that require quicker response time than M-HEU or Moser’s heuristic.
C-HEU is especially applicable for the systems where the requested QoS levels are not proportional to
the resource requirement to serve those QoS levels.
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