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In this paper, we propose several heuristics for approximately solving the multiple-choice multidimensional knapsack 
problem (noted MMKP), an NP-Hard combinatorial optimization problem. The first algorithm is a constructive 
approach used especially for constructing an initial feasible solution for the problem. The second approach is applied in 
order to improve the quality of the initial solution. Finally, we introduce the main algorithm, which starts by applying 
the first approach and tries to produce a better solution to the MMKP. The last approach can be viewed as a two-stage 
procedure: (i) the first stage is applied in order to penalize a chosen feasible solution and, (ii) the second stage is used in 
order to normalize and to improve the solution given by the firs stage. The performance of the proposed approaches has 
been evaluated based problem instances extracted from the literature. Encouraging results have been obtained. 
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Introduction 

The multiple-choice multidimensional knapsack problem 
(MMKP) is a more complex variant of the 0-1 knapsack 
problem, an NP-Hard problem. Due to its high computa- 
tional complexity, algorithms for the exact solution of the 
MMKP are not suitable for most real-time decision-making 
applications, such as quality adaptation and admission 
control for interactive multimedia systems,' or service level 
agreement management in telecommunication networks.2 In 
the MMKP, we are given n classes Ji of items, where each 
class Ji, i= 1,..., n, has ri items. Each item j, j= 1, ..., ri, of 
class Ji has the non-negative profit value vij, and requires 
resources given by the weight vector Wii= (wi, w2.2.., wM) 
where each weight component 

w-, 
k= 1,..., m also is a non- 

negative value. The amounts of available resources are given 
by a vector C = (C', C2 ..., Cm). The aim of the MMKP is 
to pick exactly one item from each class in order to maximize 
the total profit value of the pick, subject to resource 
constraints. Formally, the MMKP can be stated as follows: 

maximize Z = E vijxi i=lj=1 
n 

ri 
subjectto ZE 

wxE?Xw 
<Ck, k e {1,...,m} 

(MMKP) i=lj=l 

L-x=1 i{1,...1,n} j=1 

x? E {0, 1}, iE {1,...,n}, 
jC I {1,...,ri} 

The variable xij is either equal to 0, implying itemj of the ith 
class Ji is not picked, or equal to 1 implying item j of the ith 
Ji class is picked. 

In this paper, we propose several algorithms for the 
MMKP. The first two algorithms can be considered as 
constructive and complementary solution approaches. The 
third algorithm is mainly based upon a guided local search 

(GLS) method (for more details, the reader can be referred 
to Voudouris and Tsang3,4 which has its origin in constraint 
satisfaction applications. GLS has proven to be a very 
powerful approach for solving several hard combinatorial 

optimization problems. It uses memory to guide the search 
to promising regions of the solution space. This is performed 
by increasing the cost function with a penalty term that 

penalizes bad features of previously visited solutions. In this 

work, we introduce a new principle based on the following 
points: (a) starting with a lower bound obtained by a fast 

greedy procedure, (b) improving the quality of the initial 
solution using a complementary procedure and (c) searching 
the best feasible solution over a set of neighbourhoods. The 

main idea consists in choosing a penalty strategy to construct 
a better solution on the space of the feasible solutions. 

The remaining of the paper is organized as follows. First, 
we present a brief reference of some sequential exact and 

approximate algorithms for knapsack problem variants. 

Second, we present the concept of GLS and the main 

principle of the proposed algorithms. Third, we propose two 
constructive procedures used especially for providing an 
initial starting solution to the problem. Fourth, we then 

present a derived algorithm using (i) a penalty strategy and 

(ii) a normalized solution. Fifth and last, the paper is 
concluded with experimental results. 

*Correspondence: M Hifi, CERMSEM, Universite de Paris 1, Pantheon- 
Sorbonne, 106-112 Boulevard de l'H6pital, Paris Cedex 13, 75647, 
France. 
E-mail: hifi@univ-parisl .fr 
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Literature survey 

Most of the researches on knapsack problems deal with the 
much simpler constraint version (m = 1 and n = 1). For the 
single constraint case the problem is not strongly NP-Hard 
and effective approximation algorithms have been developed 
for obtaining near-optimal solutions. A good review of the 
single knapsack problem and its associated exact and 
approximate algorithms is given by Martello and Toth.s 
Below we review the literature for the knapsack problem 
variants. We will particularly discuss the multidimensional 
knapsack problem (MDKP), the multiple-choice knapsack 
problem (MCKP), and the MMKP. 

Many variants of knapsack problems, which comprise an 
important class of combinatorial optimization, have been 
thoroughly studied in the last few decades (see Chu and 
Beasley6 and Martello and Toth7). There are two types of 
solution methods: exact algorithms capable to produce the 
optimal solutions for some problem instances within a 
reasonable computational time, and approximate procedures 
or heuristics capable to produce 'good' (near-optimal) 
solutions within small computational time. 

Most exact algorithms for solving the knapsack problem 
(KP) variants are mainly based on (i) branch-and-bound 
search using depth-first search strategy (see Balas and 
Zemel,8 Fayard and Plateau9 and Martello and TothS',1), 
(ii) dynamic programming techniques (see Pisinger"), and 
(iii) hybrid algorithms combining dynamic programming 
and branch-and-bound procedures (see Martello et all2). 
The MDKP is a generalization of the classical binary 
knapsack problem for multiple resource constraints. For 
more details see Chu and Beasley,6 Freville and Plateau13 
and Shih.14 Another variant of the knapsack problem is the 
MCKP, where the picking criterion for items is more 
restricted. For the later variant of the knapsack problem 
there are one or more disjoint classes of items, for more 
details, one can refer to Nauss.15 Finally, the MMKP can be 
considered as a more generalization of the MDKP and 
MCKP variants of the binary knapsack problem (0-1 KP). 
Most algorithms for optimal solutions of knapsack problem 
variants are also based upon branch-and-bound procedures 
(see Nauss,15 Khan16 and Pisinger17). 

A greedy algorithm has been proposed for approximately 
solving the knapsack problems (see Martello and Toth7). 
For the classical binary knapsack problem, the approach is 
composed of two stages: (i) sort the items in decreasing order 
of value-weight ratio and (ii) pick as many items as possible 
from the left of the ordered list until the resource constraint 
is violated. By using the same principle for the MDKP, 
Toyoda'8 used the aggregate resources consumption. The 
solution of the MDKP needs iterative picking of items until 
the resource constraint is violated. Shihl4 presented a 
branch-and-bound algorithm for MDKP. In this method, 
an upper bound was obtained by computing the objective 
function value associated with the optimal fractional 

solution algorithm (see Dantzig'9) for the m single constraint 
knapsack problems and selecting the minimum objective 
function value among those as the upper bound. In the 
recent past, great success has been achieved via the 
application of local search techniques and metaheuristics 
to MDKP. Most popular has been tabu search, genetic 
algorithms, simulated annealing and hybrid algorithms (for 
more details the reader can refer to Chu and Beasley6). 

An approximate algorithm has been proposed by Moser 
et al20 for the solution of the MMKP. The algorithm uses the 
concept of graceful degradation from the most valuable 
items based on Lagrange multipliers. Finally, Khan et al1 
proposed an algorithm based mainly on the aggregate 
resources already used by Toyoda'8 for solving the MDKP. 
The method works as follows: (i) it starts with finding an 
initial feasible solution, (ii) it uses Toyoda's concept of 
aggregate resources for selecting items to pick, and (iii) it 
uses iterative improvement of the solution by using some 
exchanges of picked items. 

Solution approaches of the MMKP 

A modified GLS algorithm 

The GLS algorithm is a recent approach, considered as a 
metaheuristic, that has proven to be effective on a wide 

range of hard combinatorial optimization problems. GLS 
has been first applied by Voudouris and Tsang3'4 for solving 
constraint satisfaction problems. It can be considered as a 
tabu search (see Hansen,22 Glover23 and Glover and 

Laguna24), since it uses a memory to control the search 
processes in a manner similar to tabu search. However, the 
definition is simpler and more compact. GLS has proved to 
be an effective approach for non-trivial problems such as the 

travelling salesman problem,4'25 quadratic assignment pro- 
blem,25 resource allocation,26 vehicle routing problem,27 and 
bin-packing problem.28 The guided local search moves out 
of a local maximum/minimum by penalizing particular 
solution features that it considers should not occur in a near- 

optimal solution. It defines a modified objective function, 
augmented with a set of penalty parameters on these 
features. The usual local search method is then used to 

improve the augmented objective function. The cycle of local 
search and penalty parameter update can be repeated as 
often as required. 

In our study, we propose a variant of the GLS algorithm 
which mainly consists in operating some penalization to the 
search process in order to escape local optima. First, the 
operated penalty is almost controlled by a fixed depth 
parameter which initiates several items' profits to penalize, 
and a parameter, that controls the diameter of the space 
search. This approach also uses some penalty coefficients 
chosen with links to the size of the problem. This is in order 
to operate randomly the penalty to any current solution 
which indicates that this one is blocked into a gap of very 
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attractive local optima. The aim of the used penalization is 
twofold: (i) to release the current solution and (ii) to modify 
the search trajectory. The later points are introduced in 
order to make some diversifications and to obtain a 'good' 
configuration solution. 

GLS for the MMKP 

Solution representation 

Before describing the proposed approaches, we give a 
suitable representation scheme and introduce some nota- 
tions. 

Let J be a set of items divided into n disjoint classes such 
that j, jeJi, has a profit value vij and a weight vector 

Wi,-(w1,..., 
w), and let 

C-(C', 
..., Cm) be a capacity 

vector for the multidimensional knapsack. The multidimen- 
sional knapsack is subject to multiple-choice constraints 
which may be formulated as: Vie {1, ..., n}, i, E lj x 1. 

The aim is to determine a subset of items such that the 
sum of their values is maximum without exceeding the m 

capacity constraints. Generally, the scheme is a way to 

represent a solution of MMKP. The standard MMKP 0-1 

binary representation is an obvious choice for MMKP since 
it represents the underlying 0-1 non-negative variables 

(Figure 1 shows the vector representation of an eventual 

solution). 
A feasible solution is such that Vke {1, ...,m}, 

EZ 
Eril 

wkX ijCk and for each class Ji, we pick one 
and only one item j, i.e, xij = 1 if the jth itemj of the ith class 

Ji has been selected, otherwise xij 0. 
In what follows, we distinguish the following states: 

feasible state (FS) and unfeasible state (US); FS indicates 
that the current solution, namely S, does not violate the 
amount of available constraints, and US indicates if there 
exists at least a violated constraint on S. The goal is to 
produce an improved FS (or to transform US to FS) by 
applying a swapping local search. 

An initial solution for the MMKP 

The initial feasible solution is obtained by applying a 
constructive procedure, noted CP. CP is a greedy procedure 
with two phases: a DROP phase and an ADD phase. This 
is to generate a feasible solution by considering the FS 
process. It starts by computing the pseudo-utility ratio 

ul= vij/ ( C, Wi)>, je { 1, ..., ri} of each item j belonging to 
each class Ji, where ( .,. ) is the scalar product in [Fm. Then it 

class - J1 J2 '... Jn 

item - 1 2 3 1 2 3 4 ... 1 2 
bit subvector -- 1 0 0 0 0 1 0 

. 
0 1 

Figure 1 Binary representation of the MMKP solution. 

selects the item j from each class Ji, ic {1, ..., n}, realizing the 
most valuable uij. If the obtained solution is an FS, then CP 

terminates, otherwise (DROP phase) it considers as the most 
violated constraint Cko. With respect to Cko, it selects the 

class 
Jio corresponding to the fixed item 

jio having the largest 
weight 

wiQo 
all over the fixed items and regarding the most 

violated constraint Cko. This item (ADD phase) is then 

swapped with another selected item j from the same class 
Jio, 

and the procedure controls the feasibility of the state. If the 
new obtained solution is a US, it selects the lightest item. jio 
of the current class Jio which in turn is considered as the new 
selected item. This process is iterated until an FS or the 
smallest unfeasibility amount for the obtained solution is 
obtained. CP approach may be described by the steps of 
Box 1. 

We can show that CP has a complexity of O(max{Om, n}) 
where 0= max{r, ..., r,}. Indeed, on the one hand, in the 
main step (the loop while) one takes m operations to obtain 

Box 1 The constructive procedure for determining an initial 
feasible solution: CP 

Input: An instance of the MMKP. 
Output: A feasible solution S with value O(S). 

Initialization. 
For i= 1,..., n, set uii = max {up, j = 1,...,ri); 

Si 
--ji; Set 0[i]]=ji; Xi[] 1; 

SetRk =1 [i],Vk= 1,...m; I k: ~~i= [il I 

/*Rk: the accumulated resources for 
constraint k */ 

EndFor; 
S= (SI, 

..., 
S.); Main. 

While (Rk > Ck, for k= 1,..., m) /*DROP phase*/ 
ko - argmax {Rk}; 

1?ksm 

io - argmax {~ w; 

[[io] =Jio; xio[iol = 0; 
Rk =Rk [iok for k - 

1,... 
m; 

For j = 1... rio /* ADD phase */ 
If (3j :jio and Rk + ok. < Ck, for k= 1. m) then 

Xioj 
= 1; 

Jio =J; 
[io] =jio; 

Rk = Rk + 0ok for k= 1,..., m; 
iooio[ 

S-= 
([io]; 0[iz], 

Vi- 
io, i 1,..., n) is a feasible 

solution; 
Exit with the S vector; 

EndIf; 
EndFor; 

.o -- arg min 
{•o 

}; /* if the obtained solution is not 1 <j 
<rio 

feasible */ 
Jio -='; [iO] =Jio; xio[io] = 1 

EndWhile; 
Return S with value O(S). 
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ko and n operations to obtain io. The procedure takes mO 
operations to build a new configuration, where the number 
of operations consumed for updating the consumed 
resources is bounded at worst by (m + 1)0 operations. 
Hence, the complexity of CP is then evaluated at worst to 
O(mO + n + 0), which is equivalent to O(mO + n), which in 
turn, is also equivalent to O(max{mO, n}). 

The unfeasibility case 

In this section, we may discuss the unfeasibility case of the 
solutions generated by CP, those of US state. In this case, we 
try to reduce the unfeasibility amount of the solution by 
running a procedure that uses the local swapping strategy 
between two items, we say j and j' belonging to the same 
class Ji. First, we define the ith resource consumption for the 
kth constraint as Rk(i) = wi + i'i,i'=l) 

1Jril 
wjk. The 

best local swap for an item ji of a class Ji is the one which 
satisfies a decision criteria (of course, we can define other 
decision criterion) which realizes the minimum of the 
following ratio: 

"_1 
Rk ji) 

Dji = EMCk 

This swapping is operated in two stages: 

1. Computing the ratios Dj,: 
First, we apply the swapping strategy for the item 
realizing the smallest value of the decision criteria that 
we have defined before. More precisely, for each class Ji, 
i=1, ... ,n: (a) we apply the local swapping strategy 
between two items, (b) each item for ji swapped with 
another from the same class, we compute the ratio Dj,, (c) 
next, we record the smallest value of the ratio Dmin and 
the index ji]n of the item which corresponds to the later 
ratio. 

2. Selection of the best ratio: 
From all the computed ratios recorded with their 
corresponding items, we select the class Jimin that realizes 
the smallest value over all Djmin, i 1, ..., n. Next, we 

apply the local swapping strategy in the considered class 

Jimin. This phase terminates by updating the consumed 
resources after operating the global swap between Jimin 
and 

jmm, 
which ensures an FS state or less unfeasibility 

amount of the obtained US solution. 

This process is iterated for a fixed number of iterations 
Maxlter, and for each iteration we check the feasibility state 
of the obtained solution. In the case of an obtained FS state, 
the process ends and the obtained solution is feasible. 

As soon as the process reaches the maximum number of 
iterations and the obtained solution is of US state, we say 
that the process is unable to generate a feasible solution. Of 
course, one also can apply the procedures developed in the 

following sections used especially to try to transform an US 
state into a FS one. 

In what follows, we describe a complementary local search 
procedure in order to improve the quality of the solution 
generated by CP. 

A complementary local search 

The complementary CP approach (CCP), uses an iterative 
improvement of the initial feasible solution. It applies (i) a 
swapping strategy of picked items (considered as old items) 
and (ii) a replacement stage which consists of replacing the 
old item with a new one selected from the same class. Note 
that each swap is authorized if the obtained solution realizes 
a FS. By this way, first, the swap is generalized to the 
remaining items of the same class in order to select the new 
item realizing the best local solution value of the current class. 

Second, the two selected items, say ji and ji', of the same 
class, say Ji, are exchanged in the new solution, where the 
obtained solution value realizes the better solution value 
over all classes. This process is iterated by using a stopping 
condition. A detailed description of the CCP algorithm is 

given in Box 2. 

Box 2 A complementary feasible solution: the CCP approach 

Input: A feasible solution S with value O(S). 
Output: An improved feasible solution S* with value O(S*). 

Step 1. 
set S= (S,1..., S,) +- CP(); 
set S* + S; 

Step 2. 
While not StoppingConditiono do 

Forall i in { 1 ... , n } do 
ji' - LocalSwapSearch(ji, Ji)/*ji (ji') denotes the 
old (new) item of the class Ji */ /* and the 
exchange between ji and ji' is authorized */ 
Si+-ji 

S+-(S1 ..... 
jiI...,Sn); 

IfO(SI,...j' ,...,S,) > O( S*)then 
S* +- (SI ,...ji,...,Sn); EndIf 

EndWhile 
return S* with value O(S*); 

First of all, we detail the principle of the LocalSwap- 
Search() procedure that CCP applies in order to improve the 
solution generated by CP. 

(A) In the begining, the LocalSwapSearchO procedure 
initializes the best element to swap: 
(A.1) value +-- vis,, where visi denotes the profit of the 

old fixed item in the ith class Ji to be swapped; 
(A.2) si- Si, where si is a candidate item in Ji to be 

swapped; 
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(B) Next, it operates the exchange which may be authorized: 
(B.1) For (/= 1, ..., ri and j= Si) do 

If (vij> value and Rk - 
Wi 

+ w Ck, 
Vk = 1 ..., m) then 
Set value +- vj; 
Set si-j; 

B.2) Return si as the best element to locally swap. 

Recall that CP has a complexity evaluated to 

O(max{mO, n}). CCP uses the constructive procedure CP 
to produce an initial feasible solution (Step 1). In the main 

step (Step 2), LocalSwapSearch procedure, takes 2 m 

operations to update the used resources, one operation to 

compute the value O(S). One takes O(2m + 1) operations to 
select a class and n x (2m + 1) x 0 operations for all the 
classes. So, the total operations of CCP in addition to the 

complexity of CP is evaluated to Maxlter x 0(0(2m + 1) x n 
+ (m + n) + 0(2m + 1)) which is equivalent to 0(0(m + n)). 
Hence, the worst case complexity of CCP is equivalent to 
O(Omax{m, n}). 

A derived algorithm using penalties and normal 
transformations 

In this section, we describe the main principle of the derived 
approach using (i) a penalty stage strategy and (ii) a 
normalized stage one. The algorithm starts by a feasible 
solution, namely S* (obtained by applying the constructive 
procedure CP). The last solution is considered as the best 
feasible solution, obtained up to now, without using any 
penalty. 

The derived algorithm (denoted Der Algo) can be viewed 
as a two-phase procedure: it uses (i) a penalized phase and 
(ii) a normalized configuration one. 

* On the one hand, the penalized phase is applied if the 
current solution cannot be improved after a certain 
number of iterations. In this case, a penalty parameter is 
used in order to transform the profits of the objective 
function. Starting with the new configuration (which 
remains a feasible one for the original problem), the 
process consists in finding a good neighbourhood for 
improving locally the current configuration. 

* On the other hand, the normalized phase is used in order 
to transform the last penalized configuration into a 
normal feasible solution. The obtained solution is 
normalized because the profits of its objective function 
are set equal to the original profits (corresponding to the 
original problem instance). 

Description of the derived algorithm.: Der_Algo 

The main steps of the derived algorithm are described in Box 
3. The algorithm starts by applying CP to obtain an initial 
feasible solution. The configuration of the current solution is 

Box 3 A derived algorithm using the penalty and the normal 
strategies: Der Algo 

Input: A solution S with value O(S), ir, A and D. 
Output: A best solution S* with value O(S*). 

Initialization. 
Set S +- S: = CP() and V(p)+- O(S*); 
Set A = D +-0; /* Initializing the depth and the diameter 
parameters */ 
Set phase +-NormalPhase;/*Initializing the phase 
parameter */ 

Main step. 
While not (StoppingConditiono) Do 

S: = CCP(S)/* Using a LocalSwapSearch to improve 
the initial solution */ 
If V(p) < O(S) then 

If (phase= Normal_Phase) then /* Stage without 
using any penalty factor */ 

Set S*+-S, V(p) --O(S*); 
Else 

Set S: = Normalize(S, p, nt) 
/*Put back the solution configuration to its 
ordinary form */ 
Set S* +- S, V(p) -- O(S*); 

EndIf 
Else 

If (phase = Normal_Phase) then 
S+-Penalize(S, V(p), it, A); 
/*Applying the penalization strategy to the current 
solution */ 

Else /*If the current stage is a Penalize Phase */ 
Set S+-Normalize(S, p, ir), V(p)- O(S); 
S+-Penalize(S, V(p), 7t, A); 

EndIf 
EndIf 
Increment(D); 
Set A - Get_Depth(A, D, n); /*A random fixation of 
depth */ 

EndWhile 

Return S* with value O(S*); 

stored in the vector p. The best solution (value) S*(O(S*)) is 
initially set equal to the initial solution (value) S(O(S)). The 
main loop (of the Main step) applies a Normal_Phase, which 
is the phase for which no penalty factor was introduced. The 
later phase performs a local swapping search in order to 
enhance the obtained solution. At each iteration of the main 
step, the best current solution is updated if the solution is 
improved. In this case, we can distinguish two cases: 

* On the one hand, the stage is set to Normal_Phase and the 
solution is represented by S* with value O(S*). 

* On the other, if the stage is set to Penalize Phase, then the 
Normalize () procedure is introduced in order to retrieve 
the solution's structure of the original problem, corre- 
sponding to the penalized solution. 

This process is iterated for a certain number of iterations. 
By this way, we also can distinguish two cases: (i) the current 
solution was improved and (ii) the process is not able to 
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reach an improved solution. When the first case (i) is realized 
and the stage is running Normal_Phase, then the penalizing 
strategy--the Penalize () procedure-is called in order to 
modify the profits of the objective function. Furthermore, if 
condition (ii) is realized, then (a) the Normalize () procedure 
is applied in order to transform the penalized solution into a 
normal one and, (b) the Penalize () procedure is used on the 
later solution. Of course, the aim of the last step is to attempt 
to change the trajectory of the search process in order to 
explore other nonvisited space search. 

In the following, we detail the two main procedures used 
in the Der_Algo algorithm, that is, the Penalize () procedure 
and the Normalize () one. 

The Penalize procedure: It uses some parameters which are 
denned as follows: 

* 0< r < 1: penalty coefficient, 
* p: current solution vector in the penalized phase, 
* A: the depth parameter for penalization, 
* D: diameter parameter for exploration. 

The procedure operates as follows: 

Initialization 

* The initial solution to penalize S is set equal to S* and the 
current structure denoted p (which can be modified) is 
initially set to S; 

* Let Counter (equal to zero) be the variable used in order 
to control the depth parameter A(i.e. 0 < Counter s< A); 

The main loop. it starts depth exploration to penalize 

* While (Counter< A) do 
o i+- GetClass(); /* Random selection of a class */ 
o ji+-p[i]; /* Index of an element in J,/ 
o vip[i]+-t xx vXip[]; 
o O(S) <-O(S)-vip[i] + - x vip[]; 
o Increment(Counter); 

* Return S with value O(S) as the penalized current 
solution. 

The Normalize () procedure: We recall that the Normalize () 
procedure is applied in order to normalize any improved 
penalized solution produced by Penalize () procedure. The 

procedure works as follows: 
Initially, the procedure uses some parameters which are 

defined as follows: 
* 0< c < 1: penalty coefficient, 
* p: current solution vector in the penalized phase and V(p) 

it's value 

The procedure operates as follows: 

Initialization 

* The initial solution to normalize S* is setting equal to S 
and the solution value V(p) is set equal to O(S*); 

The main loop 

* For i = 1, ..., n do 

o ji- p[i]; /* to normalize the current component of the 
i-th class */ 

o O(S*)- O(S*)-vi+ (1/7I) x vip[1; /* to update the profits 
/ 

O 
vip[i] +-(1/7) 

X Vip[i]; 

We can remark that the derived algorithm uses other 
parameters. The first parameter is called depth parameter 
(denoted A) which permits to fix a number of items to 
penalize. The second parameter is called diameter parameter 
(denoted D) which is introduced in order to control the space 
search of some better obtained solutions up to now. For 
instance, the later space search represents some different 
configurations having the same solution value. Third and 
last, the parameters called penalty coefficients (denoted Ir) 
that are applied to the objective function. In this case, if the 
obtained configuration is feasible for the penalized problem, 
then it necessarilly represents a feasible solution for the 

original problem. 
The complexity of this algorithm is presented as follows. 

First, (Bloc 1), Der Algo starts by calling CP to construct a 
feasible initial solution. We know that its complexity is of 

O(max{mO, n}). Second (Bloc 2), we apply CCP to improve 
a current solution obtained by applying CP and its com- 

plexity has been evaluated to O(Omax{m, n}). Normalize () 
procedure takes at worst 0 operations to put back a 

penalized solution to its normal configuration and has a 

complexity of 0(0). Penalize () procedure takes, as well, at 
worst 0 operations to use a penalty factor for a current 
solution with a complexity of 0(0). So, the total operations 
taken by Der Algo is bounded by Maxlter x ((Om + n) + 
(8(m + n) x 0). Hence the worst-case complexity of Der_ 
Algo is equivalent to 0(02max{n, m}). 

Computational results 

The purpose of this section is two-fold: (i) to evaluate the 

performance of the CP and CCP and (ii) to determine a good 
trade-off between the running time and the used parameters 
for the derived algorithm (DerAlgo): the maximum number 
of iterations, the depth parameters, the diameter parameter' 
and the penalties ones. 

This section is organized as follows. First, we evaluate the 
performance of both CP and CCP. For a set of problems 
extracted from the literature, we compare the results 
obtained by both algorithms to the optimal solution (or 
the best solution found up to now), and to the results of 
Moser et al20 and Khan et a21 approaches. Second, we 
present the performance of Der-Algo and reveal the 
importance of the used parameters. In the same section, 
we indicate the degree of improvement provided by 
Der_Algo over other approaches. 
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In our computational results, CP, CCP and DerAlgo are 
coded in C + +, and run on a Ultra-Sparc 10 (250 MHz and 
with 128 MB of RAM). 

Performance of CP and CCP 

To evaluate the performance of CP and CCP, we use the test 
problems of Khan et al.21 (We have made these instances 
publicly available from ftp://panoramix.univ-parisl.fr/pub/ 
CERMSEM/hifi/OR-Benchmark.html, hoping to aid 
further development of exact and approximate algorithms 
for the MMKP). These problems span a variety of instances 
varying from small- tolarge-sized instances. The optimal 
solution value for some of these instances, referred to as 
101, ..., 106 in Table 1, is known. For the other instances, 
referred to as 107, ..., 113 in Table 1, we report the best 
solution value published by Khan et al.21 For each instance, 
we report the number n of classes, the number ri of items of 
each class, and N the total number of items of each instance 
representing E lri. 

Table 1 Test problem details 

Inst. n ri, i - 1 
... 

n N 

101 5 5 25 
102 5 10 50 
103 10 15 150 
104 10 20 200 
105 10 25 250 
106 10 30 300 
107 10 100 1000 
108 10 150 1500 
109 10 200 2000 
110 10 250 2500 
Ill 10 300 3000 
112 10 350 3500 
113 10 400 4000 

The results obtained by Moser et al and Khan et al are 
reported in Table 2. The results of Moser et al approach are 
provided in columns 5 and 6. The results of Khan et al 
algorithm are represented by columns 3 and 4. Column 2 
contains the optimal-(or best-) solution value of the 
problem. Columns 4 and 6 show the percentage deviation 
of the solution value from the optimum (or best value) noted 
herein, Dev, and computed as follows: Dev=(1-(A(1)/ 

Opt(1)(or Best)) x 100, where A(1) and Opt(I) (resp. Best) 
denote the approximate (the solutions of column 3 or 5) and 
the optimal (resp. best) solutions of instance I. 

The CP and the CCP solutions for II, ..., 113 are reported 
in Table 3. The results of CP are provided in columns 3-5. 
Column 3 contains the solution value (denoted CPsoJ). 
Column 4 shows the percentage deviation (denoted Dev) 
between the usage of the CP-yielded solution and the 
optimal (or best) solution, defected Opt/Best. Column 5 
displays the CP run time (denoted T and measured in 
seconds). Columns 6-8 report the results of CCP. Column 6 
provides the CCP solution (denoted CCPso1), column 7 
computes the corresponding deviation from the optimum (or 
the best solution) and column 8 displays the CCP run time. 

This section can be considered as a preliminary experi- 
ment in which we compare the results of CP and CCP. 
Before comparing the results of both algorithms, let us 
analyse the behaviour of both solution approaches of the 
literature. From Table 2 we can observe that Khan et al 
algorithm (denoted KLMA) outperforms Moser's approach 
(denoted Moser: the reported solutions are taken from Khan 
et al21). In this case, KLMA produces a percentage deviation 
varying in the interval [0, 4.45%] and with an average 
percentage of 1.46%. 

Now we return to analyse CP and CCP. Summarized 
results of CP and CCP appears in Table 3. We can observe 
that CCP produces better solutions than over all problems, 
CP at the expense of a slightly larger computational time. 

Table 2 Perfomance of Khan et at" and Moser et at20 algorithms on all problems 

Inast. Opt/Best KLMAsol Dev Mosersol Dev 

101 173.00 167.00 3.47 151.00 12.72 
102 364.00 354.00 2.75 291.00 20.05 
103 1602.00 1533.00 4.31 1464.00 8.61 
104 3597.00 3437.00 4.45 3375.00 6.17 
I05 3949.59 3899.10 1.28 3905.70 1.11 
106 4799.30 4799.30 0.00 4115.20 14.25 
107 23 983.00* 23912.00 1.02 23 556.00 2.50 
108 36 007.00* 35979.00 0.11 35373.00 1.79 
109 48 048.00* 47901.00 0.31 47205.00 1.75 
110 60 176.00* 59811.00 0.68 58 648.00 2.61 
Il 72 003.00* 71760.00 0.45 70532.00 2.16 
112 84 160.00* 84141.00 0.03 82377.00 2.13 
113 96 103.00* 96003.00 0.10 94166.00 2.02 

Average 1.46 5.99 
The symbol * means that the optimal solution is not known. 
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Table 3 Performance of both CP and CCP algorithms on all problems 

Inst. Opt/Best CPsol Dev T CCPsol Dev T 

101 173.00 161 6.94 <0.01 161.00 6.94 <0.01 
102 364.00 284.00 21.98 <0.01 341.00 6.32 <0.01 
103 1602.00 1414.00 11.74 <0.01 1511.00 5.68 <0.01 
104 3597.00 3135.00 12.84 <0.01 3397.00 5.56 <0.01 
105 3949.59 3065.40 22.40 <0.01 3591.59 9.06 0.03 
106 4799.30 3749.89 21.87 0.01 4567.90 4.82 0.02 
107 23 983.00* 19 667.00 18.59 0.02 23 753.00 1.68 0.16 
108 36 007.00* 28 461.00 20.98 0.05 35 485.00 1.48 0.40 
109 48 048.00* 38 389.00 20.10 0.06 47 685.00 0.76 0.65 
110 60 176.00* 48 361.00 19.69 0.05 59492.00 1.21 1.11 

Il1 72 003.00* 58 008.00 19.53 0.08 71 378.00 0.98 1.35 
112 84 160.00* 68 027.00 19.18 0.09 83 293.00 1.04 1.70 
113 96 103.00* 78 309.00 18.52 0.09 95 141.00 1.00 2.15 

Average 18.03 0.03 3.58 0.58 

The symbol * means that the optimal solution is not known. The symbol <means that the computational time is neglected. 

CCP produces, in less than 0.58 s, reasonable quality results. 
It is on average 3.06% of the optimum (or best-obtained 
solution). It occasionally yields poor results with a worst- 
case of 8.93%. Thus, it is a useful starting point for more 

complex procedures. 

Performance of Der_Algo 

Generally, when using approximate algorithms to solve 

optimization problems, it is well known that different 

parameter settings for the method lead to results of variable 

quality. Herein, Der_Algo involves four decisions: the way 
of choosing the depth parameter A, the number of iterations, 
Max_Iter, to carry out, the way of controlling the space 
search represented by the diameter parameter D, and the 
values attributed to the penalty parameter n (in our case, the 

penalty parameter is the same for all profits). In what 
follows, a different adjustment of the method's parameters 
would lead to a high percentage of good solutions. But this 
better adjustment would sometimes lead to heavier execution 
time requirements. The set of values chosen in our 

experiment represents a satisfactory trade-off between 
solution quality and run time. 

First, in order to find the right value of A we have 

explored three strategies: 

* A bigger value was assigned to A, that is, by fixing A in the 
interval [6, ..., 10]; 

* An intermediate value was assigned to A, that is, by 
setting A to 5; 

* A smaller value was assigned to A, that is, by varying A in 
the interval [1, ..., 4]. 

Limited computational results showed that the variation 
of A in the interval [1, ..., 5] produced a good improvement 
of the solution quality. For the complementary interval 

[6 ..., 10], the algorithm was not able to produce a better 

Table 4 The behaviour of Der_Algo when varying the 
number of iterations MaxIter 

Max Iter 2 5 8 10 

Av.Dev 1.81 0.92 0.68 0.61 
Av.T 1.90 1.90 4.10 6.50 

solution, but it consumed more computational time. Finally, 
the best results were obtained for the second case and this 
value of A = 5 was retained and used in what follows. 

Second, in order to find a good compromise between the 

quality of the solutions and the computational time, we have 
introduced a variation for the maximum number of 
iterations Max Iter. In this case, we have tested Max Iter 
with values taken from the discrete interval {2, 5, 8, 10}. 
Limited computational results revealed that a bigger value of 

MaxIter does not necessarilly generate a better solution, 
but the computational time increases. 

Table 4 shows the quality of the results obtained when 

Der_Algo is applied with the following parameters: A = 5, 
D = 5 and 

n-= 
0.70 (below, we shall discuss the choice of the 

values associated to D and 7n). Using these later values, as 
shown in Table 4, we can observe that the quality of the 
results (denoted Av. Dev: Line 2) varies between 0.61 and 
1.81%. The better average deviation is obtained when fixing 
Max Iter to 10 with a largest average computational time 

(denoted Av. T. : Line 3). 
Third, by fixing the values of the parameters A and Max, 

we now try to fix the value of the diameter parameter D in 
order to control and limit the space search. Indeed, the later 

parameter permits us to consider a certain diversification of 
the solutions when several best solutions (for instance, these 
solutions have the same value but with different configura- 
tions) are reached by the algorithm. Table 5 reports the 
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Table 5 The behaviour of Der Algo when varying the value 
of the parameter D 

D 3 5 7 10 

Av.Dev 1.14 0.61 0.63 0.70 
Av.T 2.50 6.50 7.40 9.50 

quality of the obtained results when D is varied in the 
discrete interval {3, 5, 7, 10}. 

We can remark that the average deviations vary between 
0.61 and 1.14%, and the better result is obtained for D -= 5. 
The same table shows that if the value of D is very small or 
very large, then the used diversification is less or more 
important. We think that for the small values of D, the 
generated space is not sufficient for exploring good 
solutions. For the largest value, we think also that the 
algorithm explores a very large space and so, the guided 
search is not able to locate a good direction in order to 
improve some visited solutions. From Table 5, we can 
conclude that an intermediate value for D maintains the high 
quality of the solutions. 

Fourth and finally, we analyse the behaviour of DerAlgo 
when varying the parameter r. Table 6 summarizes the 
results obtained by DerAlgo. From the later table, we 
observe that DerAlgo gives good-quality results for the 
value 0.70. It yields an average deviation of 0.61%. Note 
that, for the other values, the algorithm degrades the 
solution quality. In addition, Der_Algo is very fast for the 
later value. Its average run time is equal to 6.5 s and it gives 
better solutions within small computational times (compared 
to the results of both values 0.8 and 0.9). We can conclude 
that it is not necessary to use the smallest or the largest value 
of 7 for producing good solutions. 

In what follows, we give the solution values produced by 
DerAlgo and we compare its performance to that of Khan 
et als approach, referred to herein as KLMA (see Table 2). 
Specifically, we consider the version of the algorithm for 
which the parameters are fixed as follows: A 5, D -=5, 
r = 0.7, and MaxIter is equal to 10. 

The performance of DerAlgo is assessed using the 
problem instances of Table 1. The results of the algorithm 
are displayed in Table 7. For each instance, we report the 
solution value (denoted Der Algosol), the deviation (denoted 
Dev) between the obtained solution and the solution that 
KLMA produced (in this case, the negative deviation -y 
means that the algorithm has an improvement of y%), the 
run time (denoted T and measured in seconds), and the 
average deviation (resp. run time) it takes Der_Algo to reach 
the final solution (the last line of Table 7). 

From Table 7, we observe that DerAlgo produces better 
solution values compared to those of KLMA. On average, it 
realizes an improvement of 0.68% from the solutions 
produced by KLMA. Indeed, the observed percentage 

Table 6 The behaviour of Der Algo when varying the value 
of the parameter 7n 

7 0.50 0.70 0.80 0.90 

Av.Dev 0.70 0.61 0.64 0.70 
Av.T 6.40 6.50 6.90 9.50 

Table 7 Performance of Der_Algo compared to the results 
of KLMA algorithm, on the problem instances of Table 1 

Inst. KLMAsol Der_Algosol Dev T 

101 167.00 1730 -3.59 0.04 
102 354.00 356.00> -0.56 0.04 
103 1533.00 1553.00" 0.00 0.08 
104 3437.00 3502.00> -1.89 0.09 
I05 3899.10 3943.22> -1.13 0.15 
106 4799.30 4799.30 0.00 0.21 
107 23 912.00* 23 983.000 -0.30 1.50 
108 35 979.00* 36007.000 -0.08 2.17 
109 47 901.00* 48 048.000 -0.31 5.50 
110 59 811.00* 60 176.000 -0.61 7.47 
I11 71 760.00* 72 003.000 -0.34 13.35 
112 84 141.00* 84 160.000 -0.02 22.41 
113 96 003.00* 96 103.000 -0.10 31.64 

Average -0.68 6.50 

The symbol O means that the optimal (or the best) solution value was 
attained and the symbol > means that Der_Algo improves the 
solution produced by KLMA. 

improvement varies in the interval [0, 3.59%] for the treated 
instances. In addition, we can remark that the solutions are 
obtained under 1 min (especially for large-scale instances). 
Note that for the small instances, 101, ..., 106, Der_Algo 
improves significantly the solutions produced by CCP and it 
gives better results compared to the results of KLMA. For 
the other instances, 107, ..., 113 which are considered as 
large-scale problems, DerAlgo gives better solutions 
compared to the results produced by KLMA. 

Conclusion 

In this paper, we have proposed several approximate 
algorithms for solving the MMKP. The first algorithm is a 
constructive procedure applied for obtaining an initial 
solution for the problem. The second algorithm is an 
improved version of the constructive procedure, introduced 
for improving the quality of the solution. The third 
algorithm is based mainly upon a guided local search which 
uses a penalization strategy. The principle of the approach is 
to construct an initial solution and to tailor on it a 
neighbourhood search. The algorithm can be viewed as a 
two-stage procedure: (i) the first stage is applied in order to 
penalize a current solution and, (ii) the second stage is used 
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in order to normalize and to improve the quality of the 
solution given by the first-stage. Computational results show 
that the algorithm generates high-quality solutions within 
small computing times. 
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