
Heuristic Algorithms for the Multiple-Choice Multidimensional Knapsack Problem
Author(s): M. Hifi, M. Michrafy, A. Sbihi
Source: The Journal of the Operational Research Society, Vol. 55, No. 12 (Dec., 2004), pp. 1323-
1332
Published by: Palgrave Macmillan Journals on behalf of the Operational Research Society
Stable URL: http://www.jstor.org/stable/4101851
Accessed: 16/12/2009 11:41

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/action/showPublisher?publisherCode=pal.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

Palgrave Macmillan Journals and Operational Research Society are collaborating with JSTOR to digitize,
preserve and extend access to The Journal of the Operational Research Society.

http://www.jstor.org

http://www.jstor.org/stable/4101851?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=pal

Journal of the Operational Research Society (2004) 55, 1323-1332 ? 2004 Operational Research Society Ltd. All rights reserved. 0160-5682/04 $30.00

www.palgrave-journals.com/jors

Heuristic algorithms for the multiple-choice
multidimensional knapsack problem
M Hifil'2*, M Michrafy2 and A Sbihi'

1LaRIA, UPJV, Amiens, France; and 2CERMSEM-CNRS UMR 8095, Universite de Paris 1, Paris, France

In this paper, we propose several heuristics for approximately solving the multiple-choice multidimensional knapsack
problem (noted MMKP), an NP-Hard combinatorial optimization problem. The first algorithm is a constructive
approach used especially for constructing an initial feasible solution for the problem. The second approach is applied in
order to improve the quality of the initial solution. Finally, we introduce the main algorithm, which starts by applying
the first approach and tries to produce a better solution to the MMKP. The last approach can be viewed as a two-stage
procedure: (i) the first stage is applied in order to penalize a chosen feasible solution and, (ii) the second stage is used in
order to normalize and to improve the solution given by the firs stage. The performance of the proposed approaches has
been evaluated based problem instances extracted from the literature. Encouraging results have been obtained.
Journal of the Operational Research Society (2004) 55, 1323-1332. doi: 10. 1057/palgrave.jors.2601796
Published online 14 July 2004

Keywords: combinatorial optimization; guided local search; heuristic, knapsack

Introduction

The multiple-choice multidimensional knapsack problem
(MMKP) is a more complex variant of the 0-1 knapsack
problem, an NP-Hard problem. Due to its high computa-
tional complexity, algorithms for the exact solution of the
MMKP are not suitable for most real-time decision-making
applications, such as quality adaptation and admission
control for interactive multimedia systems,' or service level
agreement management in telecommunication networks.2 In
the MMKP, we are given n classes Ji of items, where each
class Ji, i= 1,..., n, has ri items. Each item j, j= 1, ..., ri, of
class Ji has the non-negative profit value vij, and requires
resources given by the weight vector Wii= (wi, w2.2.., wM)
where each weight component

w-,
k= 1,..., m also is a non-

negative value. The amounts of available resources are given
by a vector C = (C', C2 ..., Cm). The aim of the MMKP is
to pick exactly one item from each class in order to maximize
the total profit value of the pick, subject to resource
constraints. Formally, the MMKP can be stated as follows:

maximize Z = E vijxi i=lj=1
n

ri
subjectto ZE

wxE?Xw
<Ck, k e {1,...,m}

(MMKP) i=lj=l

L-x=1 i{1,...1,n} j=1

x? E {0, 1}, iE {1,...,n},
jC I {1,...,ri}

The variable xij is either equal to 0, implying itemj of the ith
class Ji is not picked, or equal to 1 implying item j of the ith
Ji class is picked.

In this paper, we propose several algorithms for the
MMKP. The first two algorithms can be considered as
constructive and complementary solution approaches. The
third algorithm is mainly based upon a guided local search

(GLS) method (for more details, the reader can be referred
to Voudouris and Tsang3,4 which has its origin in constraint
satisfaction applications. GLS has proven to be a very
powerful approach for solving several hard combinatorial

optimization problems. It uses memory to guide the search
to promising regions of the solution space. This is performed
by increasing the cost function with a penalty term that

penalizes bad features of previously visited solutions. In this

work, we introduce a new principle based on the following
points: (a) starting with a lower bound obtained by a fast

greedy procedure, (b) improving the quality of the initial
solution using a complementary procedure and (c) searching
the best feasible solution over a set of neighbourhoods. The

main idea consists in choosing a penalty strategy to construct
a better solution on the space of the feasible solutions.

The remaining of the paper is organized as follows. First,
we present a brief reference of some sequential exact and

approximate algorithms for knapsack problem variants.

Second, we present the concept of GLS and the main

principle of the proposed algorithms. Third, we propose two
constructive procedures used especially for providing an
initial starting solution to the problem. Fourth, we then

present a derived algorithm using (i) a penalty strategy and

(ii) a normalized solution. Fifth and last, the paper is
concluded with experimental results.

*Correspondence: M Hifi, CERMSEM, Universite de Paris 1, Pantheon-
Sorbonne, 106-112 Boulevard de l'H6pital, Paris Cedex 13, 75647,
France.
E-mail: hifi@univ-parisl .fr

1324 Journal of the Operational Research Society Vol. 55, No. 12

Literature survey

Most of the researches on knapsack problems deal with the
much simpler constraint version (m = 1 and n = 1). For the
single constraint case the problem is not strongly NP-Hard
and effective approximation algorithms have been developed
for obtaining near-optimal solutions. A good review of the
single knapsack problem and its associated exact and
approximate algorithms is given by Martello and Toth.s
Below we review the literature for the knapsack problem
variants. We will particularly discuss the multidimensional
knapsack problem (MDKP), the multiple-choice knapsack
problem (MCKP), and the MMKP.

Many variants of knapsack problems, which comprise an
important class of combinatorial optimization, have been
thoroughly studied in the last few decades (see Chu and
Beasley6 and Martello and Toth7). There are two types of
solution methods: exact algorithms capable to produce the
optimal solutions for some problem instances within a
reasonable computational time, and approximate procedures
or heuristics capable to produce 'good' (near-optimal)
solutions within small computational time.

Most exact algorithms for solving the knapsack problem
(KP) variants are mainly based on (i) branch-and-bound
search using depth-first search strategy (see Balas and
Zemel,8 Fayard and Plateau9 and Martello and TothS',1),
(ii) dynamic programming techniques (see Pisinger"), and
(iii) hybrid algorithms combining dynamic programming
and branch-and-bound procedures (see Martello et all2).
The MDKP is a generalization of the classical binary
knapsack problem for multiple resource constraints. For
more details see Chu and Beasley,6 Freville and Plateau13
and Shih.14 Another variant of the knapsack problem is the
MCKP, where the picking criterion for items is more
restricted. For the later variant of the knapsack problem
there are one or more disjoint classes of items, for more
details, one can refer to Nauss.15 Finally, the MMKP can be
considered as a more generalization of the MDKP and
MCKP variants of the binary knapsack problem (0-1 KP).
Most algorithms for optimal solutions of knapsack problem
variants are also based upon branch-and-bound procedures
(see Nauss,15 Khan16 and Pisinger17).

A greedy algorithm has been proposed for approximately
solving the knapsack problems (see Martello and Toth7).
For the classical binary knapsack problem, the approach is
composed of two stages: (i) sort the items in decreasing order
of value-weight ratio and (ii) pick as many items as possible
from the left of the ordered list until the resource constraint
is violated. By using the same principle for the MDKP,
Toyoda'8 used the aggregate resources consumption. The
solution of the MDKP needs iterative picking of items until
the resource constraint is violated. Shihl4 presented a
branch-and-bound algorithm for MDKP. In this method,
an upper bound was obtained by computing the objective
function value associated with the optimal fractional

solution algorithm (see Dantzig'9) for the m single constraint
knapsack problems and selecting the minimum objective
function value among those as the upper bound. In the
recent past, great success has been achieved via the
application of local search techniques and metaheuristics
to MDKP. Most popular has been tabu search, genetic
algorithms, simulated annealing and hybrid algorithms (for
more details the reader can refer to Chu and Beasley6).

An approximate algorithm has been proposed by Moser
et al20 for the solution of the MMKP. The algorithm uses the
concept of graceful degradation from the most valuable
items based on Lagrange multipliers. Finally, Khan et al1
proposed an algorithm based mainly on the aggregate
resources already used by Toyoda'8 for solving the MDKP.
The method works as follows: (i) it starts with finding an
initial feasible solution, (ii) it uses Toyoda's concept of
aggregate resources for selecting items to pick, and (iii) it
uses iterative improvement of the solution by using some
exchanges of picked items.

Solution approaches of the MMKP

A modified GLS algorithm

The GLS algorithm is a recent approach, considered as a
metaheuristic, that has proven to be effective on a wide

range of hard combinatorial optimization problems. GLS
has been first applied by Voudouris and Tsang3'4 for solving
constraint satisfaction problems. It can be considered as a
tabu search (see Hansen,22 Glover23 and Glover and

Laguna24), since it uses a memory to control the search
processes in a manner similar to tabu search. However, the
definition is simpler and more compact. GLS has proved to
be an effective approach for non-trivial problems such as the

travelling salesman problem,4'25 quadratic assignment pro-
blem,25 resource allocation,26 vehicle routing problem,27 and
bin-packing problem.28 The guided local search moves out
of a local maximum/minimum by penalizing particular
solution features that it considers should not occur in a near-

optimal solution. It defines a modified objective function,
augmented with a set of penalty parameters on these
features. The usual local search method is then used to

improve the augmented objective function. The cycle of local
search and penalty parameter update can be repeated as
often as required.

In our study, we propose a variant of the GLS algorithm
which mainly consists in operating some penalization to the
search process in order to escape local optima. First, the
operated penalty is almost controlled by a fixed depth
parameter which initiates several items' profits to penalize,
and a parameter, that controls the diameter of the space
search. This approach also uses some penalty coefficients
chosen with links to the size of the problem. This is in order
to operate randomly the penalty to any current solution
which indicates that this one is blocked into a gap of very

M Hifi et al-Heuristic algorithms 1325

attractive local optima. The aim of the used penalization is
twofold: (i) to release the current solution and (ii) to modify
the search trajectory. The later points are introduced in
order to make some diversifications and to obtain a 'good'
configuration solution.

GLS for the MMKP

Solution representation

Before describing the proposed approaches, we give a
suitable representation scheme and introduce some nota-
tions.

Let J be a set of items divided into n disjoint classes such
that j, jeJi, has a profit value vij and a weight vector

Wi,-(w1,...,
w), and let

C-(C',
..., Cm) be a capacity

vector for the multidimensional knapsack. The multidimen-
sional knapsack is subject to multiple-choice constraints
which may be formulated as: Vie {1, ..., n}, i, E lj x 1.

The aim is to determine a subset of items such that the
sum of their values is maximum without exceeding the m

capacity constraints. Generally, the scheme is a way to

represent a solution of MMKP. The standard MMKP 0-1

binary representation is an obvious choice for MMKP since
it represents the underlying 0-1 non-negative variables

(Figure 1 shows the vector representation of an eventual

solution).
A feasible solution is such that Vke {1, ...,m},

EZ
Eril

wkX ijCk and for each class Ji, we pick one
and only one item j, i.e, xij = 1 if the jth itemj of the ith class

Ji has been selected, otherwise xij 0.
In what follows, we distinguish the following states:

feasible state (FS) and unfeasible state (US); FS indicates
that the current solution, namely S, does not violate the
amount of available constraints, and US indicates if there
exists at least a violated constraint on S. The goal is to
produce an improved FS (or to transform US to FS) by
applying a swapping local search.

An initial solution for the MMKP

The initial feasible solution is obtained by applying a
constructive procedure, noted CP. CP is a greedy procedure
with two phases: a DROP phase and an ADD phase. This
is to generate a feasible solution by considering the FS
process. It starts by computing the pseudo-utility ratio

ul= vij/ (C, Wi)>, je { 1, ..., ri} of each item j belonging to
each class Ji, where (.,.) is the scalar product in [Fm. Then it

class - J1 J2 '... Jn

item - 1 2 3 1 2 3 4 ... 1 2
bit subvector -- 1 0 0 0 0 1 0

.
0 1

Figure 1 Binary representation of the MMKP solution.

selects the item j from each class Ji, ic {1, ..., n}, realizing the
most valuable uij. If the obtained solution is an FS, then CP

terminates, otherwise (DROP phase) it considers as the most
violated constraint Cko. With respect to Cko, it selects the

class
Jio corresponding to the fixed item

jio having the largest
weight

wiQo
all over the fixed items and regarding the most

violated constraint Cko. This item (ADD phase) is then

swapped with another selected item j from the same class
Jio,

and the procedure controls the feasibility of the state. If the
new obtained solution is a US, it selects the lightest item. jio
of the current class Jio which in turn is considered as the new
selected item. This process is iterated until an FS or the
smallest unfeasibility amount for the obtained solution is
obtained. CP approach may be described by the steps of
Box 1.

We can show that CP has a complexity of O(max{Om, n})
where 0= max{r, ..., r,}. Indeed, on the one hand, in the
main step (the loop while) one takes m operations to obtain

Box 1 The constructive procedure for determining an initial
feasible solution: CP

Input: An instance of the MMKP.
Output: A feasible solution S with value O(S).

Initialization.
For i= 1,..., n, set uii = max {up, j = 1,...,ri);

Si
--ji; Set 0[i]]=ji; Xi[] 1;

SetRk =1 [i],Vk= 1,...m; I k: ~~i= [il I

/*Rk: the accumulated resources for
constraint k */

EndFor;
S= (SI,

...,
S.); Main.

While (Rk > Ck, for k= 1,..., m) /*DROP phase*/
ko - argmax {Rk};

1?ksm

io - argmax {~ w;

[[io] =Jio; xio[iol = 0;
Rk =Rk [iok for k -

1,...
m;

For j = 1... rio /* ADD phase */
If (3j :jio and Rk + ok. < Ck, for k= 1. m) then

Xioj
= 1;

Jio =J;
[io] =jio;

Rk = Rk + 0ok for k= 1,..., m;
iooio[

S-=
([io]; 0[iz],

Vi-
io, i 1,..., n) is a feasible

solution;
Exit with the S vector;

EndIf;
EndFor;

.o -- arg min
{•o

}; /* if the obtained solution is not 1 <j
<rio

feasible */
Jio -='; [iO] =Jio; xio[io] = 1

EndWhile;
Return S with value O(S).

1326 Journal of the Operational Research Society Vol. 55, No. 12

ko and n operations to obtain io. The procedure takes mO
operations to build a new configuration, where the number
of operations consumed for updating the consumed
resources is bounded at worst by (m + 1)0 operations.
Hence, the complexity of CP is then evaluated at worst to
O(mO + n + 0), which is equivalent to O(mO + n), which in
turn, is also equivalent to O(max{mO, n}).

The unfeasibility case

In this section, we may discuss the unfeasibility case of the
solutions generated by CP, those of US state. In this case, we
try to reduce the unfeasibility amount of the solution by
running a procedure that uses the local swapping strategy
between two items, we say j and j' belonging to the same
class Ji. First, we define the ith resource consumption for the
kth constraint as Rk(i) = wi + i'i,i'=l)

1Jril
wjk. The

best local swap for an item ji of a class Ji is the one which
satisfies a decision criteria (of course, we can define other
decision criterion) which realizes the minimum of the
following ratio:

"_1
Rk ji)

Dji = EMCk

This swapping is operated in two stages:

1. Computing the ratios Dj,:
First, we apply the swapping strategy for the item
realizing the smallest value of the decision criteria that
we have defined before. More precisely, for each class Ji,
i=1, ... ,n: (a) we apply the local swapping strategy
between two items, (b) each item for ji swapped with
another from the same class, we compute the ratio Dj,, (c)
next, we record the smallest value of the ratio Dmin and
the index ji]n of the item which corresponds to the later
ratio.

2. Selection of the best ratio:
From all the computed ratios recorded with their
corresponding items, we select the class Jimin that realizes
the smallest value over all Djmin, i 1, ..., n. Next, we

apply the local swapping strategy in the considered class

Jimin. This phase terminates by updating the consumed
resources after operating the global swap between Jimin
and

jmm,
which ensures an FS state or less unfeasibility

amount of the obtained US solution.

This process is iterated for a fixed number of iterations
Maxlter, and for each iteration we check the feasibility state
of the obtained solution. In the case of an obtained FS state,
the process ends and the obtained solution is feasible.

As soon as the process reaches the maximum number of
iterations and the obtained solution is of US state, we say
that the process is unable to generate a feasible solution. Of
course, one also can apply the procedures developed in the

following sections used especially to try to transform an US
state into a FS one.

In what follows, we describe a complementary local search
procedure in order to improve the quality of the solution
generated by CP.

A complementary local search

The complementary CP approach (CCP), uses an iterative
improvement of the initial feasible solution. It applies (i) a
swapping strategy of picked items (considered as old items)
and (ii) a replacement stage which consists of replacing the
old item with a new one selected from the same class. Note
that each swap is authorized if the obtained solution realizes
a FS. By this way, first, the swap is generalized to the
remaining items of the same class in order to select the new
item realizing the best local solution value of the current class.

Second, the two selected items, say ji and ji', of the same
class, say Ji, are exchanged in the new solution, where the
obtained solution value realizes the better solution value
over all classes. This process is iterated by using a stopping
condition. A detailed description of the CCP algorithm is

given in Box 2.

Box 2 A complementary feasible solution: the CCP approach

Input: A feasible solution S with value O(S).
Output: An improved feasible solution S* with value O(S*).

Step 1.
set S= (S,1..., S,) +- CP();
set S* + S;

Step 2.
While not StoppingConditiono do

Forall i in { 1 ... , n } do
ji' - LocalSwapSearch(ji, Ji)/*ji (ji') denotes the
old (new) item of the class Ji */ /* and the
exchange between ji and ji' is authorized */
Si+-ji

S+-(S1
jiI...,Sn);

IfO(SI,...j' ,...,S,) > O(S*)then
S* +- (SI ,...ji,...,Sn); EndIf

EndWhile
return S* with value O(S*);

First of all, we detail the principle of the LocalSwap-
Search() procedure that CCP applies in order to improve the
solution generated by CP.

(A) In the begining, the LocalSwapSearchO procedure
initializes the best element to swap:
(A.1) value +-- vis,, where visi denotes the profit of the

old fixed item in the ith class Ji to be swapped;
(A.2) si- Si, where si is a candidate item in Ji to be

swapped;

M Hifi et a/-Heuristic algorithms 1327

(B) Next, it operates the exchange which may be authorized:
(B.1) For (/= 1, ..., ri and j= Si) do

If (vij> value and Rk -
Wi

+ w Ck,
Vk = 1 ..., m) then
Set value +- vj;
Set si-j;

B.2) Return si as the best element to locally swap.

Recall that CP has a complexity evaluated to

O(max{mO, n}). CCP uses the constructive procedure CP
to produce an initial feasible solution (Step 1). In the main

step (Step 2), LocalSwapSearch procedure, takes 2 m

operations to update the used resources, one operation to

compute the value O(S). One takes O(2m + 1) operations to
select a class and n x (2m + 1) x 0 operations for all the
classes. So, the total operations of CCP in addition to the

complexity of CP is evaluated to Maxlter x 0(0(2m + 1) x n
+ (m + n) + 0(2m + 1)) which is equivalent to 0(0(m + n)).
Hence, the worst case complexity of CCP is equivalent to
O(Omax{m, n}).

A derived algorithm using penalties and normal
transformations

In this section, we describe the main principle of the derived
approach using (i) a penalty stage strategy and (ii) a
normalized stage one. The algorithm starts by a feasible
solution, namely S* (obtained by applying the constructive
procedure CP). The last solution is considered as the best
feasible solution, obtained up to now, without using any
penalty.

The derived algorithm (denoted Der Algo) can be viewed
as a two-phase procedure: it uses (i) a penalized phase and
(ii) a normalized configuration one.

* On the one hand, the penalized phase is applied if the
current solution cannot be improved after a certain
number of iterations. In this case, a penalty parameter is
used in order to transform the profits of the objective
function. Starting with the new configuration (which
remains a feasible one for the original problem), the
process consists in finding a good neighbourhood for
improving locally the current configuration.

* On the other hand, the normalized phase is used in order
to transform the last penalized configuration into a
normal feasible solution. The obtained solution is
normalized because the profits of its objective function
are set equal to the original profits (corresponding to the
original problem instance).

Description of the derived algorithm.: Der_Algo

The main steps of the derived algorithm are described in Box
3. The algorithm starts by applying CP to obtain an initial
feasible solution. The configuration of the current solution is

Box 3 A derived algorithm using the penalty and the normal
strategies: Der Algo

Input: A solution S with value O(S), ir, A and D.
Output: A best solution S* with value O(S*).

Initialization.
Set S +- S: = CP() and V(p)+- O(S*);
Set A = D +-0; /* Initializing the depth and the diameter
parameters */
Set phase +-NormalPhase;/*Initializing the phase
parameter */

Main step.
While not (StoppingConditiono) Do

S: = CCP(S)/* Using a LocalSwapSearch to improve
the initial solution */
If V(p) < O(S) then

If (phase= Normal_Phase) then /* Stage without
using any penalty factor */

Set S*+-S, V(p) --O(S*);
Else

Set S: = Normalize(S, p, nt)
/*Put back the solution configuration to its
ordinary form */
Set S* +- S, V(p) -- O(S*);

EndIf
Else

If (phase = Normal_Phase) then
S+-Penalize(S, V(p), it, A);
/*Applying the penalization strategy to the current
solution */

Else /*If the current stage is a Penalize Phase */
Set S+-Normalize(S, p, ir), V(p)- O(S);
S+-Penalize(S, V(p), 7t, A);

EndIf
EndIf
Increment(D);
Set A - Get_Depth(A, D, n); /*A random fixation of
depth */

EndWhile

Return S* with value O(S*);

stored in the vector p. The best solution (value) S*(O(S*)) is
initially set equal to the initial solution (value) S(O(S)). The
main loop (of the Main step) applies a Normal_Phase, which
is the phase for which no penalty factor was introduced. The
later phase performs a local swapping search in order to
enhance the obtained solution. At each iteration of the main
step, the best current solution is updated if the solution is
improved. In this case, we can distinguish two cases:

* On the one hand, the stage is set to Normal_Phase and the
solution is represented by S* with value O(S*).

* On the other, if the stage is set to Penalize Phase, then the
Normalize () procedure is introduced in order to retrieve
the solution's structure of the original problem, corre-
sponding to the penalized solution.

This process is iterated for a certain number of iterations.
By this way, we also can distinguish two cases: (i) the current
solution was improved and (ii) the process is not able to

1328 Journal of the Operational Research Society Vol. 55, No. 12

reach an improved solution. When the first case (i) is realized
and the stage is running Normal_Phase, then the penalizing
strategy--the Penalize () procedure-is called in order to
modify the profits of the objective function. Furthermore, if
condition (ii) is realized, then (a) the Normalize () procedure
is applied in order to transform the penalized solution into a
normal one and, (b) the Penalize () procedure is used on the
later solution. Of course, the aim of the last step is to attempt
to change the trajectory of the search process in order to
explore other nonvisited space search.

In the following, we detail the two main procedures used
in the Der_Algo algorithm, that is, the Penalize () procedure
and the Normalize () one.

The Penalize procedure: It uses some parameters which are
denned as follows:

* 0< r < 1: penalty coefficient,
* p: current solution vector in the penalized phase,
* A: the depth parameter for penalization,
* D: diameter parameter for exploration.

The procedure operates as follows:

Initialization

* The initial solution to penalize S is set equal to S* and the
current structure denoted p (which can be modified) is
initially set to S;

* Let Counter (equal to zero) be the variable used in order
to control the depth parameter A(i.e. 0 < Counter s< A);

The main loop. it starts depth exploration to penalize

* While (Counter< A) do
o i+- GetClass(); /* Random selection of a class */
o ji+-p[i]; /* Index of an element in J,/
o vip[i]+-t xx vXip[];
o O(S) <-O(S)-vip[i] + - x vip[];
o Increment(Counter);

* Return S with value O(S) as the penalized current
solution.

The Normalize () procedure: We recall that the Normalize ()
procedure is applied in order to normalize any improved
penalized solution produced by Penalize () procedure. The

procedure works as follows:
Initially, the procedure uses some parameters which are

defined as follows:
* 0< c < 1: penalty coefficient,
* p: current solution vector in the penalized phase and V(p)

it's value

The procedure operates as follows:

Initialization

* The initial solution to normalize S* is setting equal to S
and the solution value V(p) is set equal to O(S*);

The main loop

* For i = 1, ..., n do

o ji- p[i]; /* to normalize the current component of the
i-th class */

o O(S*)- O(S*)-vi+ (1/7I) x vip[1; /* to update the profits
/

O
vip[i] +-(1/7)

X Vip[i];

We can remark that the derived algorithm uses other
parameters. The first parameter is called depth parameter
(denoted A) which permits to fix a number of items to
penalize. The second parameter is called diameter parameter
(denoted D) which is introduced in order to control the space
search of some better obtained solutions up to now. For
instance, the later space search represents some different
configurations having the same solution value. Third and
last, the parameters called penalty coefficients (denoted Ir)
that are applied to the objective function. In this case, if the
obtained configuration is feasible for the penalized problem,
then it necessarilly represents a feasible solution for the

original problem.
The complexity of this algorithm is presented as follows.

First, (Bloc 1), Der Algo starts by calling CP to construct a
feasible initial solution. We know that its complexity is of

O(max{mO, n}). Second (Bloc 2), we apply CCP to improve
a current solution obtained by applying CP and its com-

plexity has been evaluated to O(Omax{m, n}). Normalize ()
procedure takes at worst 0 operations to put back a

penalized solution to its normal configuration and has a

complexity of 0(0). Penalize () procedure takes, as well, at
worst 0 operations to use a penalty factor for a current
solution with a complexity of 0(0). So, the total operations
taken by Der Algo is bounded by Maxlter x ((Om + n) +
(8(m + n) x 0). Hence the worst-case complexity of Der_
Algo is equivalent to 0(02max{n, m}).

Computational results

The purpose of this section is two-fold: (i) to evaluate the

performance of the CP and CCP and (ii) to determine a good
trade-off between the running time and the used parameters
for the derived algorithm (DerAlgo): the maximum number
of iterations, the depth parameters, the diameter parameter'
and the penalties ones.

This section is organized as follows. First, we evaluate the
performance of both CP and CCP. For a set of problems
extracted from the literature, we compare the results
obtained by both algorithms to the optimal solution (or
the best solution found up to now), and to the results of
Moser et al20 and Khan et a21 approaches. Second, we
present the performance of Der-Algo and reveal the
importance of the used parameters. In the same section,
we indicate the degree of improvement provided by
Der_Algo over other approaches.

M Hifi et a/-Heuristic algorithms 1329

In our computational results, CP, CCP and DerAlgo are
coded in C + +, and run on a Ultra-Sparc 10 (250 MHz and
with 128 MB of RAM).

Performance of CP and CCP

To evaluate the performance of CP and CCP, we use the test
problems of Khan et al.21 (We have made these instances
publicly available from ftp://panoramix.univ-parisl.fr/pub/
CERMSEM/hifi/OR-Benchmark.html, hoping to aid
further development of exact and approximate algorithms
for the MMKP). These problems span a variety of instances
varying from small- tolarge-sized instances. The optimal
solution value for some of these instances, referred to as
101, ..., 106 in Table 1, is known. For the other instances,
referred to as 107, ..., 113 in Table 1, we report the best
solution value published by Khan et al.21 For each instance,
we report the number n of classes, the number ri of items of
each class, and N the total number of items of each instance
representing E lri.

Table 1 Test problem details

Inst. n ri, i - 1
...

n N

101 5 5 25
102 5 10 50
103 10 15 150
104 10 20 200
105 10 25 250
106 10 30 300
107 10 100 1000
108 10 150 1500
109 10 200 2000
110 10 250 2500
Ill 10 300 3000
112 10 350 3500
113 10 400 4000

The results obtained by Moser et al and Khan et al are
reported in Table 2. The results of Moser et al approach are
provided in columns 5 and 6. The results of Khan et al
algorithm are represented by columns 3 and 4. Column 2
contains the optimal-(or best-) solution value of the
problem. Columns 4 and 6 show the percentage deviation
of the solution value from the optimum (or best value) noted
herein, Dev, and computed as follows: Dev=(1-(A(1)/

Opt(1)(or Best)) x 100, where A(1) and Opt(I) (resp. Best)
denote the approximate (the solutions of column 3 or 5) and
the optimal (resp. best) solutions of instance I.

The CP and the CCP solutions for II, ..., 113 are reported
in Table 3. The results of CP are provided in columns 3-5.
Column 3 contains the solution value (denoted CPsoJ).
Column 4 shows the percentage deviation (denoted Dev)
between the usage of the CP-yielded solution and the
optimal (or best) solution, defected Opt/Best. Column 5
displays the CP run time (denoted T and measured in
seconds). Columns 6-8 report the results of CCP. Column 6
provides the CCP solution (denoted CCPso1), column 7
computes the corresponding deviation from the optimum (or
the best solution) and column 8 displays the CCP run time.

This section can be considered as a preliminary experi-
ment in which we compare the results of CP and CCP.
Before comparing the results of both algorithms, let us
analyse the behaviour of both solution approaches of the
literature. From Table 2 we can observe that Khan et al
algorithm (denoted KLMA) outperforms Moser's approach
(denoted Moser: the reported solutions are taken from Khan
et al21). In this case, KLMA produces a percentage deviation
varying in the interval [0, 4.45%] and with an average
percentage of 1.46%.

Now we return to analyse CP and CCP. Summarized
results of CP and CCP appears in Table 3. We can observe
that CCP produces better solutions than over all problems,
CP at the expense of a slightly larger computational time.

Table 2 Perfomance of Khan et at" and Moser et at20 algorithms on all problems

Inast. Opt/Best KLMAsol Dev Mosersol Dev

101 173.00 167.00 3.47 151.00 12.72
102 364.00 354.00 2.75 291.00 20.05
103 1602.00 1533.00 4.31 1464.00 8.61
104 3597.00 3437.00 4.45 3375.00 6.17
I05 3949.59 3899.10 1.28 3905.70 1.11
106 4799.30 4799.30 0.00 4115.20 14.25
107 23 983.00* 23912.00 1.02 23 556.00 2.50
108 36 007.00* 35979.00 0.11 35373.00 1.79
109 48 048.00* 47901.00 0.31 47205.00 1.75
110 60 176.00* 59811.00 0.68 58 648.00 2.61
Il 72 003.00* 71760.00 0.45 70532.00 2.16
112 84 160.00* 84141.00 0.03 82377.00 2.13
113 96 103.00* 96003.00 0.10 94166.00 2.02

Average 1.46 5.99
The symbol * means that the optimal solution is not known.

1330 Journal of the Operational Research Society Vol. 55, No. 12

Table 3 Performance of both CP and CCP algorithms on all problems

Inst. Opt/Best CPsol Dev T CCPsol Dev T

101 173.00 161 6.94 <0.01 161.00 6.94 <0.01
102 364.00 284.00 21.98 <0.01 341.00 6.32 <0.01
103 1602.00 1414.00 11.74 <0.01 1511.00 5.68 <0.01
104 3597.00 3135.00 12.84 <0.01 3397.00 5.56 <0.01
105 3949.59 3065.40 22.40 <0.01 3591.59 9.06 0.03
106 4799.30 3749.89 21.87 0.01 4567.90 4.82 0.02
107 23 983.00* 19 667.00 18.59 0.02 23 753.00 1.68 0.16
108 36 007.00* 28 461.00 20.98 0.05 35 485.00 1.48 0.40
109 48 048.00* 38 389.00 20.10 0.06 47 685.00 0.76 0.65
110 60 176.00* 48 361.00 19.69 0.05 59492.00 1.21 1.11

Il1 72 003.00* 58 008.00 19.53 0.08 71 378.00 0.98 1.35
112 84 160.00* 68 027.00 19.18 0.09 83 293.00 1.04 1.70
113 96 103.00* 78 309.00 18.52 0.09 95 141.00 1.00 2.15

Average 18.03 0.03 3.58 0.58

The symbol * means that the optimal solution is not known. The symbol <means that the computational time is neglected.

CCP produces, in less than 0.58 s, reasonable quality results.
It is on average 3.06% of the optimum (or best-obtained
solution). It occasionally yields poor results with a worst-
case of 8.93%. Thus, it is a useful starting point for more

complex procedures.

Performance of Der_Algo

Generally, when using approximate algorithms to solve

optimization problems, it is well known that different

parameter settings for the method lead to results of variable

quality. Herein, Der_Algo involves four decisions: the way
of choosing the depth parameter A, the number of iterations,
Max_Iter, to carry out, the way of controlling the space
search represented by the diameter parameter D, and the
values attributed to the penalty parameter n (in our case, the

penalty parameter is the same for all profits). In what
follows, a different adjustment of the method's parameters
would lead to a high percentage of good solutions. But this
better adjustment would sometimes lead to heavier execution
time requirements. The set of values chosen in our

experiment represents a satisfactory trade-off between
solution quality and run time.

First, in order to find the right value of A we have

explored three strategies:

* A bigger value was assigned to A, that is, by fixing A in the
interval [6, ..., 10];

* An intermediate value was assigned to A, that is, by
setting A to 5;

* A smaller value was assigned to A, that is, by varying A in
the interval [1, ..., 4].

Limited computational results showed that the variation
of A in the interval [1, ..., 5] produced a good improvement
of the solution quality. For the complementary interval

[6 ..., 10], the algorithm was not able to produce a better

Table 4 The behaviour of Der_Algo when varying the
number of iterations MaxIter

Max Iter 2 5 8 10

Av.Dev 1.81 0.92 0.68 0.61
Av.T 1.90 1.90 4.10 6.50

solution, but it consumed more computational time. Finally,
the best results were obtained for the second case and this
value of A = 5 was retained and used in what follows.

Second, in order to find a good compromise between the

quality of the solutions and the computational time, we have
introduced a variation for the maximum number of
iterations Max Iter. In this case, we have tested Max Iter
with values taken from the discrete interval {2, 5, 8, 10}.
Limited computational results revealed that a bigger value of

MaxIter does not necessarilly generate a better solution,
but the computational time increases.

Table 4 shows the quality of the results obtained when

Der_Algo is applied with the following parameters: A = 5,
D = 5 and

n-=
0.70 (below, we shall discuss the choice of the

values associated to D and 7n). Using these later values, as
shown in Table 4, we can observe that the quality of the
results (denoted Av. Dev: Line 2) varies between 0.61 and
1.81%. The better average deviation is obtained when fixing
Max Iter to 10 with a largest average computational time

(denoted Av. T. : Line 3).
Third, by fixing the values of the parameters A and Max,

we now try to fix the value of the diameter parameter D in
order to control and limit the space search. Indeed, the later

parameter permits us to consider a certain diversification of
the solutions when several best solutions (for instance, these
solutions have the same value but with different configura-
tions) are reached by the algorithm. Table 5 reports the

M Hifi et a/-Heuristic algorithms 1331

Table 5 The behaviour of Der Algo when varying the value
of the parameter D

D 3 5 7 10

Av.Dev 1.14 0.61 0.63 0.70
Av.T 2.50 6.50 7.40 9.50

quality of the obtained results when D is varied in the
discrete interval {3, 5, 7, 10}.

We can remark that the average deviations vary between
0.61 and 1.14%, and the better result is obtained for D -= 5.
The same table shows that if the value of D is very small or
very large, then the used diversification is less or more
important. We think that for the small values of D, the
generated space is not sufficient for exploring good
solutions. For the largest value, we think also that the
algorithm explores a very large space and so, the guided
search is not able to locate a good direction in order to
improve some visited solutions. From Table 5, we can
conclude that an intermediate value for D maintains the high
quality of the solutions.

Fourth and finally, we analyse the behaviour of DerAlgo
when varying the parameter r. Table 6 summarizes the
results obtained by DerAlgo. From the later table, we
observe that DerAlgo gives good-quality results for the
value 0.70. It yields an average deviation of 0.61%. Note
that, for the other values, the algorithm degrades the
solution quality. In addition, Der_Algo is very fast for the
later value. Its average run time is equal to 6.5 s and it gives
better solutions within small computational times (compared
to the results of both values 0.8 and 0.9). We can conclude
that it is not necessary to use the smallest or the largest value
of 7 for producing good solutions.

In what follows, we give the solution values produced by
DerAlgo and we compare its performance to that of Khan
et als approach, referred to herein as KLMA (see Table 2).
Specifically, we consider the version of the algorithm for
which the parameters are fixed as follows: A 5, D -=5,
r = 0.7, and MaxIter is equal to 10.

The performance of DerAlgo is assessed using the
problem instances of Table 1. The results of the algorithm
are displayed in Table 7. For each instance, we report the
solution value (denoted Der Algosol), the deviation (denoted
Dev) between the obtained solution and the solution that
KLMA produced (in this case, the negative deviation -y
means that the algorithm has an improvement of y%), the
run time (denoted T and measured in seconds), and the
average deviation (resp. run time) it takes Der_Algo to reach
the final solution (the last line of Table 7).

From Table 7, we observe that DerAlgo produces better
solution values compared to those of KLMA. On average, it
realizes an improvement of 0.68% from the solutions
produced by KLMA. Indeed, the observed percentage

Table 6 The behaviour of Der Algo when varying the value
of the parameter 7n

7 0.50 0.70 0.80 0.90

Av.Dev 0.70 0.61 0.64 0.70
Av.T 6.40 6.50 6.90 9.50

Table 7 Performance of Der_Algo compared to the results
of KLMA algorithm, on the problem instances of Table 1

Inst. KLMAsol Der_Algosol Dev T

101 167.00 1730 -3.59 0.04
102 354.00 356.00> -0.56 0.04
103 1533.00 1553.00" 0.00 0.08
104 3437.00 3502.00> -1.89 0.09
I05 3899.10 3943.22> -1.13 0.15
106 4799.30 4799.30 0.00 0.21
107 23 912.00* 23 983.000 -0.30 1.50
108 35 979.00* 36007.000 -0.08 2.17
109 47 901.00* 48 048.000 -0.31 5.50
110 59 811.00* 60 176.000 -0.61 7.47
I11 71 760.00* 72 003.000 -0.34 13.35
112 84 141.00* 84 160.000 -0.02 22.41
113 96 003.00* 96 103.000 -0.10 31.64

Average -0.68 6.50

The symbol O means that the optimal (or the best) solution value was
attained and the symbol > means that Der_Algo improves the
solution produced by KLMA.

improvement varies in the interval [0, 3.59%] for the treated
instances. In addition, we can remark that the solutions are
obtained under 1 min (especially for large-scale instances).
Note that for the small instances, 101, ..., 106, Der_Algo
improves significantly the solutions produced by CCP and it
gives better results compared to the results of KLMA. For
the other instances, 107, ..., 113 which are considered as
large-scale problems, DerAlgo gives better solutions
compared to the results produced by KLMA.

Conclusion

In this paper, we have proposed several approximate
algorithms for solving the MMKP. The first algorithm is a
constructive procedure applied for obtaining an initial
solution for the problem. The second algorithm is an
improved version of the constructive procedure, introduced
for improving the quality of the solution. The third
algorithm is based mainly upon a guided local search which
uses a penalization strategy. The principle of the approach is
to construct an initial solution and to tailor on it a
neighbourhood search. The algorithm can be viewed as a
two-stage procedure: (i) the first stage is applied in order to
penalize a current solution and, (ii) the second stage is used

1332 Journal of the Operational Research Society Vol. 55, No. 12

in order to normalize and to improve the quality of the
solution given by the first-stage. Computational results show
that the algorithm generates high-quality solutions within
small computing times.

Acknowledgements-Many thanks to anonymous referees for their
helpful comments and suggestions contributing to improving the
presentation and the contents of the paper.

References

1 Chen G, Khan S, Li KF and Manning E (1999). Building an
adaptive multimedia system using the utility model. Parallel and
Distributed Processing. Lecture Notes in Computer Sciences,
Vol. 1586. Springer: Berlin, pp 289-298.

2 Watson RK (2001). Packet Networks and optimal admission and

upgrade of service level agreements.- applying the utility model.
MSc thesis, Department of ECE, University of Victoria,
Canada.

3 Voudouris C and Tsang EPK (1996). Partial constraint
satisfaction problems and guided local search for combinatorial.
In: Proceedings of Practical Application of Constraint Technol-
ogy (PACT'96), pp 337-356. http://cswww.essex.ac.uk/csp/gls-
papers.html

4 Voudouris C and Tsang EPK (1999). Guided local search and
its application to the travelling salesman problem. Eur J Opl Res
113: 469-499.

5 Martello S and Toth P (1990). Knapsack Problems.: Algorithms
and Computer Implementations. Wiley: Chichester, England.

6 Chu P and Beasley JE (1998). A genetic algorithm for the
multidimensional knapsack Problem. J Heuristics 4: 63-86.

7 Martello S and Toth P (1987). Algorithms for knapsack
problems. Ann Discrete Math 31: 70-79.

8 Balas E and Zemel E (1980). An algorithm for large zero-one
knapsack problem. Opns Res 28: 1130-1154.

9 Fayard D and Plateau G (1982). An algorithm for the solution
of the 0-1 knapsack problem. Computing 28: 269-287.

10 Martello S and Toth P (1988). A new algorithm for the 0-1
knapsack problem. Mngt Sci 34: 633-644.

11 Pisinger D (1997). A minimal algorithm for the 0-1 knapsack
problem. Opns Res 45: 758-767.

12 Martello S, Pisinger D and Toth P (1999). Dynamic program-
ming and strong bounds for the 0-1 knapsack problem. Mngt
Sci 45: 414-424.

13 Freville A and Plateau G (1994). An efficient preprocessing
procedure for the multidimensional 0-1 knapsack problem.
Discrete Appl Math 49: 189-212.

14 Shih W (1979). A branch and bound method for the multi-
constraint zero-one knap-sack problem. J Opl Res Soc 30:
369-378.

15 Nauss MR (1978). The 0-1 knapsack problem with multiple-
choice constraints. Eur J Opl Res 2: 125-131.

16 Khan S (1998). Quality adaptation in a multi-session adaptive
multimedia system.- model, algorithms and architecture. PhD
Thesis, Department of Electronical and Computer Engineering,
University of Victoria, Canada.

17 Pisinger D (1999). An exact algorithm for large multiple
knapsack problems. Eur J Opl Res 114: 528-541.

18 Toyoda Y (1975). A simplified algorithm for obtaining
approximate solution to zero-one programming problems. Mngt
Sci 21: 1417-1427.

19 Dantzig GB (1957). Discrete variable extremum problems. Opns
Res 5: 266-277.

20 Moser M, Jokanovid DP and Shiratori N (1997). An algorithm
for the multidimesional multiple-choice knapsack problem.
IEICE Trans Fundamentals Electron 80: 582-589.

21 Khan S, Li KF, Manning EG and Akbar MDM (2002). Solving
the knapsack problem for adaptive multimedia systems. Stud
Inform 2: 154-174.

22 Hansen P (1986). The steepest ascent mildest descent heuristic
for combinatorial programming, Presented at the Congress on
Numerical Methods in Combinatorial Optimization, Capri,
Italy.

23 Glover F (1986). Future paths for integer programming
and links to artificial intelligence. Comput Opns Res 13:
533-549.

24 Glover F and Laguna M (1997). Tabu search. Kluwer Academic
Publishers: Boston, USA.

25 Voudouris C and Tsang EPK (1995). Guided local search.
Technical Report CMS-247, Department of Computer Science,
University of Essex, England.

26 Tsang EPK and Voudouris C (1997). Fast local search and
guided local search and their application to British Telecom's
worforce scheduling problem. Opns Res Lett 20: 119-127.

27 Kilby P, Prosser P and Shaw P (1997). Guided local search
for the vehicle routing problem with time windows. In:
Voss S, Martello S, Osman IH and Roucairol C (eds). Meta-
Heuristics.: Advances and Trends in Local Search Paradigms
for Optimization. Kluwer Academic Publishers: Dordrecht,
pp 473-486.

28 Faroe O, Pisinger D and Zachariasen M (2003). Guided
local search for the three-dimensional bin packing problem.
INFORMS J Comput 15: 267-283.

Received March 2003;

accepted April 2004 after 2 revisions

	Article Contents
	p.[1323]
	p.1324
	p.1325
	p.1326
	p.1327
	p.1328
	p.1329
	p.1330
	p.1331
	p.1332

	Issue Table of Contents
	The Journal of the Operational Research Society, Vol. 55, No. 12 (Dec., 2004), pp. 1243-1381
	Volume Information [pp.1370-1381]
	Front Matter
	Review
	A Review and Classification of Heuristics for Permutation Flow-Shop Scheduling with Makespan Objective [pp.1243-1255]

	Case-Oriented Papers
	Evaluation of the University Libraries in Taiwan: Total Measure Versus Ratio Measure [pp.1256-1265]
	A Criterion for Comparing and Selecting Batsmen in Limited Overs Cricket [pp.1266-1274]

	Theoretical Papers
	A Simple Algorithm for the Source-Induced Fixed-Charge Transportation Problem [pp.1275-1280]
	Adaptive Age Replacement Strategies Based on Nonparametric Predictive Inference [pp.1281-1297]
	A Metaheuristic for the Vehicle-Routeing Problem with Soft Time Windows [pp.1298-1310]
	Production Trade-Offs and Weight Restrictions in Data Envelopment Analysis [pp.1311-1322]
	Heuristic Algorithms for the Multiple-Choice Multidimensional Knapsack Problem [pp.1323-1332]
	The Elastic Generalized Assignment Problem [pp.1333-1341]
	Crossdocking: JIT Scheduling with Time Windows [pp.1342-1351]

	Practice Note
	A New Model for Call Centre Queue Management [pp.1352-1357]

	Technical Notes
	Generalization of Johnson's and Talwar's Scheduling Rules in Two-Machine Stochastic Flow Shops [pp.1358-1362]
	Simplification of the Transformations and Redundancy of Assurance Regions in IDEA (Imprecise DEA) [pp.1363-1366]

	Viewpoint
	Minimum Score Separation: An Open Combinatorial Problem Associated with the Cutting Stock Problem [pp.1367-1368]

	Corrigendum: A Savings Index Heuristic Algorithm for Flowshop Scheduling with Sequence-Dependent Setup Times [p.1369]
	Back Matter

