
UNIVERSITY OF ABERDEEN

Department of Computing Science

Honours Degree

Report

SENSOR ASSIGNMENT

IN A VIRTUAL ENVIRONMENT

USING CONSTRAINT PROGRAMMING

Supervisor: Student:

Dr. ALUN PREECE DIEGO PIZZOCARO

Co-supervisor:

Dr. STUART CHALMERS

ACADEMIC YEAR 2006-2007

Contents

Abstract vi

Declaration vii

Preface viii

1 Introduction and Motivations 1

1.1 Context: the ITA project . 1

1.2 Objective . 2

1.3 Motivations . 3

1.4 The virtual environment: “Battlefield 2” 4

2 Related Work 7

2.1 Previous works on sensors . 7

2.2 The project “Plan and Play” 8

2.3 Constraint Satisfaction Problem and

Constraint Programming . 10

2.3.1 Definitions: CSP and CP 10

2.3.2 The eight queens problem 11

2.3.3 The Knapsack Problem 13

2.3.4 The Multiple Knapsack Problem 16

3 Concept and Design 19

3.1 System Architecture . 19

3.2 Modeling the Sensor Deployment as a CSP 21

i

CONTENTS ii

3.3 Reformulation using the multiple knapsack problem 25

3.3.1 Sensor Assignment . 26

3.3.2 Sensor Deployment . 32

3.4 Modeling considerations . 34

3.4.1 Heuristic . 34

3.4.2 Flexibilities of the “Sensor Assignment” model 36

4 Implementation and Testing 39

4.1 Implementation . 39

4.1.1 Technologies Used . 39

4.1.2 Webservice Implementation 40

4.1.3 Commander’s Interface Implementation 42

4.1.4 “Battlefield 2 Mod” Implementation 43

4.2 Testing and Evaluation . 44

5 Conclusion and Future works 46

5.1 Conclusion . 46

5.2 Future works . 47

5.2.1 Improving solver: Relaxed Constraints 47

5.2.2 Objective function improvement 47

5.2.3 Dealing with multiple mission 48

5.2.4 Integration with “Plan And Play” 48

Bibliography 49

A User Manual 51

A.1 Starting the system . 51

A.2 Using the system . 52

A.2.1 Using the Commander’s Interface 53

B Maintenance Manual 59

B.1 Installation Instructions . 59

B.2 System Execution . 61

CONTENTS iii

B.3 Hardware and Software dependencies 62

B.3.1 Hardware dependencies 62

B.3.2 Software dependencies 63

B.4 Space and Memory requirements 63

B.5 Source File Description . 64

B.5.1 Webservice source description 64

B.5.2 Commander Interface source description 66

B.5.3 Battlefield 2 Mod source description 67

B.6 Compiling and Updating the system 68

B.6.1 Compiling the Webservice 68

B.6.2 Compiling the Commander’s Interface 69

B.6.3 Updating the Battlefield 2 Mod 70

B.7 Known Bugs . 70

B.7.1 Battlefield 2 Mod Bug 70

B.7.2 Webservice ”Solver” Bug 71

List of Figures

1.1 A graphic representation of the “Sensor Assignment” problem. . 3

1.2 Map of BF2 on the left, an example of playing on the right. . . 5

2.1 A possible solution to the 8 queens problem. 12

2.2 The knapsack problem. 14

2.3 Multiple Knapsack Problem . 17

3.1 System Architecture . 20

3.2 Representation of a sensor and a zone in the first model. 22

3.3 Representation of the Sensor Assignment Problem in the final

model. 27

3.4 Analogies between the multiple knapsack and the Sensor As-

signment problem. 28

3.5 Representation of the Sensor Deployment Problem in the final

model. 32

3.6 An example of application for the Sensor Deployment Algorithm. 35

3.7 The “Sensor Assignment” model without the heuristic. 36

A.1 Locating webservice. 53

A.2 Inserting zone side. 54

A.3 The side used by the system. 55

A.4 Selecting zones. 56

A.5 Creating zones. 56

A.6 Creating Sensors. 57

iv

LIST OF FIGURES v

A.7 Solution sent by the webservice. 57

A.8 The message that appears entering a sensor area in BF2. 58

Abstract

This project is part of the ITA project that is an IBM international project

which addresses researches in the area of network-centric coalition operations.

In particular the aim of our project is to satisfy the commander’s needs of

information in a certain zone of a map, for a military/rescue mission, finding

a method to decide which is the optimal deployment of a set of sensors with

certain capabilities in some zones selected in a map by the commander. Our

attention will be directed to find an efficient mathematical model for the prob-

lem, so that we will be able to apply the Constraint Programming paradigm

to find a solution to the problem.

vi

Declaration

I declare that this document and the accompanying code has been composed

by myself, and describes my own work, unless otherwise acknowledged in the

text. It has not been accepted in any previous application for a degree. All

verbatim extracts have been distinguished by quotation marks, and all sources

of information have been specifically acknowledged.

Diego Pizzocaro

Date

Signed

vii

Preface

In Chapter One we give a brief introduction on the context of the project

and also on the motivations that brought us to begin such a project. We also

try to give a motivation behind the choice of “Battlefield 2” as the virtual

environment where to test things.

In Chapter Two we present the results of our research of previously pub-

lished relevant document about the problem that we are going to face, that is

an optimal assignment of sensors in a map using Constrint Programming. We

also give a brief introduction on Constraint Satisfaction Problems and Con-

straint Programming by presenting also some relevant examples.

In Chapter Three we give an overview of the system architecture and then,

after the description of a not-working first model developed to solve the prob-

lem, we describe carefully the final innovative model created to find an optimal

deployment of sensors inside a map.

In Chapter Four we briefly described how we implemented the system and

we try also to evaluate how good is our solution.

In Chapter Five we conclude our project description with some comments

on how everything was expected to go and how effectively went. Finally we

also present some opportunities for future works.

viii

Chapter 1

Introduction and Motivations

Reading this chapter should give you a sufficient idea of the context of this

project giving a brief overview of the project, including also motivation behind

it and its objectives.

1.1 Context: the ITA project

This project is part of the ITA project which is an international project led

by IBM1 that addresses researches in the area of network-centric coalition op-

erations. ITA stands for International Technology Alliance in Network and

Information Sciences, and it involves many university in the USA and in the

UK but also the defense departments of USA and UK, since the result of these

studies should be applied to military/rescue missions.

There are four main research areas defined by the alliance: (i) network the-

ory, (ii) security across system of systems, (iii) sensor information processing

and delivery, and finally (iv) distributed coalition planning and decision mak-

ing. The department of Computing Science of the University of Aberdeen2 is

contributing mainly in (iii) and (iv), researching respectively:

1website: www.ibm.com
2ITA project at Aberdeen: http://www.csd.abdn.ac.uk/research/ita/webpages/projects.html

(last checked 06/05/2007)

1

1.2 Objective 2

1. Knowledge technologies for sensor information processing and delivery

2. Agent technologies for distributed coalition planning and decision making

This project is located inside the research field (1) that is in the area of

sensor researches, in particular its aim is to help the commander of a mission

to define needs of intelligence in certain zones of a map and then to provide the

commander with the optimal deployment of the available sensors inside these

zones. With regards to the ITA project, the most important aspect faced by

this ”Sensor Assignment” project is the scheduling of the capabilities of a sen-

sor depending on which are the requirements given by the commander. So for

example if there is need of VIDEO information in a certain zone, but the re-

maining sensor are all AUDIO and VIDEO sensors, then it will be possible to

enable only the VIDEO ability of the sensor, in this way the autonomy of the

sensor and also its performance can be increased. Indeed with only VIDEO en-

abled the sensor can decide to improve video quality, wasting the same energy

spent with A/V enabled, or it could decide to maintain the same VIDEO qual-

ity, so that it will spend less energy and in this way the battery will last longer.

Reading this report you will also note that while developing an automated

reasoning technique that can generate a ”strategic” assignment of sensors to

cover the requirements of a mission, we also created a model of the sensor and

of the zone of a map, that in the future could be used as a base to create a

sensor and a zone ontology.

1.2 Objective

Our project aims, as stated above, to develop an application to help the com-

mander to define needs of information in certain zones and then that gives in

output an optimal deployment of the available sensors, each with a schedule

of their capabilities depending on the zone to which their are assigned to. So

the problem, which is represented in Figure 1.1, is that we are given a set of

1.3 Motivations 3

sensors each one with its own capabilities and a set of zones, each with its

own type of information needed and we have to find an optimal deployment.

With ”optimal sensor deployment” we mean that the total area covered by

the sensors has to be maximized, anyway we will see later that the concept

”optimal” can be very flexible in our solution, since our theoretical approach

to the problem is very flexible too.

Figure 1.1: A graphic representation of the “Sensor Assignment” problem.

The project aims also to simulate a real world scenario, where we can simulate

to deploy the sensors for real. So we decided to use a virtual environment where

we can actually deploy sensors and schedule their capabilities, and our choice

for the virtual environment is the virtual world of the PC game ”Battlefield

2”. But our application, as we will see, will be completely independent from

this particular game, so that in the future the virtual environment could be

changed or could be substituted by the real world.

1.3 Motivations

The motivations of our project are pretty much the same that lie behind the

ITA project, so overall there is the need to eliminate the pitfalls of compart-

mentalized research in different technical areas3 and, through these researches,

3website: http://domino.research.ibm.com/projects/titans/www titans.nsf/pages/proj.html,
checked on 06/05/2007

1.4 The virtual environment: “Battlefield 2” 4

to provide unique capabilities to the US Army and the UK Armed Forces which

could be used either in military or in rescue missions.

Note that in every military/rescue operation the first step is to place some

intelligence in strategic zones (as it is stated in [1]), so that the soldiers know

how they should prepare properly for the current mission. Since the first step

is to deploy sensors and since the result of the mission depends strongly on

the information gathered by the sensors, then it is compulsory to provide a

sensor deployment as good as possible, such that it is able to maximize the

possibilities of success of a mission.

Let’s consider for example the case of a rescue mission in which some citizens

got stuck in a flooded town. The commander will have to decide which are

the relevant zones to the mission, let’s say that these are the most densely

populated areas of the town. Then the commander will decide which type of

information should be available in each area, let’s say AUDIO/VIDEO in some

of them and in others only VIDEO. Our application will have to determine the

optimal positions where to place the sensors and which capabilities of these

sensors have to be enabled. Finally some soldier could place the sensors, and

the mission could start by using the information gathered by the sensors to

decide which is going to be the first zone that will be rescued. So for example

in a VIDEO zone the commander could see through the sensors that it is easier

to reach this zone since it is not already completely flooded.

1.4 The virtual environment: “Battlefield 2”

As we said in advance, since we want to simulate a real world scenario, we

used as a virtual environment the world of the PC game ”Battlefield 2”, that

you can see in Figure 1.2. The motivations behind that choice are mainly two:

the tradition of the armed forces to use this kind of games to train soldiers,

and the architecture of the game.

1.4 The virtual environment: “Battlefield 2” 5

Figure 1.2: Map of BF2 on the left, an example of playing on the right.

With regards to the first motivation, the US Army uses shooting online games

(obviously with a private server) to train soldiers, i.e. they put a bunch of

soldiers in a situation where they have to accomplish a mission and the com-

mander monitors them observing the way in which they behave while playing.

So this is not a ”body” or a ”reflexes” training but it is a way to improve the

strategy applied by each team of soldiers to accomplish a mission. In conclu-

sion we decided to use ”Battlefield 2” since there is an high probability that

soldiers already played a similar game and so if the system, developed during

this project, should result really interesting with regards to the ITA project,

then it could be also easily tested by the army.

The second motivation is the architecture of ”Battlefield 2”. Indeed it is a

shooting online game, that has the typical architecture of an online game: it

has a server and a client. The players will play by starting the client of the

game in their machine and then by connecting to the server that manages all

the interactions with the environment and with other players. Furthermore it

is ”open”, which means that it is easy to gather data and events from the game,

so we can actually know what is happening inside the game. This can be done

by writing some code in Python that you can easily add to the game server.

In fact this is another reason that led us to the choice of using ”Battlefield

1.4 The virtual environment: “Battlefield 2” 6

2”, because it is easy to create ”plug-in’s” for the server writing your own

Python code. Such a ”plug-in” is called ”Mod” (that probably stands for

”modified” game) and as an evidence that it should have been quite easy to

create a ”Mod” for this game there were already many ”Mod” available on the

Internet, likeProject Reality4 which was actually a complete revised version of

”Battlefield 2” (like a new different game) showing the infinite possibilities of

editing this game.

4website: http://www.realitymod.com/

Chapter 2

Related Work

Here we give a brief description of the most relevant works that had been

produced on the sensor deployment research area, even if as you will see only

one paper is really relevant. We will also introduce a project, also developed

in the Computing Science Department of the University of Aberdeen, which is

closely related to this ”Sensor assignment” project.

2.1 Previous works on sensors

Probably the most relevant work to this project is a paper published by IEEE

entitled ”Decision-Theoretic Cooperative Sensor Planning”[2]. This paper de-

scribes a decision-theoretic approach to cooperative sensor planning between

autonomous vehicles executing a military mission. In other words there is a set

of Unmanned Ground Vehicles (UGV) each with sensors installed, and they

use intelligent cooperative reasoning to select optimal vehicle viewing locations

and select optimal camera pan and tilt angles throughout the mission. This is

a problem of optimization too, like our ”sensor deployment” problem, indeed

the decisions are made in such a way to maximize the value of information

gained by the sensors while maintaining vehicle stealth.

As it can be noticed there are many common things with our project but also

7

2.2 The project “Plan and Play” 8

many different aspects. For example the fact that sensors can move could

bring someone to think that this is a big difference with our project, instead

also our approach can be extended to the case where the sensors move, as we

will see in the Chapter 3.

The most important thing in common with our project is that they try to

compute an optimal location, camera pan and split that can maximize the

covered area for each vehicle, so in this way they are trying to solve a prob-

lem that is similar to our problem. The difference is that they do not have

a commander that specifies which zones have to be covered and which type

of information is required, instead their commander will define the value of

information gathered, for example a commander could decide that the value of

information gathered about the kind of enemy forces that is in the area (tank,

trucks, etc,) have to be the highest valued information, and so the UGV’s will

try to find a location from where they can maximize this type of information.

At the beginning of our project we also though to use a similar way of giving

a value to the information and then to deploy sensors maximizing this value.

Anyway such a solution turned out to be too complex and it also involved

some aspects that were irrelevant to this project.

Other papers on sensors are available, like in [3] or [4], but none of them face

a problem similar to the one of deploying sensors in an optimal way. But it is

to notice that [4] can be very relevant to the branch of the ITA project that

involves sensor networks (which is more or less the same branch to which this

project belongs to).

2.2 The project “Plan and Play”

The ”Plan and Play” [5] is the single honours project of Daniele Masato who

developed this project at the Computing Science Department of the Univer-

2.2 The project “Plan and Play” 9

sity of Aberdeen. ”Plan and Play” is closely related to this project, since our

”Sensor assignment” project uses some concept and technologies developed in

Masato’s project.

Plan and Play finds its collocation in the domain of e-Response, a group of

network technologies designed to support emergency response operations as

humanitarian relief and civilian population control. The project focuses on

human and software agent interactions in a virtual environment where the

collaboration between them is required in order to carry out a plan. So this

project aims to track the progresses achieved in a plan by each player by map-

ping the plan and its various steps to states and objects within the virtual

universe.

The links between ”Plan and Play” are the architecture of the system and

the virtual environment used. Indeed the architecture of Masato’s project is

based on a central component that is represented by a webservice written in

Java, and as you will see in Section 3.1 also the ”Sensor Assignment” project

is based on such a webservice.

Another important link between these two projects is the use of the same vir-

tual environment that is ”Battlefield 2”. The project ”Plan and Play” has

implemented another webservice inside the game server that exchanges mes-

sages with the webservice written in Java but the ”Sensor Assignment” project

didn’t need such a complicated ”Mod”1 of the game, so as we will see in the

Section 3.1 we only took the same structure of the ”Mod” (that is a standard

for every Mod) and we eliminated the webservice inside the ”Mod” keeping

only some useful methods to interact with the remaining part of the system.

1See Section 1.4

2.3 Constraint Satisfaction Problem and
Constraint Programming 10

2.3 Constraint Satisfaction Problem and

Constraint Programming

This section describes what is a Constraint Satisfaction Problem (CSP) and

what is Constraint Programming (CP) which are two concepts that we widely

used throughout all this project. We also describe three different Constraint

Satisfaction Problem that are really important with regards to the theoretical

part described in this document.

2.3.1 Definitions: CSP and CP

The ”sensor assignment” problem that we stated above in 1.2 can be seen as a

Constraint Satisfaction Problem (CSP) that is a mathematical problem where

one must find values for variables that satisfy a number of constraints. CSPs

are the subject of intense research in both artificial intelligence and operations

research. Many CSPs require a combination of heuristics and combinatorial

search methods to be solved in a reasonable time2.

The techniques used to solve a CSP depend on the kind of constraints being

considered. Often used are constraints on a finite domain, to the point that

constraint satisfaction problems are typically identified with problems based

on constraints on a finite domain. Such problems are usually solved via search,

in particular a form of backtracking or local search. Constraint propagation

are other methods used on such problems; most of them are incomplete in

general, that is, they may solve the problem or prove it unsatisfiable, but not

always. Constraint propagation methods are also used in conjunction with

search to make a given problem simpler to solve3.

Constraint programming is the programming paradigm where relations be-

2See http://en.wikipedia.org/wiki/Constraint satisfaction problem, last checked on
08/05/07

3http://en.wikipedia.org/wiki/Constraint satisfaction, last checked on 08/05/07

2.3 Constraint Satisfaction Problem and
Constraint Programming 11

tween variables can be stated in the form of constraints. Constraints differ

from the common primitives of other programming languages in that they do

not specify a step or sequence of steps to execute but rather the properties of

a solution to be found.

The constraints used in constraint programming are of various kinds: those

used in constraint satisfaction problems, those solved by the simplex algorithm,

and others. Constraints are usually embedded within a programming language

or provided via separate software libraries4. In our case we will use a Java

software library called “CHOCO”5 that allows us to specify constraints that

will be used by CHOCO itself to solve the “Sensor assignment” problem with

its own methods used to solve CSP problems.

2.3.2 The eight queens problem

From what stated above, we can easily understand that to solve a CSP it is

enough to specify its constraints with a programming language using some

separate software libraries. So it is clear that the tricky part is not to solve the

problem but to create a mathematical model for the problem, that is to define

variables, the domain of the variables and the constraints for the problem.

We can understand this by analyzing a CSP problem called “the eight queens

problem”, which is quite related to the ”Sensor assignment” problem since it

is a placement problem too. In the eight queens problem we have to place

eight chess queens on a 8×8 chessboard in such a way that each queen does

not attack another queen using the standard chess queen’s moves. This prob-

lem, as many CSPs, has more than one solution, and you can see one of this

possible solution in Figure 2.1. So it is clear that a solution requires that no

two queens share the same row, column, or diagonal. The eight queens puzzle

is an example of the more general “n queens problem” of placing n queens on

an n× n chessboard6.

4See http://en.wikipedia.org/wiki/Constraint programming, last checked on 08/05/07
5For more information see Chapter 4.
6See http://en.wikipedia.org/wiki/N queens problem, last checked on 08/05/07

2.3 Constraint Satisfaction Problem and
Constraint Programming 12

Figure 2.1: A possible solution to the 8 queens problem.

So now that we carefully defined an “n-queens problem”, we can try to

find a mathematical model for this problem. The components of a model are

always three:

1. Variables whose final values have to respect the constraints.

2. Domain of the values that variables can assume.

3. Constraints on the variables.

And in the case of the “n-queens problem” as presented in the book [6]:

Variables : x1, . . . , xn. where xi denotes the position of the queen placed in

the ith column of the chess board.

Domain for each variable : the integer values [1, . . . , n] .

• So for example, the solution presented in Figure 2.1 corresponds to

the sequence of values (6,4,7,1,8,2,5,3), since the first queen from

the left is placed in the 6th row counting from the bottom, and

similarly with the other queens.

2.3 Constraint Satisfaction Problem and
Constraint Programming 13

Constraints : They can be formulated as the following disequalities for

i ∈ [1 . . . n− 1] and j ∈ [i + 1 . . . n]

• No two queens in the same row:

xi 6= xj (2.1)

• No two queens in each South-West – North-East diagonal:

xi − xj 6= i− j (2.2)

• No two queens in each North-West – South-East diagonal:

xi − xj 6= j − i (2.3)

As you can see there is a big difference between an informal description of

the problem and the mathematical model which represents it, indeed we have

to reach a very high level of abstraction.

2.3.3 The Knapsack Problem

The knapsack problem is a CSP that derives its name from the maximization

problem of choosing some items that can fit into one bag (of maximum weight)

to be carried on a trip, you can see its graphic representation in Figure 2.2.

An informal description7 of it could be that we are given a set of items, each

with a cost and a value, and a knapsack with a given cost, then we have to

determine which items to insert in the knapsack so that:

• the total cost of the chosen items is less than or equal to

the knapsack’s cost,

7Here we are actually considering a particular type of knapsack problem called 0-1 knap-
sack problem, since the items can be chosen (xi = 1) or not chosen (xi = 0). Instead a more
general knapsack problem can also decide to take more than only one instance of the same
object to insert inside the knapsack.

2.3 Constraint Satisfaction Problem and
Constraint Programming 14

• the total value of the chosen items is as large as possible.

Figure 2.2: The knapsack problem.

In this case it is easier to derive a formal model than in the case of the eight

queens problem, in fact it comes straight forward that the features of the model

are:

Variables : x1, . . . , xn , where:

xi =

1 if item i is inserted in the knapsack

0 otherwise

For each item i we define also two constants:

wi := the cost (or weight) of the item i

2.3 Constraint Satisfaction Problem and
Constraint Programming 15

pi := the value (or profit) of the item i

And one more constant for the knapsack:

c := knapsack’s capacity (or cost)

In the following description of the model we will assume that:

wi ≤ c (2.4)

so that each item can be (individually) inserted inside the knapsack, and

also that:
n∑

i=1

wi ≥ c (2.5)

otherwise all the items could be inserted inside the knapsack and this

would be the optimal solution.

Domain: the integer values [0,1] .

Constraints :
n∑

i=1

wi · xi ≤ c (2.6)

max
n∑

i=1

pi · xi (2.7)

The first constraint says that the total cost of the chosen items has to be less

than or equal to the knapsack’s cost, and instead the second constraint states

that the total value of the chosen items has to be as large as possible.

The last constraint that maximizes a function is also usually called “Ob-

jective Function” and it allows to find the optimal solution between the many

2.3 Constraint Satisfaction Problem and
Constraint Programming 16

possible solutions to the problem.

The solution of the problem will be a set of values each assigned to a variable:

each variable xi will have a value 0 or 1, where if xi = 1 the item i had been

chosen to be inserted inside the knapsack. This solution will be also optimal,

since the constraint 2.9 states that the total value has to be the highest.

It is to note that a problem similar to the “knapsack problem” often appears

in business, cryptography and applied mathematics8.

2.3.4 The Multiple Knapsack Problem

The Multiple Knapsack Problem9 an NP-complete Constraint Satisfaction Prob-

lem, and so it is very hard to solve. It is substantially a generalization of the

Knapsack problem explained in the above Section 2.3.3, indeed the problem is

the same except for the fact that instead of only one knapsack there are many

knapsacks, each with a different cost, where to insert the items. You can see

a graphic representation of the problem in Figure 2.3.

Let’s analyze the formal CSP model in this case:

Variables:

xi,j =

1 if item i is in knapsack j

0 otherwise

∀i ∈ N = {e1, ..., en} Set of items

∀j ∈ M = {K1, ..., Km} Set of knapsacks

8See http://en.wikipedia.org/wiki/Knapsack problem , last checked on 09/05/07
9Also in this case we are actually considering a particular type of multiple knapsack

problem called 0-1 multiple knapsack problem, since the items can be chosen (xi,j = 1) or
not chosen (xi,j = 0) . Instead in the more general knapsack problem we can also decide to
take more than only one instance of the same item i to insert inside the jth knapsack, so
for example xi,j = 3 means that we are taking three instances of the item i and inserting
them inside the jth knapsack.

2.3 Constraint Satisfaction Problem and
Constraint Programming 17

Figure 2.3: Multiple Knapsack Problem

For each item i we define two constants:

wi := the cost (or weight) of the item i

pi := the value (or profit) of the item i

And we also define a constant for each knapsack:

cj := capacity (or cost) of knapsack j

In the following description of the model we will assume that:

max
i∈N

{wi} ≤ max
j∈M

{cj} (2.8)

that means that each item can be inserted in at least one knapsack, and

2.3 Constraint Satisfaction Problem and
Constraint Programming 18

we assume also that:

min
j∈M

{cj} ≤ min
i∈N

{wi} (2.9)

that means that each knapsack can contain at least one item.

Domain: the integer values [0,1] .

Constraints:

• To ensures that the total cost of items inserted in the jth knapsack

is less than the cost of the jth knapsack:

∑
i∈N

wi · xi,j ≤ cj ∀j ∈ M (2.10)

• To ensures that each item will be inserted in no more than one

knapsack: ∑
j∈M

xi,j ≤ 1 ∀i ∈ N (2.11)

• And finally we have the “Objective Function” that states that we

have to maximize the total value of items inserted in each knapsack:

max
∑
i∈N

∑
j∈M

pi · xi,j (2.12)

Note that we could also adapt the “Objective Function” to our needs, by

changing it. Furthermore as we will see in Section 3.3, this model will be

the basis over which we will create our model for the problem of the “Sensor

Assignment”. Indeed we will take this model and we will expand it with

additional constant and other constraints.

Chapter 3

Concept and Design

This is the most important chapter of this document since it describes our

solution to the problem, but it also gives an overview of the system and an

idea of the first attempt that we did to try to solve the problem. In particular

it is very interesting how we managed to learn from our mistakes, and how

this brought us to a very good and innovative solution.

3.1 System Architecture

The architecture of the system is an architecture composed by three compo-

nents, as you can see in figure 3.1.

The most important component is the solver, which is an application that

solves the problem of finding an optimal deployment of the sensors inside the

zones of a map given by the commander of a mission. This is implemented

as a webservice and it represents actually the core of the system, since the

remaining two components will interact each other using this webservice as

computation and communication node. It is to note that as implementation of

the solver we chose a webservice since in this way the other two components

can be easily substituted by some different ones. So for example we could

replace the commander’s interface with a more user-friendly one and the game

19

3.1 System Architecture 20

Figure 3.1: System Architecture

”Battlefield 2” with another virtual environment or also with the real world.

The second component is the commander’s interface, which allows the com-

mander to choose the zones from a map and to define which type of information

it is required from each of them, and at the same time it allows the commander

to insert data about the available sensors that is the number of sensors and

a set of properties for each of them. The Commander’s Interface will send to

the solver the information about the sensors and about the zones selected, so

later the solver will solve the problem. It is to note that the solution of the

problem remains inside the solver as a static variable, so that at any time the

webservice will contain the current optimal sensor deployment if there is one.

3.2 Modeling the Sensor Deployment as a CSP 21

The last component is the mod1 developed for Battlefield 2 that actually mod-

ifies the behavior of the game server so that when some players connect to it

to play a match, this will ask for the current optimal sensor deployment stored

in the webservice, and then it creates the sensors inside the map. Anyway we

will see in the Chapter 4 that the game is quite limited since the only way in

which you can simulate sensors inside the game is creating a sensitive invisible

area that let you know only what enters and what exits from it.

3.2 Modeling the Sensor Deployment as a CSP

Let’s begin to describe the real challenge that we faced, that is to create

a model for the “Sensor Deployment” problem. In fact the model for that

problem will be implemented later as a webservice described in the previous

Section 3.1 and it will actually constitute the core of the system.

In this Section we are going to present the first model that we created for

the problem, and as we will notice later we will see that it is not the proper

model for this problem. Anyway this model is described in the same way that

we will use to present the right model since we want to describe each step that

led us to develop the final model.

The first model that we developed takes inspiration by the eight queens prob-

lem, in particular it idealizes the map as a big chessboard where each possible

position in the map corresponds to a cell in the chessboard. Furthermore be-

tween the constraints that we will use there will be one that is very similar to

one of the constraint of the eight queens problem.

In this first model we worked out a simplified representation for sensors and

zones, that actually could represent an ontology for sensor and zone, indeed

this idealization will be reused in the correct model. So in particular we have:

Sensor: it is idealized as a circular area having: a radius (ri), a center (xi, yi),

1See Section 1.4

3.2 Modeling the Sensor Deployment as a CSP 22

the type of information that the sensor can gather (e.g. AUDIO). You

can see in the Figure 3.2 the schema of the representation of a sensor.

Zone: it is represented by: a set of four coordinates that determines the

boundaries of a rectangular zone, and the type of information needed (e.g.

AUDIO required). In Figure 3.2 there is the schema of this idealization

of the zone.

Figure 3.2: Representation of a sensor and a zone in the first model.

Now we can define the formal mathematical model that uses the idealization

showed above:

Variables: {(x1, y1), . . . , (xn, yn)}
that is a list of (xi, yi) coordinates of the center of each sensor.

Domain: each (x,y) inside the boundary of the map

Constraints: The constraints can be divided into two types:

1. System Constraints that are actually the constraints proper of the

hardware system of sensors, so:

• All the sensors have to be assigned to a different position in the

map:

(xi, yi) 6= (xj, yj) ∀i, j ∈ {1, . . . , n}, i 6= j (3.1)

3.2 Modeling the Sensor Deployment as a CSP 23

Note that this constraint is really similar to the constraint (2.1)

used in the eight queens problem model in Section 2.1.

• The area of a sensor must not intersect the area covered by

another sensor, and we implemented this constraint by using

the fact that two circles intersects when the distance between

their centers is less than the sum of their two radii:

distance((xi, yi), (xj, yj)) ≥ |ri +rj| ∀i, j ∈ {1, . . . , n}, i 6= j

(3.2)

2. Commander’s Selection Constraints that are the constraints im-

posed by the commander when he selects zones in a map and he

decides which type of information it is needed from these zones:

• First of all we divide the sensors in classes considering the type

of information gathered by sensors, so we will have three dif-

ferent classes:

AUDIO sensors let’s say that they are i ∈ {1, . . . , l}

VIDEO sensors let’s say that they are i ∈ {l + 1, . . . ,m}

A/V sensors let’s say that they are i ∈ {m + 1, . . . , n}

• Now the following constraint states that there have to be only

AUDIO sensors in the AUDIO zones selected by the comman-

der. So for each AUDIO zone we have:

xa ≤ xi ≤ xb ∀i ∈ {1, . . . , l}, (3.3)

ya ≤ yi ≤ yd ∀i ∈ {1, . . . , l}, (3.4)

where the zone has coordinates {(xa, ya), (xb, yb), (xc, yc), (xd, yd)}
like in Figure 3.2.

• In the same way, for each VIDEO zone we have:

xa ≤ xi ≤ xb ∀i ∈ {l, . . . , m}, (3.5)

3.2 Modeling the Sensor Deployment as a CSP 24

ya ≤ yi ≤ yd ∀i ∈ {l, . . . , m}, (3.6)

• And finally, for each A/V zone we have:

xa ≤ xi ≤ xb ∀i ∈ {m, . . . , n}, (3.7)

ya ≤ yi ≤ yd ∀i ∈ {m, . . . , n}, (3.8)

Note that the information about the capabilities of each sensor must be

stored outside the mathematical model, in some data structure, viceversa you

can see that the data about the type of information required from each zone

is included in the model thanks to the subdivision of the zones into classes. In

the last model that we will present in Section 3.3, we will see how we managed

to include inside the model also the information about the capabilities of each

sensor without using an external data structure.

You probably noticed also that we didn’t used any “Objective Function” and

this is why we wanted before to test how the model was working without hav-

ing to optimize a solution, but only having to find a solution even not optimal.

After an implementation phase and a test we found out that the solver which

was using this model was of a very poor quality, since in many cases it was

not able to find a (non optimal) solution in a reasonable time.

Furthermore we also realized that we were not considering the problem of do-

ing a schedule of the capabilities of a sensor which had many capabilities. So

for example we were assigning only VIDEO sensors to a VIDEO zone and we

were not allowing the case in which an A/V sensor could be assigned to a

VIDEO zone having only the VIDEO capability enabled.

To finish this description of the model we would like to analyze the reasons

for what the model did not have good performance. The main cause is that

the domain of this model is too big, in fact taking a look at the domain of the

CSPs described in the previous Section 2, you will notice that those domains

are really very small, sometimes they are composed by only two elements

3.3 Reformulation using the multiple knapsack problem 25

(e.g. {0,1}). So it is comprehensible that our model does not work well since

our domain includes each possible position inside a map, that is if we have

a square map with a side of 512 meters, then we will have a domain with

512 × 512 = 262144 elements. Here we are considering that the unit of the

map is one meter, and so the smallest distance between two sensors will be

one meter. At the beginning we thought that reducing the domain by taking a

unit inside the map that was bigger than one meter, so for example by taking

8 meters as unit in a map we would have reduced the domain of a factor 82 in

fact the number of positions allowed in the map now becomes 64× 64 = 4096.

Although in this way the domain became smaller than before, it is still too

big compared to the domains which are usually used in the classic CSPs, and

in addition since we used a bigger unit for the map we lost precision, indeed

now the smallest allowed distance between two sensors is 8 meters. Finally

we decided that this was not the right model and we began to work on a new

model.

3.3 Reformulation using the multiple knapsack

problem

In this section we will describe the final version of the model developed for

the “Sensor Assignment” problem. This model is actually the most important

part of this project and in a matter of fact its development took also the most

part of the time assigned to this project.

The intuition behind this model is to think at the “Sensor Assignment”

problem as a “Multiple Knapsack Problem” described in Section 2.3.4, and to

use a similar model for it. This new conception of the problem lead us to divide

the main problem, described in Section 1.2, into two separate subproblems:

• The “Sensor Assignment” problem that is to assign sensors to zones

considering only the zones selected by the commander and the type of

3.3 Reformulation using the multiple knapsack problem 26

info required from them.

• The “Sensor Deployment” problem that is for each zone we deploy only

sensors assigned to that particular zone.

This subdivision is very important since it allows also to introduce the schedul-

ing of the capabilities of a sensor which has many capabilities. In fact, just

after having found a solution to the “Sensor Assignment” problem, for a cer-

tain sensor with more than one capability we can choose which capabilities

have to be enabled depending on the assigned zone. So for example if an A/V

sensor is assigned to an AUDIO zone, then we will enable only the AUDIO

resource of that A/V sensor.

In the following paragraphs we will describe more in detail the two different

subproblems that will be solved in sequence one after the other and will give

us the optimal sensor deployment.

3.3.1 Sensor Assignment

As we stated above this problem consists in the sensor assignment considering

only the zones selected by the commander and the type of information that

we need from these zones, this problem takes also into account the fact that

sensors with many capabilities can be assigned to a zone that does not require

that all the capabilities of sensor has to be enabled.

So a formal description of the problem, represented in Figure 3.3, could be:

given a set of zones selected by the commander each with its own type of in-

formation required, and a set of sensors each with its own capabilities, then

we will have to assign each sensor to a zone maximizing the total area covered

by sensors. Note that at the end of this problem we will not have as a result

the exact positions in which we have to deploy sensors, but we will get only

the zone inside which each sensor has to be deployed.

3.3 Reformulation using the multiple knapsack problem 27

You are probably also understanding that thanks to this new point of view on

the problem definition we are actually reducing the domain with regards to the

model presented in the Section 3.2. Indeed we are no more considering every

possible position inside the map, instead we are now taking into account only

the zones selected by the commander and not even including the positions that

are not allowed in the definition of the problem . In Figure 3.3 we put some

red crosses on the zones that are not selected by the commander to represent

the domain reduction.

Figure 3.3: Representation of the Sensor Assignment Problem in the final
model.

As we said above the model developed for this subproblem called “Sensor

Assignment”, is substantially the model of the multiple knapsack extended

with other constraints and other constants to include inside the model the

information about the capabilities of the sensors and the data about the type of

information required from each zone. To begin with let’s try to point out which

are the analogies, represented in Figure 3.4, between the multiple knapsack

problem and the ”Sensor Assignment” subproblem:

• Knapsacks ⇐⇒ Zones selected,

• Knapsack’s cost ⇐⇒ Area of a selected zone,

• Items ⇐⇒ Sensors,

• Item’s cost ⇐⇒ Area covered by the sensor,

3.3 Reformulation using the multiple knapsack problem 28

• item’s value ⇐⇒ Area covered by the sensor

In particular note the last two analogies that say that in this case we are using

a specific case of the multiple knapsack problem where pi = wi for each sensor

(or item), so since now we will use only the symbol wi to indicate either the

item’s cost or the item’s value.

Figure 3.4: Analogies between the multiple knapsack and the Sensor Assign-
ment problem.

Here we present the mathematical model for the problem:

Variables: We use a two-dimensional variable, to resolve the problem:

xi,j =

1 if sensor i is in zone j

0 otherwise

∀i ∈ N = {s1, ..., sn} Set of sensors

3.3 Reformulation using the multiple knapsack problem 29

∀j ∈ M = {Z1, ..., Zm} Set of zones

And then we use some constant terms for each sensor and for each zone:

tai
=

1 if sensor i has AUDIO

0 otherwise

tbi
=

1 if sensor i has VIDEO

0 otherwise

wi = area covered by sensor i

cj = area of the zone j

Below, we also subdivide the set of zones into subsets, each subset is

composed by zones from which it is required the same type of informa-

tion by the commander:

Ma = {Z1, ..., Zl} Set of zones from which AUDIO is required.

Mb = {Zl+1, ..., Zf} Set of zones from which VIDEO is required.

Ma,b = {Zf+1, ..., Zm} Set of zones from which AUDIO and VIDEO are required.

Domain: the integer values [0,1] .

Constraints:

• The following constraints are the proper constraints of the multi-

ple knapsack problem, like the constraints described in the Section

2.3.4:

3.3 Reformulation using the multiple knapsack problem 30

∑
i∈N

wi · xi,j ≤ cj ∀j ∈ M (3.9)

∑
j∈M

xi,j ≤ 1 ∀i ∈ N (3.10)

• The constraints below had been added to respect the commander’s

choices, in terms of type of information needed in each zone, this

is one of the most important part of the model since it extends the

basic model of the multiple knapsack into a more complex one:

The following constraint is to have only sensors with AUDIO en-

abled in AUDIO zones:

∑
i∈N

tai
· xi,j =

∑
i∈N

xi,j ∀j ∈ Ma (3.11)

The following constraint is to have only sensors with VIDEO en-

abled in VIDEO zones:

∑
i∈N

tbi
· xi,j =

∑
i∈N

xi,j ∀j ∈ Mb (3.12)

The following constraint is to have only sensors with A/V enabled

in A/V zones:

∑
i∈N

tai
· tbi

· xi,j =
∑
i∈N

xi,j ∀j ∈ Ma,b (3.13)

3.3 Reformulation using the multiple knapsack problem 31

• And, as the last part of the extension of the multiple knapsack

model, we add the following constraint to ensure that there is at

least one sensor in each zone:

∑
i∈N

xi,j ≥ 1 ∀j ∈ M (3.14)

Objective function: In this case we preferred to treat the objective function

in a separate paragraph, even if it is always a constraint. We developed

two different objective function of which only one can be used inside the

model, and we decided to use the second one.

• The first possibility for the objective function maximizes the total

area covered by the sensors, considering the zones altogether:

max
∑
i∈N

∑
j∈M

wi · xi,j (3.15)

• Now the second possibility for the objective function, that is the

function that we chose in the implementation, minimizes the num-

ber of sensors used and at the same time maximizes the total area

covered by the sensors:

max
∑
i∈N

∑
j∈M

wi · xi,j −
∑
j∈M

∑
i∈N

xi,j (3.16)

In the future we could also change this objective function into a more

complex one.

Note another time that in the context of this subproblem the coordinates

of the boundaries of each zone do not matter, we will pay attention to them

3.3 Reformulation using the multiple knapsack problem 32

only in the next subproblem called “Sensor Deployment”.

Finally, we would like to point out that this model is an innovative model

since there is no evidence of other researches that applied an extension of the

multiple knapsack model to the field of sensor assignment, so hopefully this

report could be used as a basis for a future research paper about the CSP

model carefully described above.

3.3.2 Sensor Deployment

This problem has to be solved separately for each zone, and it can be solved

only after having found a solution for the subproblem called “Sensor Assign-

ment”. A formal description for this second subproblem, represented in Figure

3.5, could be: given a zone and given the subset of sensor assigned to this zone,

then we will have to deploy each sensor inside the zone with the constraint that

the areas covered by any two sensors do not overlap.

Figure 3.5: Representation of the Sensor Deployment Problem in the final
model.

First of all we have to point out that this is not properly a CSP, but it is re-

solved by applying recursively the model of the multiple knapsack, so in other

words we had to create an algorithm that is going to be described in details

3.3 Reformulation using the multiple knapsack problem 33

into this Section. To understand what we mean with “applying recursively the

multiple knapsack model” we will just explain the steps of the implemented

algorithm.

Algorithm:

1. Subdivide the sensors in classes with the same radius.

2. Order the sensors for decreasing radius and take the first class (so the

class with the biggest radius).

3. Subdivide the zone into subzones with side equals to the diameter of

the sensors belonging to the class that we are now considering. In this

way we will have that the area of a subzone is exactly equal to the area

covered by the sensors belonging to the class that we are now considering

(i.e. cj = wi ∀i ∈ N,∀j ∈ M)

4. Solve the multiple knapsack problem with:

• Knapsacks ⇐⇒ Subzones

• Knapsack’s cost ⇐⇒ Area of a subzone

• Items ⇐⇒ Sensors of the first class

• Item’s cost ⇐⇒ Area covered by sensor

• Item’s value ⇐⇒ Area covered by sensor

Note that the last two analogies with the multiple knapsack mean that

also in this case we are using a particular case of it where pi = wi for

each sensor (or item).

5. Deploy sensors inside the subzones as states the solution of the multiple

knapsack problem just resolved. In particular it is clear that all the

sensors of the class will be deployed and none of them will be left out,

since the set of sensors on which we are working is the set of sensors

assigned to this zone from the “Sensor Assignment” model (which will

3.4 Modeling considerations 34

check that the total area covered by sensors is less than or equal to the

area of the zone).

6. Start from the beginning of the algorithm considering the next class of

sensor and always the same zone, but this time the zone will be sub-

divided into smaller subzones having side equals to the diameter of the

next class of sensors (which have a smaller radius than the previous

class). Moreover we will have to exclude the subzones that are already

covered by each of the bigger sensors deployed during the previous cycle.

Let’s see an example that is also represented in Figure 3.6, so if we have

two classes of sensors then the algorithm will cycle twice: the first time it

will assign the sensors that belongs to the class with the biggest radius to the

subzones having as side the diameter of these sensors, the second time it will

exclude the subzones already occupied by the sensors of the first class, and

then it will assign the sensor to the second class to the new smaller subzones.

3.4 Modeling considerations

As you can easily understand the first subproblem called “Sensor Assignment”

is the most hard to solve and also the most important. Indeed only if we have

a solution for the first subproblem, that is a “global problem” since involves

the whole map, we can go on to solve the second subproblem that is more a

“local problem”, since it involves only one zone and a subset of sensors per

time.

3.4.1 Heuristic

Since both the subproblems are quite hard to solve we used an heuristic, which

was anyway necessary so that the “Sensor Assignment” model described in

3.3.1 could work well.

3.4 Modeling considerations 35

Figure 3.6: An example of application for the Sensor Deployment Algorithm.

Heuristic:

“The length of the side of each zone and the length of the radius of each sensor

have to be a power of two.”

This is because otherwise there could be the case in which the “Sensor As-

signment” model could insert a sensor in a zone putting it out of shape. Let’s

see an example represented also in Figure 3.7, here we suppose that we are try-

ing to insert the last sensor, with area equal to 7, inside a zone where there are

already some sensors deployed and where the remaining area is greater than

or equal to 7. Then if we do not use the heuristic we will have that the con-

straint 3.9 is respected and all the other constraints would be respected as well,

and the solver will solve the problem assigning this sensor to that zone, even

if it cannot be inserted, since we cannot change the shape of the area which

it can cover. Instead using this heuristic will not allow to have such a situation.

3.4 Modeling considerations 36

Figure 3.7: The “Sensor Assignment” model without the heuristic.

We apply this heuristic inside the system by using the power of two that is

the nearest to the length of the zone side or the length of the sensor radius

inserted by the commander using the commander interface.

3.4.2 Flexibilities of the “Sensor Assignment” model

The “Sensor Assignment” model is very flexible, meaning that it can adapt

well to many different situations.

The first flexibility that we would like to point out is the fact that it is

really easy to add to the “Sensor Assignment” model many different type of

information. For example if you want to use also sensors that can have the

capability INFRARED, you just need to add some constraint and some con-

stant to the model described in Section 3.3.1.

So let’s consider the case of “INFRARED”, then we will define this constant

for each sensor:

tci
=

1 if sensor i has INFRARED

0 otherwise

3.4 Modeling considerations 37

Now, we will use these convention: A = AUDIO, V = VIDEO, I = IN-

FRARED; so for example an AUDIO and INFRARED sensor or zone will

be denoted as A/I, instead an AUDIO, VIDEO and INFRARED sensor or

zone will be denoted as A/V/I.

So the types of zones that we can have now become the following:

Ma = {Z1, ..., Ze} Set of zones from which “A” is requested.

Mb = {Ze+1, ..., Zf} Set of zones from which “V” is requested.

Mc = {Zf+1, ..., Zg} Set of zones from which “I” is requested.

Ma,b = {Zf+1, ..., Zg} Set of zones from which “A/V” are requested.

Ma,c = {Zg+1, ..., Zh} Set of zones from which “A/I” are requested.

Mb,c = {Zh+1, ..., Zl} Set of zones from which “V/I” are requested.

Ma,b,c = {Zl+1, ..., Zm} Set of zones from which “A/V/I” are requested.

The constraints that we will have to add will be:

∑
i∈N

tci
· xi,j =

∑
i∈N

xi,j ∀j ∈ Mc (3.17)

∑
i∈N

tai
· tci

· xi,j =
∑
i∈N

xi,j ∀j ∈ Ma,c (3.18)

∑
i∈N

tbi
· tci

· xi,j =
∑
i∈N

xi,j ∀j ∈ Mb,c (3.19)

∑
i∈N

tai
· tbi

· tci
· xi,j =

∑
i∈N

xi,j ∀j ∈ Ma,b,c (3.20)

From this we can notice that it is very easy to add another capability to the

model, and this could be done also in an automatic way. This means that

3.4 Modeling considerations 38

in the future we could implement a function to allow the commander to cre-

ate new capabilities for the sensors and new information requirements for the

zones; and in this way the model could be adapted on the fly to the needs of

the commander.

Another consideration is that the “Sensor Assignment” model could be also

applied to sensors that can move, in fact we could integrate this new informa-

tion by taking as radius of area covered by the sensor, the radius of the actual

area in which the sensor can move. So we will simply use a bigger radius that

takes into account also the case in which the sensor can move form its position.

Since the sensor can move, it will have a different position after a while and

so it should be necessary to resolve again the problem of deploying sensors in

an optimal way. This could be a future expansion of this project.

Chapter 4

Implementation and Testing

This chapter describes the implementation of this system by looking at the

technologies used and at the implementation of the three components of the

system. Later we also explain which tests were done and which are the per-

formances of our solution.

4.1 Implementation

4.1.1 Technologies Used

Here there is a brief description of the technologies used to implement this

project, anyway keep always in mind the system architecture described in

Section 3.1 so you could easily understand where these components are located

inside the system:

Java 1.6 Since the commander interface and the webservice are written in

java they require the Java VM installed on the machines in which they

will run.

Apache Tomcat 6.0.2 This is an application server that allows application

written in Java to be executed on the server by a client. This application

server represent the platform on which we will install Axis that we need

to create the webservice.

39

4.1 Implementation 40

Axis 1.4 This is a platform for developing and deploying webservices written

in Java. It is itself a web application that has to be installed inside

Tomcat.

choco-1.2.03 This is an open source Java library that is used by the webser-

vice to solve the problem of deploying the sensors inside the zones in an

optimal way. This type of library let you apply the Constraint Program-

ming paradigm, by defining variables, domain, constraints and objective

function.

4.1.2 Webservice Implementation

As we stated above we used Axis to create the Webservice, we chose it be-

cause it is very easy to deploy new webservices. As a matter of fact you just

only need to write your own Java code and insert your packages inside Axis,

then you need to create two files of configuration to let Axis know that it has

to deploy a new webservice and you’re done. Furthermore the installation of

Axis which runs inside the Apache Tomcat application server is quite easy to

accomplish as well in a limited amount of time.

Let’s now take an overview of the Java classes that implement the Webservice.

This is composed by one package ”deploySensorsService” which contains a file

”MyService.java” which actually implements the webservice, and a subpackage

”deploySensorsService.solver” that contains all the classes which implement

the CSP solver using CHOCO library.

• Let’s consider the package ”deploySensorsService”:

MyService.java This class implements the webservice: the method

”computeDeployment” performs the deployment of the sensors in-

side the zones, the other methods are used to return to the client

the actual sensor deployment.

4.1 Implementation 41

The thing that is very important is that once the CSP solver has

solved the problem, then the solution will be stored inside the web-

service. So when the BF2 server will ask for the current optimal

deployment, the webservice will return the value of the “static”

variables which contains the data about the optimal deployment.

• Let’s consider the subpackage ”deploySensorsService.solver”, where the

class that actually solve the problem is ”DeploySensors.java” which uses

”ZoneDeploy.java” as an auxiliary class. The other classes are data struc-

tures and auxiliary methods used by these two main classes:

DeploySensors.java This class solves in sequence, before the Sensor

Assignment problem (Section 3.3.1)and then the Sensor Deploy-

ment problem (Section 3.3.2). This last subproblem is solved using

the class ”ZoneDeploy”.

This class reflects the global structure of the main problem that

is divided into two subproblems: the Sensor Assignment and then

the Sensor Deployment problem. The implementation of the model,

since it is directly the translation of the model into CHOCO con-

straints, also benefits of the flexibilities described in Section 3.4.2.

ZoneDeploy.java This class solve the Sensor Deployment problem for

each zone considering only the sensors assigned to the zone; this

problem is solved by applying the algorithm described in Section

3.3.2.

Sensor.java This is a data structure that represents the sensor and its

properties. It could be considered as a primitive ontology for the

object sensor.

CoveredArea.java This is a data structure that represents the zone

selected by the commander and the information that is required

from it. It could be considered as a primitive ontology for the

object Zone.

4.1 Implementation 42

SubArea.java This class represents a subzone created by division of

a zone, this class is used in the algorithm that solves the Sensor

Deployment problem.

MyList.java This class implements a list using an hashtable and it is

used as a utility class by the others.

PairInt.java This class implements an object composed by a pair of

integers

Utilities.java This class contains some utility function used by the

classes ”DeploySensors” and ”ZoneDeploy”.

4.1.3 Commander’s Interface Implementation

As we said before the commander’s interface is actually a command line in-

terface written in Java, and it sends parameters to the webservice via SOAP

messages using some Java libraries provided by Axis. The commander in-

terface is composed by one package ”deploySensorsClient” which contains a

file “MyClient.java” and a subpackage “deploySensorsClient.structures”. The

first is the main class of the application and it implements the command-line

interface, the second contains all the data structures used by the interface to

perform its tasks (i.e. the same data structures used by the Webservice solver

such as Sensor.java).

• The package ”deploySensorsClient” contains:

MyClient.java This class implements the Commander’s interface: it

asks to the webservice for the solution of the problem whose pa-

rameters are set by the commander. This class uses the classes in

“deploySensorClient.structures” to set the input parameters (sen-

sors and zones) of the method “computeDeployment” of the web-

service.

4.1 Implementation 43

Note that inside this class it is implemented the heuristic that we

described in the Section 3.4.2, since when the commander inserts a

length for the zone side or for a sensor radius, the interface auto-

matically computes the power of two nearest to the number inserted

by the commander and then the system takes this power of two to

solve the problem.

• The subpackage “deploySensorsClient.structures” contains data struc-

tures used by the commander interface to set the parameters of the prob-

lem. This classes are the same data structures used by the Webservice

solver: Sensor.java, CoveredArea.java, SubArea.java, MyList.java.

4.1.4 “Battlefield 2 Mod” Implementation

As explained in Section 1.4, Battlefield 2 allows to develop your own plug-ins

for the server, this plug-ins are called “mod” and they are written in Python.

The real core of the Mod is implemented inside the file ”scoringCommon.py”

that is entirely written by Diego Pizzocaro. We used also other utility mod-

ules that are “Utils.py” and “Defines.py” which were taken from the mod

“PlanAndPlay”.

scoringCommon.py This file is the core of the mod: It asks to the webser-

vice for the current sensor deployment (that had been set before by the

commander) and then it creates Sensitive Area inside the map simulating

the behaviour of real sensors.

The issue is that once we created sensors inside the map, we cannot delete

them on the fly while there are still other players inside the map since the game

clients asks for the sensitive area that they have to create inside the local map

only when they join the game. So we had to work out a mechanism that could

delete old sensors and deploy the new sensors belonging to the solution of the

new problem set by the commander:

4.2 Testing and Evaluation 44

Creating sensors: Each time that the first player join the server loading the

map, the Battlefield 2 server will send a request to the webservice for the

current optimal deployment, and then the Battlefield 2 server will create

the sensors on the map

Removing sensors: When the last player disconnects from the current game,

then the map and all the python code will be reloaded so that the old

sensors created inside the map will be removed. So when the first player

will connect to the server and join a game, there will be again the same

sequence of actions described in Creating sensors and the sensors will

be deployed on a clean map.

4.2 Testing and Evaluation

Since the most part of the time was spent to develop the model of the problem

and then to implement the whole system, there was not so much time left to

perform tests and evaluate its performances.

Anyway in the commander interface we implemented some commands that

allow to test the solver performances with some default parameters (i.e. a

fixed number and type of sensors and zones). The most interesting command

is “default3” that actually uses as parameters 15 sensors of which 5 AUDIO

sensors, 5 VIDEO sensors and 5 A/V sensors with different radii, and also

6 zones with different types of information needed. It takes more or less 30

seconds to the solver to solve this problem.

Note that the time spent to solve a problem will not depend from the size of

the map thanks to the model, since we are only considering how many zone the

commander selects. So the time to solve a problem increases with the number

of sensors used and the number of zones selected. Other tests, carried on still

during the development phase, showed that the time also depends on the side

of the zones and on the radius of the sensors. In particular it is directly pro-

4.2 Testing and Evaluation 45

portional to the side of zones (the bigger is the side the bigger is the time),

and inversely proportional to the radius of sensors (the bigger is the radius the

smaller is the time).

An important issue rises when there is no solution to the problem and the

solver has to understand that there is no solution. If the problem is “easy” the

time to wait will be very short and it will answer that there is no solution, but

if there are many sensors and zones, with also small radius the first and big side

the second, then it will take a lot of time, and it could also go on indefinitely

trying to find a solution. This is understandable since we are coping with an

NP-complete problem.

Chapter 5

Conclusion and Future works

This chapter presents some conclusions to our project, discussing which were

our expectations at the beginning of the project and how things actually went.

We also present possible extensions and improvements to our system as future

work.

5.1 Conclusion

At the beginning of this project we were not really concerned about the de-

velopment of a model but we were more worried about the implementation of

everything, in particular about how we could represent sensors in Battlefield 2

and how to integrate everything inside this virtual environment. At the end,

instead, it turned out that the hardest part of the project was to develop a

very efficient model for the problem that we were facing, and after this step

the implementation was quite straightforward, at least for the solver inside the

webservice. In any case we had to spent much time over the webservice de-

sign and the commander’s interface, instead with regards to Battlefield 2 Mod

server, we have been very lucky since the parallel project “Plan and Play”

introduced in Section 2.2 had worked a lot with Battlefield 2 and so we could

re-use some of the knowledge developed in that project.

46

5.2 Future works 47

In conclusion the goal of the project was successfully met and the CSP model

that we developed for the problem seems to be a real innovation in this field.

5.2 Future works

There are many future works that could be done starting from this project, but

always keeping as basis the same model described in this document without

changing it very much, since as we showed it is very flexible.

5.2.1 Improving solver: Relaxed Constraints

As we discussed in Section 4.2 the solver could spend a lot of time to find

the solution for a problem with many sensors and zones, or it could go on

indefinitely trying to understand if it exists a solution. To improve the solver

performances, we could apply a technique that keep the same model but relaxes

the constraints defined in the problem. This could be really an interesting

future work.

5.2.2 Objective function improvement

In the future we could also try to develop a better objective function, by con-

sidering for each item i : pi 6= wi , that are constants that we met in Section

3.3.1, and so we could maximize the total value of the sensors assigned to the

zones. In this way a new objective function could maximize the total area

covered by sensors, minimize the number of sensors used and at the same time

maximize the value of the sensors chosen.

We could also create many different objective functions and then let the deci-

sion of which to use to the commander, depending on the requirements of the

particular mission.

5.2 Future works 48

5.2.3 Dealing with multiple mission

An interesting feature of this model is that it can already deal with multiple

missions. In fact, for example if there are two different commanders for two

different missions, then they will have the same map and the same set of sen-

sors available to share between the two missions, but they will mainly select

different zones. It is enough to make a join of the two set of zones and to pass

them together with the set of common sensor to the problem solver, and it will

solve the problem. Actually there could be the need to adjust some little con-

straint of the model and some constants but it should be really straightforward.

Such a type of future work could be very interesting with regards to the ITA

project.

5.2.4 Integration with “Plan And Play”

This project can be integrated with “Plan and Play” (PnP), described in

Section 2.2. In fact PnP, as we stated previously, integrates a planner with

Battlefield 2, and this planner receive in input a plan. Such a plan could be

to realize the optimal deployment of the sensors by sending soldiers to place

sensors in the optimal locations chosen by the solver. So in this case the

planner will have as objective the optimal deployment and it will say to the

soldiers how to reach safely the optimal locations to place sensors.

Bibliography

[1] US Army,

“Doctrine for Intelligence Support to Joint Operations”.

http://www.dtic.mil/doctrine/jel/new pubs/jp2 0.pdf,

Checked on 06/05/2007.

[2] Diane J. Cook, Piotr Gmytrasiewicz, and Lawrence B. Holder, Member,

IEEE.

“Decision-Theoretic Cooperative Sensor Planning”.

IEEE Transactions on pattern analysis and machine intelligence, Vol. 18,

NO. 10, October 1996.

[3] Goce Tra jcevski, Peter Scheuermann, Herve Bronnimann

“Mission-Critical Management of Mobile Sensors (or, How to Guide a

Flock of Sensors)”

[4] Hsing-Jung Huang, Ting-Hao Chang, Shu-Yu Hu, Polly Huang

“Magnetic Diffusion: Disseminating Mission-Critical Data for Dynamic

Sensor Networks”.

[5] Daniele Masato.

“Plan and Play: Interfacing an HTN Planner with a virtual environ-

ment”.

Honours Project Report,

University of Aberdeen, UK, May 2007.

49

Bibliography 50

[6] Krzysztof R. Apt.

“Principles of Constraint Programming”.

Cambridge University Press, 2003.

[7] Michele Monaci.

“Modelli di Programmazione Lineare Intera”.

Notes about the course of “Operational Research 2”,

http://www.dei.unipd.it/˜monaci/modelli rev21.pdf

University of Padova, 2006.

[8] Sami Khuri, Thomas Back, Jorg Heitkotter.

“The Zero/One Multiple Knapsack Problem and Genetic Algorithms

(1993)”

Proc. of the 1994 ACM Symposium of Applied Computation proceedings.

Appendix A

User Manual

This manual documents how to run our system – it should be helpful to a

commander who wants to know which are the best positions where to place

sensors, given a set of available sensors and of selected zones of a map.

Note: This manual assumes that you have already installed the system cor-

rectly, if you didn’t please see the Maintenance Manual and follow the Instal-

lation Instructions.

A.1 Starting the system

There are three main components which require to be executed at the same

time - the webservice, the Battlefield 2 mod server and the Commander’s

Interface.

The webservice can be executed by simply starting the Apache tomcat

service, that under WindowsXP can be done by selecting ”Start→Configure

Tomcat” and then by pushing the ”Start” button. This will automatically

start also the Axis Platform that is located inside Apache Tomcat (after a

proper installation of the system), and so it will also start the webservice

called ”DeploySensorsService”.

The Battlefield 2 mod server can be executed by browsing to the folder

51

A.2 Using the system 52

”Battlefield2/ServerConfig” and then executing the file ”bf2server.exe”. Note

that before executing the server, it has to be configured with the correct IP, as

specified in the README file inside the installation folder ”Software/Battlefield

2 Mod”.

The Commander Interface can be simply executed by browsing into its

folder and then by clicking on the file ”ComInterface.bat” if you are in a

WindowsXP environment. If you are not under WindowsXP you have to open

a command prompt, browse to the folder ”CommanderInterface” and then

type:

java -jar ComInterface.jar

Finally all the BF2 players that wants to use this infrastructure can start

their game client modified with the Mod that is supposed to be correctly in-

stalled in their machine. To start the game mod installed in a client machine

you just need to browse to the folder of the game ”Battlefield2” and then click

on ”RunBF2Client Debug.bat” or on ”RunBF2Client Release.bat”, depending

if you want to run the game in debug1 or in release2. Note that before allowing

the first player to connect to the BF2 server you should be sure to have stored

the deployment of the sensors through the Commander Interface.

A.2 Using the system

Let’s take a look at the typical sequence of operations in such a system:

1. Start the webservice, the BF2 mod server and the commander interface.

2. Use the commander interface to create sensors and select zones and then

wait for the answer of the webservice, that will solve the problem (if

there is a solution). At the same time, the WebService will store the

sensor deployment into a static variable.

1that means in a window at a lower resolution, with the possibility to see debug/error
messages

2that means at higher resolution on full screen

A.2 Using the system 53

3. The players can now start their client of the game with the ”Mod” in-

stalled and then connect to the server ”PlanAndPlay Test Server”

4. When the first player will connect to the BF2 server, this will ask to

the webservice for the stored sensor deployment (previously set by the

commander interface).

A.2.1 Using the Commander’s Interface

When first executing the commander’s interface you will be prompted to input

the URL of the webservice. If it is in the same machine where you are running

the Commander’s Interface, then you will have only to write “local”, as you

can see in Figure A.1.

Figure A.1: Locating webservice.

Then you will see a list of commands with a little description of what they will

do. The most important between these commands is “new”, which actually

A.2 Using the system 54

allows the commander to set the parameters such as sensors and zones and

then to send this parameters to the webservice that will solve the problem and

will store the solution. Let’s analyze each step of the “new” command:

1. You can see in Figure A.2, that the deployment will be done on the map

“PlainMap” and it says also which is the extension of the map. It asks

to insert the side of zone that you want to use.

Figure A.2: Inserting zone side.

2. Once you inserted the side it will write, as in Figure A.3, that the system

will use a different number since the system will actually solve a simplified

version of the problem that you are setting up.

3. Now it asks you how many zones you want to select, as shown in Figure

A.4 and it goes through the details of each zone that you will select, like

in Figure A.5.

4. Then it asks how many sensors are available and it lets you define all the

parameters for each sensor, as shown in Figure A.6.

A.2 Using the system 55

Figure A.3: The side used by the system.

5. Finally it sends the parameters to the webservice and it waits for the

solution, that will be in the format shown in Figure A.7.

Finally the players can now connect to the Battlefield 2 “Plan And Play

Test Server” and there will have invisible sensors deployed inside the map.

The player knows when he is accessing or exiting a certain sensor area since

on the screen of the player inside the game it will appear a message, as shown

in Figure A.8.

A.2 Using the system 56

Figure A.4: Selecting zones.

Figure A.5: Creating zones.

A.2 Using the system 57

Figure A.6: Creating Sensors.

Figure A.7: Solution sent by the webservice.

A.2 Using the system 58

Figure A.8: The message that appears entering a sensor area in BF2.

Appendix B

Maintenance Manual

This manual should be helpful to people who want to install the program,

modify the program, extend the program, or be aware of which are the known

bugs. In this document we give also a brief description of each of the source

files.

B.1 Installation Instructions

The system is composed by three main component, that are actually three pice

of software, and each one could be considered as an independent application.

Let’s analyze the folder structure in the CD that contains the software and

the source code:

• Software - which contains everything you have to install to run the

system

• src - which contains the source code

The folder Software contains three directories, which reflect the system archi-

tecture:

• CommanderInterface - which contains the Interface for the commander

• WebService - which contains the platform where you have to insert the

webservice, and the webservice itself

59

B.1 Installation Instructions 60

• Battlefield 2 Mod - which contains the plug-in developed for BF2 and

other needed game patches

Each of these folders contains a README.TXT file that explains how to

install each component. The Commander’s interface can be installed on every

OS since it is written in java and it is a jar file. The webservice is also written

in java so it could be installed on every OS, but the installer for Apache

tomcat included in the CD is only for WindowsXP, so if you want to install

the webservice in a OS that is not WindowsXP you will have to download

the proper version of Apache Tomcat. The BF2 ”mod” (i.e. modified) game

server is exclusively compiled for WindowsXP, so it has to be installed in a

WindowsXP environment.

To check if the webservice is well installed you could start the Apache

Tomcat service, and then you could open a browser and write the following

URL:

”http://localhost:8080/axis” and then click on the link ”List” and verify

that ”DeploySensorsService” is in the list.

Note that it is better to install all the three components on the same ma-

chine since this is the default configuration. You can also decide to install the

Commander Interface in a different PC and leave the webservice and the BF2

mod game server on another machine; in this case you will have only to enter

the proper URL of the webservice in the commander interface when it will re-

quire the address of the webservice. You could also decide to install all the three

components on three different machines, but to do this you will have to change

the code inside the file ”Battlefield2/mods/PlanAndPlay/scoringCommon.py”

and in particular inside the function ”OnPlayerConnect(player)” and substi-

tute the correct URL of the webservice in the line:

deploy = ServiceProxy("http://localhost:8080/axis/services

/DeploySensorsService?wsdl")

And finally you just need to save the file and to restart the game server.

B.2 System Execution 61

B.2 System Execution

There are three main components which require to be executed at the same

time - the webservice, the Battlefield 2 modified game server and the Com-

mander’s Interface.

The webservice can be executed by simply starting the Apache tomcat

service, that under WindowsXP can be done by selecting ”Start→Configure

Tomcat” and then by pushing the ”Start” button. This will automatically

start also the Axis Platform that is located inside Apache Tomcat (after a

proper installation of the system), and so it will also start the webservice

called ”DeploySensorsService”.

The Battlefield 2 mod game server can be executed by browsing to the

folder ”Battlefield2/ServerConfig” and then executing the file ”bf2server.exe”.

Note that before executing the server, it has to be configured with the cor-

rect IP, as specified in the README file inside the installation folder ”Soft-

ware/Battlefield 2 Mod”.

The Commander Interface can be simply executed by browsing into its

folder and then by clicking on the file ”ComInterface.bat” if you are in a

WindowsXP environment. If you are not under WindowsXP you have to open

a command prompt, browse to the folder ”CommanderInterface” and then

type:

java -jar ComInterface.jar

Finally all the BF2 players that wants to use this infrastructure can start

their game client modified with the Mod that is supposed to be correctly in-

stalled in their machine, as specified in the README file in the folder ”Soft-

ware/Battlefield 2 Mod”. To start the game mod installed in a client machine

you just need to browse to the folder of the game ”Battlefield2” and then click

on ”RunBF2Client Debug.bat” or on ”RunBF2Client Release.bat”, depending

if you want to run the game in debug1 or in release2. Note that before allowing

1that means in a window at a lower resolution, with the possibility to see debug/error
messages

2that means at higher resolution on full screen

B.3 Hardware and Software dependencies 62

the first player to connect to the BF2 server you should be sure to have stored

the deployment of the sensors through the Commander Interface.

So, just to understand better the last sentence, let’s see which is the typical

sequence of operations in such a system:

1. Start the webservice, the BF2 mod server and the commander interface.

2. Use the commander interface to create sensors and select zones and then

wait for the answer of the webservice, that will solve the problem (if

there is a solution). At the same time, the WebService will store the

sensor deployment into a static variable.

3. The players can now start their client of the game with the ”Mod” in-

stalled and then connect to the server ”PlanAndPlay Test Server” 3.

4. When the first player will connect to the BF2 server, this will ask to

the webservice for the stored sensor deployment (previously set by the

commander interface).

B.3 Hardware and Software dependencies

This section summarizes the hardware and software dependencies of the entire

system.

B.3.1 Hardware dependencies

There are no particular hardware dependencies, except for Battlefield 2 on the

client side. Indeed it is required a graphic card that has to be in the list of

the graphic cards which are compatible with the game, this list is in the game

requirements. Obviously also all the other requirements of the official game

have to be respected.

3You will have noticed that somewhere we use the name ”PlanAndPlay”, this is because
the ”SensorDeployMod” developed for BF2 has adapted and expanded the code of the Mod
developed by Daniele Masato in the project ”Plan And Play”.

B.4 Space and Memory requirements 63

Instead for the commander interface, the webservice and the BF2 server

there are no particular hardware requirements.

B.3.2 Software dependencies

Java 1.6 Since the commander interface and the webservice are written in

java they require the Java VM installed on the machines in which they

will run. This is not included inside the CD, but you can download it

from http://java.sun.com.

Apache Tomcat 6.0.2 This is an application server that allows application

written in Java to be executed on the server by a client. This software

is included in the CD.

Axis 1.4 This is a platform for developing and deploying webservices written

in Java. It is itself a web application that has to be installed inside

Tomcat. Also this software is included in the CD

Battlefield 2 and Patches The original Battlefield 2 game is for obvious

reasons not included in the Installation CD. But the other patches that

you will have to install are all attached.

choco-1.2.03 This is a Java library that is used by the webservice to solve

the problem of deploying the sensors inside the zones in an optimal way.

This type of solver is called a CSP4 solver, and so ”choco” is a library to

solve CSP’s. This library is in included in the installation CD.

B.4 Space and Memory requirements

Installing the Battlefield 2 server or client will require 2.3 GB of hard disk

space, and this is the same also for the patches. Anyway if you will install

the server, even if during the installation process they say that it is required

4Constraint Satisfaction Problem

B.5 Source File Description 64

to have 2.3 GB of free space, at the end of the day the space occupied by the

server will be only 530 MB, already including the patches.

With regards to memory requirements, it is not recommended to run the

Battlefield 2 server and the client on the same machine since if there is not

enough memory the performances of the game could be compromised. Another

important thing is that if the problem that the webservice has to solve is very

hard (i.e. if there is a high number of zones and of sensors with different

capabilities), then the webservice could start to use a lot of memory space,

but also of CPU percentage work, to solve the problem.

B.5 Source File Description

As we stated previously, there are three main components and the source

code of them is grouped inside the folder src inside the installation CD. The

directory src contains three subdirectories that reflect the system architecture.

• Webservice - which contains the Java source code of the developed web-

service

• CommanderInterface - which contains the Java source code of the In-

terface for the commander

• Battlefield 2 Mod - which contains the Python source code of the BF2

mod

B.5.1 Webservice source description

The Webservice is composed by one package ”deploySensorsService” which

contains a file ”MyService.java” which implements the webservice, and a sub-

package ”deploySensorsService.solver” which contains all the classes that im-

plement the solver of the problem to deploy sensors in the selected zones in an

optimal way.

B.5 Source File Description 65

You will note that inside the folder ”src/webservice” there are also other

folders and installation files that need to be installed before modifying the web-

service, since they are the platform that allows the webservice to work. Inside

the folder ”src/ConfigWebService” there are two files called ”deploy.wsdd”

and ”undeploy.wsdd”, the first is the most important since you will have to

use it to deploy the webservice inside the Axis platform (as it is well explained

in the README file inside that folder), the second can be used in the case

that you have to undeploy the webservice.

• Let’s consider the package ”deploySensorsService”:

MyService.java This class implements the webservice: the method

”computeDeployment” performs the deployment of the sensors in-

side the zones, the other methods are used to return to the client

the actual sensor deployment.

• Let’s consider the subpackage ”deploySensorsService.solver”, where the

class that actually solve the problem is ”DeploySensors.java” which uses

”ZoneDeploy.java” as an auxiliary class. The other classes are data struc-

tures and auxiliary methods used by these two main classes:

DeploySensors.java This class performs the Sensor Assignment and

then the Sensor Deployment of the sensors usign the class ”ZoneDe-

ploy”. This reflects the actual model that divides the main problem

into two subproblems: the Sensor Assignment and then the Sensor

Deployment inside each zone of the sensors assigned to that zone.

ZoneDeploy.java This class solve the Sensor Deployment problem for

each zone considering only the sensors assigned to the zone.

Sensor.java This is a data structure that represents the sensor and its

properties.

CoveredArea.java This is a data structure that represents the zone

selected by the commander and the information that is required

from it.

B.5 Source File Description 66

SubArea.java This class represents a subzone created by division of a

zone, this class is used in the algorithm that implements the Sensor

Deployment problem solver.

MyList.java This class implements a list using an hashtable and it is

used as a utility class by the others.

PairInt.java This class implements an object composed by a pair of

integers

Utilities.java This class contains some utility function used by the

classes ”DeploySensors” and ”ZoneDeploy”.

B.5.2 Commander Interface source description

The commander interface is composed by one package ”deploySensorsClient”

which contains a file ”MyClient.java” and a subpackage ”deploySensorsClient.structures”.

The first is the main class of the application and it implements the command-

line interface, the second contains all the data structures used by the interface

to perform its tasks (i.e. to send the request to the webservice).

• Let’s consider the package ”deploySensorsClient”:

MyClient.java This class implements the Commander’s interface: it

asks to the webservice for the solution of the problem whose pa-

rameters are set by the commander. This class uses the classes in

”deploySensorClient.structures” to set the input parameters (sen-

sors and zones) of the method ”computeDeployment” of the web-

service. It uses Axis libraries to communicate with the webservice.

• Let’s consider the subpackage ”deploySensorsClient.structures”, where

there are the data structures used by the commander interface to set the

parameters of the problem. This classes are the same data structures

used by the Webservice solver:

Sensor.java This is a data structure that represents the sensor and its

properties.

B.5 Source File Description 67

CoveredArea.java This is a data structure that represents the zone

selected by the commander and the information that is required

from it.

SubArea.java This class represents a subzone created by division of a

zone.

MyList.java This class implements a list using an hashtable and it is

used as a utility class by the others.

B.5.3 Battlefield 2 Mod source description

Battlefield 2 allows to develop your own plug-ins for the server, this plug-ins

are called ”mod” and they are written in Python and inserted into the folder

”mods/[YourModName]”. Each ”mod” has to respect a proper structure, so

it will have to include certain folders and files; in this structure you can insert

your own Python code inside the folder ”mods/[YourModName]/Python/game”

that has to have a fixed structure too, but you can add also your own Python

modules.

So the source of Battlefield 2 Mod is contained in the folder ”src/Battlefield

2 Mod/game” inside the installation CD and it has a fixed structure. The real

core of the Mod is implemented inside the file ”scoringCommon.py” that is en-

tirely written by me, Diego Pizzocaro. We used also other utility modules that

are ”Utils.py” and ”Defines.py” which where taken from the Honors Project

of Daniele Masato, whose name is PlanAndPlay5.

• Let’s consider the folder ”game” it contains a folder ”gamemodes” and

other files of which the most important is ”scoringCommon.py”:

scoringCommon.py This file is the core of the mod: It asks to the

webservice for the current sensor deployment (that had been set

5Indeed we took the same structure of the mod ”PlanAndPlay” developed by Daniele
Masato and, after having removed some part of the mod that we would not have used, we
modified the file ”scoringCommon.py”.

B.6 Compiling and Updating the system 68

before by the commander) and then it creates Sensitive Area inside

the map simulating the behaviour of real sensors.

Utils.py it contains some of the utility methods used inside the ”mod”

of BF2. This file is more or less the same of the one written by

Daniele Masato, except that we deleted some functions that were

useless for out own ”mod”.

Defines.py it contains all the constants used inside the ”mod” of BF2.

This file is exactly the same of the one written by Daniele Masato

except that we only use certain constants and not all of them.

B.6 Compiling and Updating the system

Let’s explain how to compile/update the different components of the system.

B.6.1 Compiling the Webservice

To begin with, you could use an environment such as eclipse to edit the source

code of the webservice. In this case you could create a new Java project, then

import all the source files respecting the structure in packages (and so you

have to create the packages inside eclipse), and finally you have to add to the

project the needed libraries. For the last step you have to consider that to

compile the project you have to add all the Jar files of Axis (contained in the

folder where you installed Axis, inside the directory ”axis-1 4/lib”) an also the

Jar file ”choco-1.2.03”.

Once you compiled the webservice you have to copy the compiled code inside

Axis and then deploy the service. So the steps are:

1. Copy the folder ”deploySensorsService” (you can leave into it the source

code too) inside the folder where you installed Tomcat and in particu-

lar inside the directory ”Tomcat 6.0/webapps/axis/WEB-INF/classes”.

B.6 Compiling and Updating the system 69

You will have to delete the old folder ”deploySensorsService” contained

inside this directory and then you will have to paste the new one.

2. Start the Apache Tomcat service

3. Open a command prompt and browse to the folder of the project where

you have also the files ”deploy.wsdd” and ”undeploy.wsdd”. Now you

have to undeploy the service with this command:

java -cp %CLASSPATH% org.apache.axis.client.AdminClient undeploy.wsdd

Where it is supposed that you set properly the variable ”%CLASS-

PATH%” as explained in the README.TXT file inside the folder ”src/WebService”.

4. Always using the command prompt, you have now to deploy the service.

And you can do this by writing the following command:

java -cp %CLASSPATH% org.apache.axis.client.AdminClient deploy.wsdd

5. Now restart the Apache Tomcat service and the new modified service

should work.

B.6.2 Compiling the Commander’s Interface

Also in this case you could use Eclipse to edit the source code and compile it.

Like previously explained you have to create a new project in Eclipse respecting

the same package structure, and then to include the necessary libraries. In this

case you have only to include the Jar file ”choco-1.2.03”. Once you compiled

it you can also create a Jar File alway using Eclipse (or Netbeans if you prefer

it).

B.7 Known Bugs 70

B.6.3 Updating the Battlefield 2 Mod

As you probably know, Python does not need to be compiled, it is usually an

interpreted language and in this case the server will automatically execute the

Python source code. So once you modified the Python source code contained

in the folder ”src/Battlefield 2 Mod/game” inside the installation CD, you just

need to browse inside the directory where the Mod is actually installed (i.e.

”Battlefield 2/mods/PlanAndPlay/python”), then delete the folder ”game”

and replace it with the new modified one.

B.7 Known Bugs

Even if we tested the system quite a lot, it is likely that there are bugs in the

system, which cannot be resolved because of the limited time assigned to this

project. Here we document some known bugs in our system.

B.7.1 Battlefield 2 Mod Bug

The BF2 server asks to the webservice for the stored deployment only when the

first player connects to the server. In the meanwhile the commander could use

the commander’s interface to set another sensor deployment, but this deploy-

ment will not be used until all the players disconnect from the server. When

the last remaining player disconnect from the server, it will reboot itself6, so

that all the sensors that were created inside the map are deleted. Now when

a player connects again to the server, if it is the first who is going to connect,

the server will ask again for the stored sensor deployment, and finally it will

deploy the sensors inside the map.

The problem is located in the slice of time that the server spend to reboot

itself. During this reboot time, a player can still connect to the server, but it

6In this case with the term ”reboot” we mean the operations that the server carries on
to reload all the Python modules.

B.7 Known Bugs 71

will not have any deployment available, so in the map there will not be any

sensor. In the future this bug could be resolved by not allowing players to

connect to the server while it is rebooting.

B.7.2 Webservice ”Solver” Bug

The solver inside the webservice cannot always understand when a problem

(whose parameters are set by the commander) has no solution. When the

problem is quite ”easy” it manages to answer that there is no solution, but

when there are too many variables it could go on forever trying to find a

solution. In the future this could be resolved by using a time limit, so that

after this fixed time the solver will stop to look for a solution and will answer

that there is no available solution.

	Abstract
	Declaration
	Preface
	Introduction and Motivations
	Context: the ITA project
	Objective
	Motivations
	The virtual environment: ``Battlefield 2"

	Related Work
	Previous works on sensors
	 The project ``Plan and Play"
	Constraint Satisfaction Problem and Constraint Programming
	Definitions: CSP and CP
	The eight queens problem
	The Knapsack Problem
	The Multiple Knapsack Problem

	Concept and Design
	System Architecture
	Modeling the Sensor Deployment as a CSP
	Reformulation using the multiple knapsack problem
	Sensor Assignment
	Sensor Deployment

	Modeling considerations
	Heuristic
	Flexibilities of the ``Sensor Assignment" model

	Implementation and Testing
	Implementation
	Technologies Used
	Webservice Implementation
	Commander's Interface Implementation
	``Battlefield 2 Mod" Implementation

	Testing and Evaluation

	Conclusion and Future works
	Conclusion
	Future works
	Improving solver: Relaxed Constraints
	Objective function improvement
	Dealing with multiple mission
	Integration with ``Plan And Play"

	Bibliography
	User Manual
	Starting the system
	Using the system
	Using the Commander's Interface

	Maintenance Manual
	Installation Instructions
	System Execution
	Hardware and Software dependencies
	Hardware dependencies
	Software dependencies

	Space and Memory requirements
	Source File Description
	Webservice source description
	Commander Interface source description
	Battlefield 2 Mod source description

	Compiling and Updating the system
	Compiling the Webservice
	Compiling the Commander's Interface
	Updating the Battlefield 2 Mod

	Known Bugs
	Battlefield 2 Mod Bug
	Webservice "Solver" Bug

