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Distributed Task Assignment for Mobile Agents

Brandon J. Moore and Kevin M. Passino

Abstract—This note demonstrates how the distributed auction algorithm
can be modified to assign mobile agents to spatially distributed tasks despite
communication delays and the fact that agent movement may cause the
benefit associated with each possible agent-task assignment to vary during
the execution of the algorithm. Bounds on the convergence time of the algo-
rithm and the sub-optimality of the resulting solution are provided. Monte
Carlo simulations are provided to show the conditions under which the
modified distributed auction can outperform centralized calculation.
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I. INTRODUCTION

This note addresses a cooperative control problem in which a group
of mobile agents must assign themselves to a group of spatially dis-
tributed tasks on a one-to-one basis while attempting to maximize a
certain collective benefit function. The value of this collective benefit
function is taken to be the sum of the individual benefits associated
with each agent-task pair in the final assignment, where each of these
values may depend on the particular agent-task pairing and the time
that it takes that agent to travel to and complete that task. If inter-agent
communication is very fast, then this problem takes the form of the
assignment problem from the field of combinatorial optimization (with
agents as people and tasks as objects) and many algorithms of polyno-
mial complexity exist to solve it [1]-[3]. However, if inter-agent com-
munication is subject to significant delays then it will take a nontrivial
amount of time for the agent group to come up with a final assignment
because either the agents will have to transmit their benefit information
(i.e., the value each task has to them and the time it will take to com-
plete it) to a group leader in order to solve the problem in a centralized
fashion, or they can solve it in a decentralized manner by some message
passing algorithm. Because the collective benefit function depends on
the time each task is completed, the time interval taken to solve the as-
signment problem in this situation will have a detrimental impact on
the benefit received from the final assignment. In addition, if the mo-
bile agents cannot remain stationary (e.g., if they are autonomous air
vehicles) then the individual agents may travel away from what is to
be their assigned task during this interval, which can further delay the
completion of that task and degrade the benefit received.

Our choices in dealing with this problem are either to accept the loss
of benefit imposed by the delay in reaching a final assignment or to try
to deal with the fact that the individual agent-task benefits may vary
over time in certain ways by developing an algorithm that attempts to
minimize the loss of benefit that may occur. In this note we modify
the distributed auction algorithm [1] to do this by guiding the agents’
motion during the run-time of the algorithm. In addition to analyzing
the conditions under which this modified algorithm is still guaranteed
to converge to a solution in finite time, we explore both its worse-case
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bound on the lost benefit and the practical results from simulations for
some autonomous air vehicle example scenarios (and compare these
values to those achieved by a centralized algorithm under the same
circumstances).

There are a number of cooperative control problems that involve
variants of the assignment problem. In [4], for instance, the distributed
sequential shortest augmenting path algorithm is modified to deal with
the dynamic arrival of additional tasks, while in [5], multiple assign-
ment problems with evolving subsets of the agents and tasks are iter-
atively solved to provide a heuristic method of dealing with coupled
tasks (i.e., tasks which must be completed in a specific order).

II. MODIFIED ALGORITHM

A. Benefit Functions

Let m be the number of mobile agents and let » (n > m) be the
number of tasks. In our scenario agents are considered to be nonre-
newable resources in that they may complete only one task (as might
be the case in a “kamikaze” type attack by an autonomous munition).
To complete a task an agent must “arrive” at that task, where arrival can
be either more or less restrictive than mere co-location. For example,
an agent may have to arrive at the task at a specific angle or it may
merely have to come within a certain distance of the task’s location.
Upon completion of a task an agent will receive a benefit that depends
on that agent-task pair (because the agents’ ability to complete a par-
ticular task may vary) and also on the time it takes to complete the task.

Let s; () be a vector describing the state of agent ¢ at time ¢ (e.g.,
location, heading, speed, etc.) and we assume that the trajectory
s;(t),t > 0 satisfies some sort of vehicle dynamics described in
the form of differential equations and associated constraints. Let the
constant d; be a vector associated with task j which represents the
pertinent information necessary to describe the conditions that an agent
must satisfy in order to complete that task. Unless stated otherwise,
we will assume that if agent ¢ can ever reach task j in a finite length of
time, then it can always do so. Under this assumption, for each agent
¢ that can reach task j, there exists a time optimal trajectory from any
point s;(t) to that task which we denote by ¢[s;(t),d;] and its travel
time by the metric |o[s;(t), d;]|. We now define the benefit that agent
i could receive by completing task j at time ¢ + |o[s;(t), d;]| as

a;ij(t) = Cij — B(t + |o[s:(1), d;]]) (1)

where C;; is a constant particular to the pairing (4, j), B is constant
across all such pairs and defines the relative importance of completing
tasks quickly, and the quantity 4 |o[s;(t), d;]| is the time of arrival of
agent ¢ if it follows its optimal trajectory to task j from time ¢ onward.
Since the tasks are stationary and because |o[s;(¢),d,]| is a optimal
trajectory, its value must satisfy

jolsi(t + A1), ]| 2 [olsi (). ]| - At
VE> 0 YO< AL [olsi(t).d)]] (@)

with equality if and only if agent ¢ fracks task j from ¢ to t + At (i.e.,
follows the optimal trajectory to that task). For this work we will make
the assumption that for any trajectory agent ¢ might follow from time ¢
to time ¢ + At, the increase in the travel time of the optimal trajectory
to a given task j can be bounded from above by

lo[s:(t + At), d;]| < |o[si(t), d;]HW+V At Vi, VAt >0 (3)
where the constants W > 0 and V' > —1 are identical for every
agent ¢ and every task j. An inequality of this form should be satis-
fied for many situations with realistic vehicle dynamics (i.e., because
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agents can usually can move away from a task at the same speed they
can move towards it, V' will typically be equal to one and W will
be related to restrictions imposed by non-holonomic constraints). For
example, the constant speed Dubins Car model [6] frequently used
to represent air vehicles satisfies this assumption with ¥ = 1 and
W = (2 + 37)/wmax, Where wmax is the maximum turning rate in
radians per second.

With the benefit function defined in (1), using the inequalities in (2)
and (3) we can place the following bounds on a;;:

aij(t+ A > ai;(H—BW +(V+DAHVEAL >0 ()
aij(t+ At) <aij(t) Vt>0, V0 <At < |o[si(t),d;]] (5)

where equality is reached in (5) if and only if agent ¢ tracks task j from
time ¢ to time ¢t 4+ Atf. The qualification in (5) stems from the fact that
once an agent reaches a task, the benefit will start to decrease again if it
does not complete that task. If the agent continues to track the task and
is able to remain at the task location, «;;(¢) will decrease at a rate of
BAt. If it cannot remain stationary, the agent must follow a loop back
to the task, and so a;;(¢) will drop by the length of that loop and then
remain steady until the next time the agent reaches the task.

At this point let us denote ¢, as the time a full assignment is reached
and 7‘; as the time agent ¢ completes its task. Since each agent will track
its assigned task from ¢, until t%, it is clear from (5) that the collective
benefit of the assignment at £, is the same as what the agents will re-
ceive when they complete their tasks. Also, during the time the agents
take to calculate and communicate in order to reach their eventual as-
signment, the collective benefit of that assignment is degrading (except
for the unlikely case where every agent somehow happens to always
track the task to which they will eventually be assigned). Given that
fact, we are motivated to develop an algorithm that controls the motion
of the agents during the time interval [0, t,] in a manner that seeks to
reduce the degradation of the collective benefit. The modification of the
distributed auction algorithm [1] proposed in the next section attempts
to do just this.

B. Motion Control Algorithm

The distributed auction algorithm [1] involves persons placing bids
on objects based on their current price and potential benefit (with the
highest bidder for an object at a given stage temporarily assigned to
that object). As the prices of the objects are increased by the bidding
they become less and less attractive to the persons, until eventually each
person is assigned to an object and the bidding stops. Unfortunately, we
do not have the space to go into a detailed description of this algorithm
here and must refer the reader to [1]—[3] for a more complete treatment.
We will discuss our modifications to this algorithm in terms of the the
bidding and assignment phases.

We first modify the bidding phase of [1] by using the time varying
benefits of (1) to give us the following calculation:

bij; :pji(t)—l—'ui —w; +e=ai,(t) —w;+e (6)

where A(i) is the set of tasks agent i is capable of completing, p’(t)
is agent ¢’s perception of the price of task j, v; and w; are the values
(benefit minus price) of the best task (j;) and next best task for that
agent, and b;;, is the final bid of agent ¢ for task j; which includes a
mandatory positive bid increment € (where € is a uniform constant for
all agents). Our second modification of the bidding phase is to link the
agents’ motion to their bidding. Specifically, an agent will always track
the optimal trajectory to the task associated with their last bid. This kind
of motion control is considered “individually optimistic” in that each
agent assumes it has the winning bid for its preferred task. In many
situations this sort of behavior will result in the agents moving closer
to the tasks to which they eventually be assigned during the progress
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of the auction, thus reducing the loss of benefit the delay in assignment
causes.

The assignment phase of the auction algorithm requires that one and
only one agent be responsible for handling the bids for each target (i.e.,
broadcasting information about which agent won the last bid for that
task and its new price). This can be accomplished by either giving a
single “leader” agent this auctioneer duty for every task or by parti-
tioning these tasks among two or more agents. Actually, since it is only
necessary that just one agent have auctioneer duty for a task at a time,
this duty can be passed from one agent to another so long as it is guar-
anteed that no two agents will ever have it simultaneously. For instance,
the approach we have taken in our simulations is for the agent with auc-
tioneer duty for a task to pass that duty to the agent that won the last
bid for that task.

Our last modification of the the distributed auction algorithm is to re-
quire partial asynchronicity [2] (as opposed to the totally asynchronous
setting of [1]). Since the prices of the tasks are the main piece of in-
formation transferred between the agents (and since these values are
non-decreasing) this means that there must exist a finite number D such
that for any agent ¢ and any task j,

p;(t— D) < pi(t) < pi(t) ©)

with the implication that if p;(¢) = p;(¢ — D), then each agent is
guaranteed to have perfect knowledge of task j’s price.

III. RESULTS

Algorithm Termination and Assignment Optimality

In this section, we will first show that the modified auction main-
tains an arbitrary e—complimentary slackness (e—~CS) condition and
then prove that the algorithm terminates in finite time when the
bidding increment meets the stated criteria. All the proofs presented
in this section are based on those found in [1] and [3] but have been
augmented to handle the time-varying benefit function in (1).

Lemma 1: For all ¢ > 0, the motion control algorithm maintains an
e—CS condition for the partial assignment S (i.e., a collection of pairs
(i, ) where agent ¢ has the highest accepted bid for task j).

Proof: If S satisfies e~CS at time ¢, then by definition (see [3])
we have

aij(t) = pi(t) > kré{ggg){dz‘k(f) —pe()}—eV(j)eSsS (8

so for any At such that no reassignments are made between time * and
t 4+ At, for every (7, j) € S we also have

max {a;x (t + At) — pr(t + At)} — ¢
ke A(s)

< max {aie(t) —pr(t)} — ¢ ©)
kEA()
<aij(t) — p;(t)

=a;;(t+ At) —p;(t+ At)

(10)
an

because of inequalities (5), (7), and (8) and since agent ¢ tracks task j.
Therefore, e—CS still holds in between reassignments. Now consider a
bid made at time ¢ by agent i for task j at a bid price of b;;. Task j must
satisfy

aij(t) = pi(t) > klgggg){m(t) —p()} — e Y (i,)) € Ai) (12)

and b;;, is calculated to satisfy the above equation if pj(z‘) = by, If
this bid is accepted at time £+ At then because agent ¢ has been tracking
task j (and since the auctioneer for task j knows its true price), then the
logic behind (9)—(11) still holds and thus e~CS of .S is maintained after
reassignments as well as in between them and so the lemma holds. [
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Theorem 1: When information delays are bounded by a constant
D, the motion control algorithm terminates at some #, < oo provided
there exists at least one feasible full assignment, ¢ > 2D B(m—1)(V +
1), and no vehicle reaches its preferred task before ¢,. The final assign-
ment has a collective benefit that is within me of the optimal assign-
ment given the configuration of the agents at time .

Proof: We assume the algorithm does not terminate in a finite
time and prove the theorem by contradiction. We do this in a manner
similar to the termination proofs for the versions of auction algorithm
that appear in [3] and [1]. To ensure that enough tasks receive bids to
create a full assignment, it was sufficient in [2] and [1] to show that the
value of each agent’s preferred task eventually fell below the benefit of
some unassigned task. We must, however, show that the value of the
agent’s preferred task falls fast enough in order to overcome the effects
of potentially decreasing benefits.

If the algorithm never terminates at least one agent is unassigned
at all times and thus some agents submit (and some tasks receive) an
infinite number of bids because an unassigned agent is guaranteed to
to receive rejection of its last bid within 2D time units. Let °° denote
the subset of agents that bid indefinitely and let .J°° denote the subset
of tasks that receive an infinite number of bids. There must exist a time
index t, such that for all ¢ > ¢, bidding is confined to I>° and .J™.

For any agent ¢ € I°°, if no task in A(7) gets reassigned for D time
units, then agent ¢ will know the true price for each task in that set. Thus
it will make a valid bid for one of those tasks (i.e., a bid that is at least
e greater the task’s current price) and this bid must be accepted with
another D time units. Thus at least one task from A(7) must receive a
successful bid every 2.D time units. Given that, examine the maximum
value agent i associates with tasks in A(i) [ J™

vit) = {aij(t) = p; ()} (13)

max
JeAG) (I

and note that after ¢, the price of the task that achieves this value
decreases by no less than the bidding increment € every 2D time units.
We know that a;;(?) cannot increase and prices do not decrease, so v;
either decreases by at least € every 2D time units or by some lesser
amount if the value of the second best task is within € of the value of
the best task. The latter can happen at most N < m — 1 times (the
number of tasks in A(i) () J°°) before the quantity a;;(t) — p;(t) for
each task j must be at least € less than the original value of of v;(t), so

t_too
v, (t) < max a;i(toe) — Ppi(tee)} — € | ———
O _max ) =it} —e ||

where || is the largest integer smaller than its argument. We proceed
by letting e = 2DB(m — 1)(V 4 1) where § > 1

v ()
€

< max Wij(tog) — pi(tes)} + € — —(t — o
> jeA(i)thoo{ i(teo) = pj(teo)} QDJ\'( )
< max  {aij(tec) —pj(tec)} + 2DB(m — 1)(V + 1)6

JEAG) () o

2DB(m — 1)(V +1)s
— t—1t
2D(m —1) ( )

< =0B(V+1)(t—te)+ max {a;(te) — pj(tec)}

JEAG) ()7

+2DB(m — 1)(V +1)8 (14)

so v;(t) bounded from above by a decreasing affine function of time
after f- . Since the prices of tasks j & .J°° are constant after ¢.., the
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value 7; agent ¢ associates with the best of those tasks is bounded by

mi(t)= max {a:;(t) = (1)}

> mjax{a,'j(to@) —B(W+ (V+1)(t—tw)) —pi(tes)}
= —B(V+1)(t—tw)

+ Ill;(LX{dij (t) — pj(tes)} — BW (15)
which is also a decreasing affine function of time after f... The rate of
decrease in (14) is less than that in (15), so some task j & .J°° must
eventually become the best value for each agent ¢ € I°° at some time
t > to. Since these tasks never receive a bid after ¢ it must be the
case that none of these tasks are in A(¢) for any agent in I°°, implying
that A(i) C J> Vi € I and ;¢ A(i) = J. After a finite
length of time, every task in .J° will be assigned to some agent from
172 Since there will still be some agent from I~ bidding, there must
be more agents in /°° than tasks in .J°, contradicting the assumption
that a feasible solution exists. The sub-optimality bound of the final
assignment follows from Lemma 1 and a theorem from [3]. O

Because the assumption that no agent reaches a task before the al-
gorithm terminates is difficult to guarantee, and because the worst case
analysis of Theorem 1 requires a very large value of € (i.e., much larger
than is needed in practicality), we also include the termination results
for more relaxed conditions. We first consider the case where the agents
will always stay within a certain distance of each task, i.e.,

0 < |ofsi(t),d;]] < X vt >0, Vi, j (16)
for some X > (. Inequality (16) implies
Cij— BX — Bt <a;;(t) < C;; — Bt vt >0Vi,j. (A7)

Theorem 2: When (17) holds for all ¢ > 0, the motion control al-
gorithm terminates for any € > () provided there exists a feasible full
assignment.

Proof: Without loss of generality, assume no tasks are completed
before a full assignment is reached. If they are handled correctly (see
the next theorem), then an early task completion simply changes the
assignment problem to another with one less agent and task. Now for
some agent i, the value v;(t) it associates with its preferred task from
the current partial assignment S(¢) can be bounded from above by

vi(t)= max {a;;(t) —p;(t)} < =Bt — min p;(t) + max Ci;
JeS(t) JES(D) J

whereas the value 7, (¢) that agent ¢ associates with an arbitrary task
not in S(¢) can be bounded from below by

vi(t) > =Bt + min C;; — BX.
j

Since the price term min je s(¢) p;(t) — o0 as t — oo (as established
in Theorem 1), so long as a full assignment is not reached, v; () will
eventually fall below 7;(t) and some task will be added to the assign-
ment. This process must repeat until the assignment is full, causing the
algorithm to terminate in finite time. O

Theorem 3: Consider the configuration of agents and tasks at a spe-
cific instant in time. If: 1) The vectors describing the the agents and
the vectors describing the tasks all belong to the same state space, 2)
the optimal trajectory distance function satisfies the triangle inequality
and |o[z, z]| = 0, and 3) there exists an agent 7* and a task j* that
are collocated (i.e., s;x = d;«), then the minimum possible total travel
time of a one-to-one assignment between agents and tasks is achieved
by an assignment containing the pair (¢*, ;). That is to say that let-
ting agents complete tasks prior to algorithm termination under these
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conditions cannot decrease the collective benefit when C;; = 0 for all
agent-task pairs.

Proof: Let A be the minimum possible total travel time for a con-
figuration of agents and tasks where there exists agent ¢ and task j*
such that s;+ = d;«. Let S be an assignment that achieves that min-
imum. Likewise, let A* be the minimum possible total travel time for
the same configuration and S™ an assignment that achieves it under the
constraint that (i*,7*) € S*. Since S is a less restricted assignment
than S*, it follows that A < A*.

Assume (i*,j*) € S (the theorem is trivial otherwise). Let i’ be
the agent assigned to j* and j' the task assigned to i* under S. For
convenience, let S = {(i*, "), (i’,j*)}. Analyzing the value of A

we get
A= 3 ofsidjl
(i,j)GS

=lolsidjell +lolsi il + 32 lolsi,d)]
(i,j)€sS—=s’

=lolsidpell + ol dpll + 3 lolsid]]
(i.5)es—5"

>lofsidpll+ 3 lolsid]]

(i.5)es—5"

=lolsidpell + lolsindll + S lolsid))

(i,5)ES—S"

> A",

Thus A < A" < A and this implies that A* = A, proving that the
constrained assignment achieves the optimal value. O

Note that when C;; varies widely among agent-task pairs, the early
completion of a tasks has the potential to be much more detrimental to
the maximum possible benefit. Also, if agents are allowed to complete
tasks early, it is important that no other agents waste their resources on
the same task and so some mechanism must be put into place to prevent
this.

A. Optimality Bounds

In this section, we derive worst case bounds for the collective benefit
received from the assignment reached at time ¢, for both the motion
control algorithm and the original auction algorithm (where benefits
are fixed at their initial values and agents wait for the final assignment
before tracking their targets). Due to space constraints, we must omit
some of the steps in these calculations (contact the authors for details).
The proof of Theorem 1 gives us the tools we need to calculate £, for
the motion control algorithm, with the final result

max a;;(0) — min a;;(0) + BW + ¢
c—2DB(m—1)(V +1)

te <2D(m — 1) (18)

For the original auction algorithm we can adapt the results of [7] and

[8] to get

to < 2D(m — 1) <max a:5(0) — min a;;(0) n 1> .

€

19)

For the original auction algorithm a lower bound on the collective ben-
efit of the final assignment follows directly from (19) and € — CS the-
orem of [3] as

Za,‘ji (ta) > A" —me—mB(t.+Y). (20)
=1

Where A™ is the maximum achievable benefit and Y > 0 is the max-
imum amount of time that can be added to an agents travel time to a
task (i.e., Y > 0 if the agents cannot remain stationary while waiting
for the algorithm to terminate). For the motion control algorithm we
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use a different methodology to generate a lower bound on the collec-
tive benefit that is better than (20) for large delay values.

Leti*, j* be the last agent-task pair assigned by the motion control
algorithm. Since no agent bid on j* prior to ¢., the best lower bound
on a;xj+ (t,) we have is a;+ ;+ (0) — BW — B(V 4+ 1)t,. We note two
facts concerning the prices at t,,. First, the price of j~ is still equal to
zero. Second, since we are guaranteed to have a price increase of at
least € every 2D time units, the sum of the prices of the other assigned
tasks must satisfy 327, .. pj,(ta) > € [ta/2D] > €to /2D (where
Js is the final task assignment of agent 7 and [-] is the smallest integer
greater than its argument).

Now consider the benefit terms a;j, (£, ). Since e-CS is maintained,
we know that for each agent ¢, the following holds:

i (1a) = 3, (Fa) = mas {ai(1a) = pu(ta)} = ¢
>ai(ta) — €

>a;;+(0)=BW—B(V + Dt, —e. (21)

The collective benefit from agents other than i* is

m m m

Yo aita)= Y @i (t)—pi(t) 4+ Y pi(ta).

i=1,i#i* i=1,ii* i=1,ii*
(22)

Combining (22), (21), the bound on @« ;+(;,), and our observations
about prices (and letting ¢ = min; ; a;;(0) and @ = max;,j a;;(0))
after some rearrangement and bounding, we get

Zam (ta) > A" —m(@—a) — (m —1)e— mBW
=1

- ta
— B(V + Dta = BV +1)(m — Dt + €57
(23)
=A"-m(@—-a)— (m—1)e—mBW
—[1— (8= 1)(m — DIB(V + 1), (24)

where (24) is (23) with e = §2DB(V + 1)(m — 1).If § is at least
14 1/(m — 1) (which for typical m is only slightly larger than strict
lower bound of 1 necessary to meet the conditions of Theorem 1) then
the collective benefit of the motion control algorithm is bounded from
below by the first four terms of (24) which do not depend on the termi-
nation time. With this value of 6, numerical evaluation shows that (20)
decreases at a faster rate with respect to the delay value D than does
(24) (although the magnitude of this effect depends significantly on the
other system parameters). Thus, the worst-case performace of the mo-
tion control algorithm will be better than that of the original auction
algorithm for large enough information delays.

IV. SIMULATIONS

In this section, we present results from some simulations comparing
the motion control algorithm to a centralized assignment algorithm.
Omitted from this note (but available upon request from the authors)
are several other interesting simulation results. Those other simulations
demonstrate the superiority of the motion control algorithm over the
distributed auction as the magnitude of delays are increased and also
emphasize the benefit of letting agents complete tasks early in total-
travel-time minimization problems. In addition, simulations demon-
strate the importance of optimizing the value of the bidding increment.
In other words, for a specific problem scenario and set of system pa-
rameters the expected collective benefit is maximized when € is not too
small (which results in a large termination time but does provide opti-
mization with respect to the agents positions at that time) nor too big
(which causes the algorithm to terminate quickly but at a poor solu-
tion).
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When information delays are caused primarily by transmission delays
(e.g., the physical delay of radio waves or the time required to create
and process message headers) then it is probably more efficient to solve
our agent-task assignment problem centrally (by having a single leader
agent collect all the agents’ benefit information, solve the assignment
problem by whatever algorithm desired, and then communicate the
final assignments) rather than in a distributed fashion (where many
messages must be sent back and forth and the transmission delay is
incurred many times). On the other hand, if delays are due to restricted
bandwidth (i.e., where the amount of information is relatively large
compared to the rate at which it can be sent), then a distributed algo-
rithm can sometimes require less information to be exchanged than a
centralized one, and hence it may reach an assignment quicker. We il-
lustrate this concept by including the results of a simulation in which
ten autonomous air vehicles (modeled as Dubins cars with a speed and
turning radius of 100 m/s and 1000 m respectively) wish to minimize
the total travel time it takes to get to the tasks (i.e., C;; = 0 for all i and
7). Agents and tasks were given random initial positions in a 20-km?
environment, which results in an assignment problem that can usually
be solved in a few iterations of the auction algorithm. We compared the
motion control algorithm to a centralized algorithm under two assump-
tions about the amount of data the lead agent would need to collect (we
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will call the centralized algorithm “fast” when less data is required and
“slow” otherwise). For one scenario with 10 available tasks and another
with 20, we varied the time in seconds 7' it took to transmit the amount
of data contained in one auction message (where the centralized algo-
rithm took either (1/4)T'm (2 4+ n) or (1/4)Tm(2 + 2n) seconds to
terminate). Fig. 1 displays the results for 10 tasks and clearly shows
that as T increases the performance of the motion control surpasses
that of the centralized algorithm. This performance gap is even more
obvious in Fig. 2 when 20 tasks are available. This is because the ad-
ditional tasks do not in general cause the motion control algorithm to
take longer (in this scenario) but do dramatically increase the amount
of information that must be collected to solve the problem centrally.

V. CONCLUSION

In this work, we have sought to address an assignment problem be-
tween mobile agents and stationary tasks where the benefits (and hence
the optimal assignment quality) have the potential to decrease during
the time used to calculate a solution. We presented a modification of
the distributed auction algorithm of [1] that controls the motion of the
agents during the algorithm’s progress in an attempt to minimize that
loss of benefit. We showed that this algorithm is guaranteed to termi-
nate in finite time at an assignment that is within a known bound of the
optimal solution under one set of assumptions, and simply guaranteed
to terminate under less restrictive conditions. Simulations have demon-
strated that our modified algorithm can be superior to a centralized ap-
proach in situations where communication is hampered by bandwidth
restrictions.

REFERENCES

[1] D. P. Bertsekas and D. A. Castafion, “Parallel synchronous and asyn-
chronous implementations of the auction algorithm,” Parallel Comput.,
vol. 17, pp. 707-732, 1991.

[2] D. P. Bertsekas and J. N. Tsitsiklis, Introduction to Linear Optimiza-
tion. Belmont, MA: Athena Scientific, 1997.

[3] D. P. Bertsekas, Network Optimization: Continuous and Discrete
Models. Belmont, MA: Athena Scientific, 1998.

[4] D. A. Castaion and C. Wu, “Distributed algorithms for dynamic reas-
sigment,” in Proc. 42nd IEEE Conf. Decision Control, Maui, HI, Dec.
2003, pp. 13-18.

[5] C. Schumacher, P. R. Chandler, and S. J. Rasmussen, “Task alloca-

tion for wide area search munitions via iterative network flow,” in

Proc. AIAA Guid., Navigation, Control Conf., Monterey, CA, 2002,

2002-4586.

L. Dubins, “On curves of minimal length with a constraint on average

curvature, and with prescribed initial and terminal position,” Amer. J.

Math, vol. 79, pp. 497-516, 1957.

[7]1 D. P. Bertsekas, Auction algorithms for network flow problems: A tu-

torial introduction Lab. Inform. Decision Syst. Mass. Inst. Technol.,

Cambridge, MA, Tech. Rep. LIDS-P-2108.

D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Compu-

tation: Numerical Methods. Belmont, MA: Athena Scientific, 1997.

[6

—

[8

—




