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Abstract: In this paper, a study on task assignment strategies for a complex real-time network 
system is presented. Firstly, two task assignment strategies are proposed to improve previous 
strategies. The proposed strategies assign tasks with meeting end-to-end real-time constraints, 
and also with optimizing system utilization through period modulation of the tasks. Consequently, 
the strategies aim at the optimizationto optimize of system performance with while still meeting 
real-time constraints. The proposed task assignment strategies are devised using the genetic 
algorithmswith heuristic real-time constraints in the generation of new populations. The 
strategies are differentiated by the optimization method of the two objectives-meeting end-to-end 
real-time constraints and optimizing system utilization: the first one has sequential genetic 
algorithm routines for the objectives, and the second one has one multiple objective genetic 
algorithm routine to find a Pareto solution. Secondly, the performances of the proposed strategies 
and a well-known existing task assignment strategy using the BnB(Branch and Bound) 
optimization are compared with one other through some simulation tests. Through the 
comparison of the simulation results, the most adequate task assignment strategies are proposed 
for someas system requirements-: the optimization of system utilization, the maximization of 
running tasktasks, and the minimization of the number of network node nodesnumber for a 
network system.  
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1. INTRODUCTION 
 
Various studies have been performed on network 

systems, since network systems enable the 
conjunction of various heterogeneous systems and 
while minimizing the cost for the conjunction 
simultaneously. These days, these kinds of studies are 
extended to the field of complex real-time systems, 
such as autonomous robots and rolling stocks. The 
complex real-time systems require functional 
completions in time as well as functional executions 
with accuracy. However, delays are inevitable in the 
network system because network nodes in the systems 
share the network as media for information exchange 
with others. Network arbitration for media access 
causes the delays. Common complex real-time 
systems require several execution flows of their 
application programs. Multi-tasking operating systems 
are usual solutions for the system requirement, and 
delays are also incurred while the application 

programs are scheduled by the operating systems on 
the nodes of the network systems. The delays by the 
operating system scheduling combined with the 
delays by the network arbitration sometimes generate 
unexpected long end-to-end delay [1]. 

For the reason mentioned above, a task assignment 
strategy that assigns application programs-tasks on 
network nodes is essential for the design of the real-
time network system to guarantee a priori that all 
deadlines will be met. In addition to the real-time 
feature, the task assignment strategy can enable the 
optimization of system utilization, and consequently 
achieve the optimization of the system performance.  

In this paper, a study on the task assignment 
strategies is presented for a complex real-time 
network system. The target system of this paper 
consists of network nodes with real-time multi-tasking 
operating systems, and the nodes guarantee the real-
time deadlines of tasks through the operating systems. 
The network protocol of the target system is the CAN 
(Controller Area Network) [2]. 

Two kinds of real-time scheduling strategies are 
needed for the target network system. The first one is 
the real-time scheduling of the operating system. 
There has been a plethora of studies in the field of 
real-time scheduling of operating systems, and most 
of them guarantee real-time scheduling by 
periodically invocating tasks [3,4]. Undoubtedly, it is 
much easier to guarantee a priori that all deadlines 
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will be met with periodically invocating tasks, rather 
than with aperiodically invocating tasks. To guarantee 
a priori that all deadlines will be met, periodical 
resource assignment was performed even for the 
aperiodically invocating tasks, as shown in [5]. Real-
time scheduling of the operating system in this paper 
is a well-known static scheduling method-the RMS 
(Rate Monotonic Scheduling) for periodically 
invocating tasks. The second one is the real-time 
scheduling for the network arbitration. There also 
have also been numerous studies in the field of the 
network message scheduling. Some good examples of 
the message scheduling were proposed in the field of 
the FieldBus. There are two categories for the 
scheduling: the first one is scheduling by a network 
master on a network system as proposed in the 
ProfiBus and the second one is scheduling by every 
node on a network system and arbitration mechanism 
of the network, as proposed in the CAN. Particularly 
for the CAN, many studies have adopted the concept 
of the operating system scheduling methods [6-8]. 
Real-time scheduling of the network message in this 
paper is performed through the encoding method of 
the CAN message arbitration field with the RMS 
priority-the release period of the message.  

In this paper, two task assignment strategies are 
introduced to improve upon previous strategies. The 
proposed strategies assign tasks by meeting end-to-
end real-time constraints, and also with optimizing 
system utilization through period modulation of the 
tasks. Consequently, the strategies aim at the 
optimization of system performance while still 
meeting real-time constraints. The proposed task 
assignment strategies are devised using the genetic 
algorithm with heuristic real-time constraints in the 
generation of new populations. The strategies are 
differentiated by the optimization method of the two 
objectives-meeting end-to-end real-time constraints 
and optimizing system utilization: the first one has 
sequential genetic algorithm routines for the 
objectives and the second one has one multiple 
objective genetic algorithm routine to find a Pareto 
solution. 

In addition to the proposals, the performances of 
the proposed strategies and a well-known existing task 
assignment strategy using the BnB (Branch and 
Bound) optimization are compared with one other 
through some simulation tests. Through the 
comparison of the simulation results, the most 
adequate task assignment strategies are proposed for 
some system requirements: the optimization of system 
utilization, the maximization of running tasks, and the 
minimization of the number of network nodes for a 
network system. 

The technical backgrounds and previous studies are 
reviewed in Section 2 of this paper, and problem 
statements of general network systems and the target 

system of this paper are described in Section 3. A 
performance criterion is also proposed in Section 3 for 
the proposal of task assignment strategies in Section 4. 
The existing task assignment strategy using the BnB 
optimization is described in detail in Section 4, and 
the proposal of two task assignment strategies based 
on the genetic algorithm is performed using the 
problem statements and the performance criterion 
shown in Section 3. For the performance evaluation of 
the existing task assignment strategy and the two 
proposed task assignment strategies, setups of some 
simulation tests are introduced and the test results are 
analyzed by comparison of performance in Section 5. 
Through the comparison results, the most adequate 
task assignment strategies are also proposed in 
Section 5 for some system requirements: the 
optimization of system utilization, the maximization 
of running tasks, and the minimization of the number 
of network nodes for a network system. Finally, the 
conclusions and proposal for further research are 
shown in Section 6.  

 
2. TECHNICAL BACKGROUNDS 

 
Since the problem of task assignment considering 

relationships of task interconnections and task 
executions is known to be NP-hard problem to find 
optimal solution [9,10], heuristic optimization 
methods and meta-heuristic optimization methods 
such as the simulated annealing and the genetic 
algorithm are usually used for the optimization.  

Chu and Lan [11] chose a heuristic search method, 
CP/MISF (Critical Path/Most Immediate Successors 
First) and a heuristic optimization method, DF/IHS 
(Depth First/Implicit Heuristic Search). They 
attempted to minimize the processor computation load 
from the viewpoint of system. The processor load was 
defined with summation of communications among 
tasks and accumulated time of task executions in the 
study. A task assignment strategy was proposed in the 
study using communication constraints and wait-time 
ratios. Kohler and Steiglitz [12] proposed a task 
assignment strategy using the BnB (Branch and 
Bound) optimization method for a task assignment 
strategy. The task assignment strategy was also 
proposed for the purpose of minimizing 
communications among tasks and execution time of 
the tasks. However, these task assignment strategies 
cannot guarantee real-time constraints because 
minimized communication cost or task execution cost 
does not mean task delays within the real-time 
deadlines itself. The delay is considered in [13], but 
the study focused on the minimization of averaged 
delay. Since the feasibility of real-time system is 
defined with the worst-case delay, the task assignment 
strategy proposed in the study is not also adequate for 
real-time systems. 
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To investigate real-time systems, Peng et al. [14] 
proposed a real-time task assignment strategy with the 
BnB optimization. The task assignment strategy was 
based on periodic tasks, communication constraints 
among them, and the deadlines of the communications. 
Since the study focused on the minimization of the 
communication cost, there was no consideration of 
delay caused by priorities of tasks on a network node. 
A good example of an experiment considering both of 
the delay caused by priorities of tasks on a network 
node and the network delay was performed using a 
heuristic optimization in [15]. However, there was no 
analysis of end-to-end delay among tasks, so the 
synchronousness among scheduling strategies existing 
on network system was also not considered for the 
delay minimization. The focus of the study was 
minimizing search time of optimal solution. Another 
feature of the study is that the proposed task 
assignment strategy has a constraint, which forces a 
specified task to be assigned to a specified node. This 
kind of constraint is very usual in actual 
implementations because a low-level task controlling 
a specified hardware resource must be assigned on 
node with the hardware resource. 

Tindell et al. [16] chose the simulated annealing 
aimed at a network system with a well-known type of 
static scheduling, the DMS (Deadline Monotonic 
Scheduling) for task scheduling, and with a token-
based message scheduling system. The 
synchronousness among the scheduling strategies 
existing on the network system was also not 
considered in the study. 
There were several studies using another meta-
heuristic optimization method, the genetic algorithm. 
Chung and Dietz [17] proposed a task assignment 
strategy using the genetic algorithm that focused on 
the scheduling of an operating system on a standalone 
system. Nossal and Galla [18] proposed a task 
assignment strategy also using the genetic algorithm 
for real-time the network systems. The task 
assignment in the study used the genetic algorithm 
combined with a heuristic search. Because the study 
also aimed to minimize the communication cost, there 
was no consideration of delay caused by the priorities 
of tasks on network nodes. Task assignment strategies 
using the genetic algorithm can be implemented to be 
applicable in run time [19,20].  

The task assignment strategies have recently 
become the focus of research with the assumption of a 
specified application, such as robot systems [21] and 
process controls [22], or with the assumption of a 
specified platform, such as a specified operating 
system scheduling method and a specified network 
protocol, as shown in [16]. However task modeling 
and platform resource modeling are still performed 
with an abstractive model, so the general applicability 
of the studies can consequently be obtained with the 

specified applications or even with the specified 
platforms.  

In this paper, task assignment strategies are 
evaluated for use in a complex real-time network 
system, so analytical modeling of the worst-case end-
to-end delay is presented first. In the worst-case delay 
modeling, delay caused by the asynchronousness 
among task scheduling strategies and network 
message scheduling strategy in the path of task 
communication is considered, and the system platform 
for the worst-case modeling is also specified. The 
system platform consists of an operating system 
scheduling strategy, network message scheduling, and 
message manager for the periodic release of the 
messages and for transparent communication among 
tasks. Task modeling and platform resource modeling 
of the system are performed with an abstractive time 
model for general applicability.  

Two task strategies proposed in this paper are based 
on a meta-heuristic optimization method, the genetic 
algorithm with heuristic real-time constraints in the 
generation of new populations. The strategies are 
differentiated by the optimization method of the two 
objectives: meeting end-to-end real-time constraints 
and optimizing system utilization. To our knowledge, 
this paper is the first to propose task assignment 
strategies with the two objectives. The proposed 
strategies also have constraints, which force specified 
tasks to be assigned at specified nodes, as shown in 
[15].  

In addition to the proposals, the performances of 
the proposed strategies and a well-known existing task 
assignment strategy using the BnB optimization [14] 
are compared with one other through some simulation 
tests. Through the comparison of the simulation 
results, the most adequate task assignment strategies 
are proposed for some system requirements-the 
optimization of system utilization, the maximization 
of running tasks, and the minimization of the number 
of network nodes for a network system. We believe 
that the comparison of task assignment strategies from 
the viewpoint of system requirements and the 
proposal of the most adequate ones is firstly 
performed in this study, and the study will be useful 
when the strategies play roles as a part of 
development tool of real-time network systems. 

 
3. TARGET SYSTEM AND PROBLEM 

STATEMENTS 
 
The target system of this paper is shown in Fig. 1. 

One or more tasks are executed on each node of the 
system, and the real-time of their execution is 
guaranteed by a real-time multi-tasking operating 
system on each node, as shown in Fig. 1. The task 
operation environment with the multi-tasking 
operating systems shown in Fig. 1 is very usual with 
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complex network systems such as modern network-
based autonomous robots. The network nodes in Fig. 
1 are interconnected with others through the CAN. A 
task on a node interfaces with others in the node 
where the task is assigned or in other nodes through 
the CAN. The scheduling methods of the multi-
tasking operating system are the RMS in this paper, 
and the scheduling method of the CAN message is 
implemented by encoding the RMS priority into the 
arbitration field of the CAN message.  

Message transfers among the tasks are performed 
by the message managers in Fig. 1. The message 
managers have the highest priority in their own 
network nodes, and consequently, they can be 
executed most frequently among the tasks on their 
own nodes. The message managers transmit messages 
in the transmitting buffer to the receiving buffers in 
their own nodes when the receiving tasks of the 
messages are in the node, or transmit the messages to 
the transmitting queue of the CAN message when the 
receiving tasks are in another node. The message 
managers also retrieve the CAN messages from their 
receiving queues in the nodes of message managers 
and transmit the messages to the receiving buffers of 
receiving tasks of the messages. 

Through the service by the message managers, the 
CAN messages can be released periodically regardless 
of aperiodic completion time of the tasks, and 
receiving tasks can be executed asynchronously with 
their message arrival time [1]. The periodic release of 
the CAN message is essential to the RMS scheduling 
of the CAN messages, and the periodic executions of 
the tasks are also essential to the RMS scheduling of 
the tasks. Additionally, task can communicate with 

others transparently regardless of their locations, 
through the service by the message managers. 

A real-time system, particularly a hard real-time 
system must guarantee a priori that all deadlines will 
be met. For such a guarantee, analysis of the real-time 
feasibility is performed based on the analysis of the 
worst-case delay. In this section, the worst-case delays 
of tasks and their compositions are analyzed in cases 
in which the executions of the tasks are dependent on 
information exchanges among the tasks on the 
network system. The end-to-end delay is defined as 
elapse time between the release time of the 
transmitting task and the completion time of the 
receiving task through message transmission from the 
transmitting task to the receiving task. This end-to-end 
delay is required to be within deadline for the control 
stability of the task performance. 

When a transmitting task and a receiving task share 
one node, the end-to-end delay is depicted in Fig. 2. In 
Fig. 2, the transmitting task delay(①) and the 
receiving task delay(③) are task execution delays 
caused by scheduling based on the RMS. (1) shows 
the worst-case execution delay ir  for a task i by the 
RMS, when blocking time caused by resource sharing 
can be excluded [3].  

( )
,i

i i j
jj hp i

r
r C C

T∀ ∈

 
= +  

  
∑    (1) 

where iC  and jC  are the computation times of the 

task i and task j individually, jT  is the release period 
of the task j, and ( )hp i  is the set of tasks with higher 

 
 

Fig. 1. Network system based on the CAN and multi-task operating system. 
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priorities than the task i.  
In Fig. 2, the transmitting task and the receiving 

task execute with their own periods. Consequently, 
waiting time occurs due to the asynchronousness 
between the completion time of the transmitting task 
and the release time of the receiving task(②). Since 
the asynchronous waiting delay cannot be greater than 
the release period of the receiving task, the worst-case 
end-to-end delay between tasks sharing one node(rete) 
is represented by (2). The delays for the message 
transfer among message queues and buffers are 
included in (1), because the transfer is performed by 
the message manager and the message manager has 
the highest priority in the node.  

,ete trans rcv rcvr r r T= + +    (2) 

where rtrans and rrcv are the worst-case execution 
delay(ri) for the transmitting task and receiving task 
individually, represented by (1). Trcv is the release 
period of the receiving task. 

When a transmitting task and a receiving task are 
located at separate network nodes, the end-to-end 
delay is depicted in Fig. 3. In this case, the tasks 
exchange information by network message through 
the CAN. In Fig. 3, The end-to-end delay consists of 
transmitting task delay(①), receiving task delay(⑤), 
waiting time caused by the asynchronousness(②,④), 
and network message delay(③). The transmitting task 
delay and the receiving task delay are task execution 
delays caused by scheduling based on the RMS, and 
are also represented by (1). The waiting time occurs 
two times in this case. The first waiting time(②) 
occurs due to the asynchronousness between the 
completion time of the transmitting task and the 
release time of the network message. The second 
waiting time(④) occurs due to the asynchronousness 
between reception time of the network message and 
the release time of the receiving task.  

The worst-case network message delay rm of 
message m is shown in (3) when the arbitration field 

of the CAN is encoded with the RMS priority [6]. In 
(3), the transmission delay of the message m is 
represented by (4). The transmission delay 
represented by (4) is based on the standard CAN 
message frame with 11-bit arbitration field. The RMS 
priority can be encoded into the standard arbitration 
field as shown in [6]. 

( )
,m j

m m j
jj hp m

r J
r C C

T∀ ∈

 +
= +  

  
∑   (3) 

where Cm and Cj are transmission delays of message 
m and j individually, Tj is release period of message j, 
and Jj is the transmission jitter of the message j. The 
transmission jitter is the delay taking into account the 
difference in the arbitration start time at different 
nodes due to propagation delays. 

34 8
47 8 ,

5
m

m m bit
s

C S τ
 +  = + +    

  (4) 

where mS  is the message size in bytes, bitτ  is the 
time consumed to transmit a bit signal on the network. 

Since the first asynchronous waiting delay cannot 
be greater than the release period of the network 
message and the second asynchronous waiting delay 
cannot be greater than the release period of the 
receiving task, the worst-case end-to-end delay 
between tasks in separate network node(rete) is 
represented by (5). The delays for the message 
transfer between message queues and buffers are also 
included in (1). 

,ete trans net m rcv rcvr r T r T r= + + + +   (5) 

where Tnet is the release period of the network 
message m. 

In (4), the message transmission delay is 
determined by the message size Sm and the 
transmission time .bitτ  In the case of the CAN, ISO 

 
Fig. 2. End-to-end delay on one network node. 
 

 

Fig. 3. End-to-end delay between separate network 
nodes. 
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11898-2(CAN High Speed Physical Layer) and ISO 
11898-3(CAN Fault Tolerant Physical Layer) can be 
applicable alternatively for the physical layer protocol 
of the CAN. The transmission speeds defined by the 
norms are 1Mbps and 125Kbps individually. Since the 
maximum data size of the CAN message frame is 8 
bytes long, the transmission delay of a message frame 
of the CAN is about 1ms, even with the lower 
125Kbps. Besides, the software timer of the multi-
tasking operating systems, such as the Linux, is 
triggered by periodic tick interrupt, and the trigger 
period is usually defined with 10ms or more. Actually, 
only a few powerful multi-tasking operating systems, 
such as Linux ported for Alpha by Compaq, can 
guarantee a 10ms or less trigger period [23]. Despite 
of the worse real-time capability of the Linux 
compared to other application specific real-time 
operating systems, trials to adopt the Linux for real-
time systems are widely spread because of its 
familiarity and economical efficiency. In many cases, 
real-time controls with a few of milliseconds are 
implemented in standalone controllers, and the Linux 
is used for higher-level controller integrating the 
standalone controllers with a few tens of milliseconds 
or with a few hundreds of milliseconds.  

The trigger period is the base unit of the 
computation time and the period of a task, so both the 
computation time and the period of the task are 
represented by the multiples of the trigger period. As 
mentioned above, the message manager has the 
shortest period for the minimization of the delay 
between the completion time of the transmitting task 
and arrival time of message by the transmitting task at 
the buffer of the receiving task. Since the transmission 
delay of a message is small enough compared to the 
period of the message manager, the release period of 
all messages are coincide with the period of the 
message manager. The period of the message manager 
is configured to guarantee enough bandwidth of the 
network for all messages of the network system.  

Since the summation of the Tnet and the rm is 
comparatively smaller than others, (5) can be 
rewritten with (6). As shown in (6), the most 
important factors governing the end-to-end delay 
based on the RMS are the periods of the transmitting 
task and receiving task and the calculation time of 
them. 

2 ,e e trans rcv rcvr r T r γ= + + +   (6) 

where .trans rcv rcvr T r γ+ + >>  
Through the comparison of (2) and (6), the end-to-

end delay is governed by the priority of the 
transmitting task, the priority of the receiving task, 
their computation time, and the asynchronousness 
between the periods of the task rather than the 
communication cost of the network. In other words, 

the periods and computation time of the tasks are the 
most important factors that determine the end-to-end 
delay because the periods are the priorities with 
scheduling based on the RMS. The computation time 
is assumed to be a constant defined by (7) in the 
worst-case delay analysis. The computation time Ci of 
the task i is determined by the computation power CP 
of the network node where the task is assigned, the 
memory size MS, operating system OST, and 
computation quantity TCS required for task 
completion. When the computation time is given 
through the features of a network node, the utilization 
determines periods of tasks on the network node. To 
be exact, due to the constraint of available 
computation resources, the utilization of the resource 
cannot be greater than 1 in any case. Unfortunately, 
the utilization constraint of the resource will be 
reduced depending on scheduling method of operating 
system. The utilization of a node k is represented by 
(8), and (9) is the sufficient condition of utilization of 
the RMS to meet the deadlines of tasks on the node 
[24]. In (9), h is number of task subsets, where the 
period of any task can be divisible by all smaller 
periods of other member tasks. The subsets are called 
harmonic chains. 

( , , , ),iC f CP MS OST TCS=   (7) 

1
1,

n
i

k
ii

C
u

T=
= ≤∑     (8) 

1

(2 1).h
ku h< −     (9) 

As shown in (8) and (9), the utilization is enhanced 
when periods of tasks are shorter, and the constraint of 
the utilization is determined by the number of 
harmonic chains. Consequently, the enhancement of 
the utilization can be achieved through the 
minimization of harmonic chains of the task periods 
and through the minimization of the task periods 
while meeting the constraints of the utilization 
determined by the harmonic chains. The optimal 
solution of the task periods for the utilization 
optimization is known to be NP-complete [24]. The 
utilization is the periodic execution capability of the 
system functions, and consequently the functional 
performance of the system depends on the utilization. 
Additionally, the utilization determines the number of 
network nodes to expropriate dedicated tasks and the 
assignable number of tasks with a dedicated number 
of network nodes. System utilization U from (8) and 
end-to-end delay DETE from (2) and (6) for whole the 
network system with m nodes and l inter-task 
communications are shown in (10).  

 
1

,
m

k
k

U u
=

= ∑     (10) 
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.
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Since the system performance is better with shorter 
end-to-end delay and higher system utilization, a 
system performance criterion is proposed in (11) using 
(10). In (11), α and β are weight factors for the 
system utilization and for the end-to-end delay 
individually. 

 
2

1   
1 E E

UP
D
α

β
+

=
+

   (11) 

 
4. TASK ASSIGNMENT STRATEGY 

 
In this section, an existing study on task assignment 

using the BnB optimization is described in detail, and 
two task assignment strategies using (11) and the 
genetic algorithm are proposed. The proposed task 
assignment strategies optimize both of the end-to-end 
delay and system utilization. The proposed task 
assignment strategies are for a homogeneous network 
system. In other words, the computation time Ci of the 
task i is assumed to be identical regardless of its 
assignment.  

 
4.1. Task assignment strategy using the BnB optimiza-

tion  
Task assignment strategy using the BnB optimization 
performs a task assignment that minimizes system 
hazard and, consequently, minimizes end-to-end delay 
[14]. The system hazard δΘ  according to system 
assignment δ  is shown in  (12), and normalized 
value ivC  is determined with (13). In (12) and (13), 
T is the task set of whole network system, ivI  is vth 
release time of task i, ivr  is end-to-end delay of the 
vth release time, and ivd  is the deadline of the vth 
release time.  

 ( )max ,
i

iv
T T

Cδ
∈

Θ =    (12) 

 .iv iv
iv

iv iv

r I
C

d I
−

=
−

    (13) 

The purpose of the task assignment strategy using 
the BnB optimization is to find optimal task 
assignment *δ  that minimizes system hazard. 
Optimal task assignment *δ  is the task assignment 
that satisfies (14) among all task assignments 
satisfying the real-time constraint of the system 
hazard, 1.δΘ ≤  

 ( )* min δ
δ

δ = Θ     (14) 

The BnB optimization method evaluates the bound 
value at each vertex of a search tree, and extension 
from the vertex is performed when the bound value is 
the same as or higher than previous optimal solution. 
The number of vertexes with the BnB is smaller than 
those of other heuristic optimization methods; 
consequently, the search time of the BnB is shorter 
than others.  

The task assignment using the BnB optimization 
generates a tree with a number of levels that are the 
same as the number of tasks. In other words, when 
there are m tasks to be assigned, the search tree has m 
levels. Each vertex of the tree means the partial 
assignment of the tasks or the whole assignment of the 
tasks. Since the system hazard is the maximum end-
to-end delay, the BnB optimization method, which 
extends the tree only at vertexes equivalent to or 
better than the previous optimal solution, provides an 
effective solution for the task assignment search with 
minimized system hazard. 

The limitation of the proposed task assignment 
using the BnB optimization for the target system of 
Fig. 1 is that the assignment tries to minimize end-to-
end delay by the minimization of network delay. 
Consequently, tasks are concentrated upon a few 
network nodes. The concentrative assignment means 
the dense population of tasks in the network nodes, 
and the density means the inevitable increase of task 
periods to meet constraint of the utilization, as shown 
in (8) and (9). The end-to-end delay will be increased 
with the increase of the task periods, as shown in (2) 
and (6), and this was not considered in the previous 
study. Additionally, the hardware dependency-
constraint of some task assignments into specified 
network nodes-is not also considered in the task 
assignment strategy. Nevertheless when the periods of 
the tasks are not variable, or when it is important to 
find the minimum number of required network nodes 
for dedicated tasks, the task assignment is efficient.  

 
4.2. Gene-TASS task assignment strategy 

The optimization method using the genetic 
algorithm is expected to have a shorter search time 
compared to ordinary heuristic search methods and to 
be adequate for the online optimization through its 
incremental optimization feature. Besides, the 
optimized result through the genetic algorithm cannot 
be validated to be the most optimized, so the genetic 
algorithm is usually adequate for the searches for 
permissible solutions. In this paper, task assignment 
strategies using the genetic algorithm and some 
heuristic rules that exclude generations of new 
populations are proposed considering further online 
application of the strategies.  

The first task assignment strategy proposed in this 
paper is the Gene-TASS (Sequential Task Assignment 
Strategy based on the Genetic Algorithm). The Gene-
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TASS searches optimized task assignments through 
two sequential steps, as described in Fig. 4. In the first 
step, in order to guarantee that the end-to-end delays 
will be within the deadlines, the assigner assigns tasks 
to network nodes by differentiating hardware-
dependent tasks and hardware-independent tasks. In 
the second step, the modifier modulates the periods of 
the tasks at the assigned network nodes to higher 
utilization of the network nodes and, consequently, to 
higher whole system utilization. 

In Fig. 4, the assigner searches permissible task 
assignments and the modifier optimizes the periods of 
the tasks through the sequential genetic algorithm 
routines with a fitness function defined by the system 
performance criterion P of (11). To be exact, the 
fitness function of the genetic algorithm for the 
assigner is the system performance criterion P with 
α= 0, β = 1, and the fitness function of the genetic 
algorithm for the modifier is the system performance 
criterion P with α= 1, β = 0. 

The features of the Gene-TASS are as follows: 
Firstly, the strategy aims to enhance the system 

performance by the modulations of the task periods as 
well as the real-time guarantee of end-to-end delay by 
the assignment of the tasks. Since chromosomes that 
have possibility of real-time violation are not accepted 
as new populations with heuristic rules at the 
modulation step, the modulated periods do not violate 
real-time constraints.  

Secondly, the strategy only finds a permissible task 
assignment that is permissible within given deadlines, 
but does not optimize it. Even with the feature, the 
best task assignment during its search is chosen to be 
the assignment. Through the search of the just 
permissible assignment, the time for the search is 
shorter than time for the optimization.  

 4 10,
r

i

i

T
T

≤ ≤     (15) 

where r
iT  is the rising time of the task performance. 

Thirdly, the strategy differentiates hardware-
dependent tasks and hardware-independent tasks. 
Precisely, the assigner assigns the tasks considering 
that specified tasks have constraints to be located at 
specified network nodes. This kind of assignment 
constraint is introduced in [15], and in this paper, the 
constraints are implemented with a heuristic rule that 
excludes the generation of new populations. In 
addition to the constraints of the task assignment, the 
modulations of the task periods are also constrained 
with the hardware-dependent tasks for their control 
stability. In this paper, the constraint is defined with 
(15), the permissible sampling range of a discrete 
system [25].  

The chromosome of the genetic algorithm for the 
assigner is shown in Fig. 5. The chromosome consists 
of fields indicating network nodes assigned for given 
tasks. Iterative generations of new populations are 
performed until the convergence of the fitness value. 
The number of chromosomes of a population is 100. 
When the difference between the highest fitness value 
in the last population and the highest fitness value in 
the present population is less than 0.1%, the assigner 
judges that the fitness value is converged in the 
present population. Parents are selected from the last 
population through the roulette wheel method with 
probabilities proportional to the fitness values of the 
chromosomes. With the parents, three genetic 
operators-crossover, mutation, and elite selection-are 
used for the new generation of the next population. 
The rates of the operator invocation are 0.3 for the 
crossover and 0.5 for the mutation.  

The chromosome of the genetic algorithm for the 
modifier is shown in Fig. 6. The chromosome consists 
of super fields indicating network nodes, and a 
network node super filed consists of assigned task 
periods as its subfield. Iterative generations of new 
populations are performed until the maximum number 
of the generations is reached. The number of 
chromosomes of a population is 100, and the 
maximum number of the generations is 2,000. Parents 
are selected form the last population through the 
roulette wheel method with probabilities proportional 
to the fitness values of the chromosomes. With the 
parents, three genetic operators are also used for new 
generation of the next population. The rates of the 
operator invocation are 0.3 for the crossover and 0.45 

 
Fig. 4. Gene-TASS task assignment strategy. 
 

 
Fig. 5. The chromosome of Gene-TASS assigner. 
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for the mutation. The crossover and mutation are 
performed with the super field, the field of the 
network nodes to preserve assigned location of the 
tasks. 

Heuristic rules that exclude the generation of new 
chromosomes are applied to both of the assigner and 
the modifier. The heuristic rules as follows: 
1) All the worst-case delays of task communications 

are calculated with (2) and (6) for new 
chromosomes when the next population is 
generated. The delays must be within the deadline, 
and any chromosome violating this rule is 
excluded in the population. 

2) The new chromosome must satisfy (9) at every 
network node. Any chromosome violating this rule 
is excluded in the population. 

3) The new chromosome must satisfy the hardware 
dependency of the hardware-dependent tasks. Any 
chromosome violating this rule is excluded in the 
population. 

4) The new chromosome must satisfy the period 
constraints of the hardware-dependent tasks 
defined with (15). Any chromosome violating this 
rule is excluded in the population. 

Although the Gene-TASS has the two objectives-the 
real-time guarantee and the optimization of the system 
utilization-, finding one optimal solution for both of 
the objectives cannot be achieved. The shortcoming of 
the Gene-TASS is that it has no way to guarantee real-
time constraints through the modulation of the task 
periods because the real-time guarantee is achieved by 
the assigner prior to the modifier. Consequently, the 
search space of the Gene-TASS cannot cover all 
feasible solutions.  

 
4.3. Gene-TASP task assignment strategy 

As mentioned in Section 3, the problem of the task 
assignment strategy proposed in this paper is a kind of 
multiple objective optimization problem. Generally, a 
solution that is the best adapted to all objectives at the 
same time does not exist. There are methods, such as 
the weighted sum method, constraint method, and 
goal programming method, to solve the multiple 

objective optimization problems [26]. The problem 
with these methods is that a priori quantitative 
evaluation is required for the methods, and the 
evaluation must conform to the objectives of the 
optimization. The genetic algorithm is known to be 
adequate for the multiple objective problem because 
the genetic algorithm can find several Pareto solutions 
in its iteratively generated populations [27]. 

The multiple objective genetic algorithm has 
multiple fitness functions and collects the Pareto 
solutions through the weighted combination of the 
fitness functions. The Pareto ranking method, the 
Pareto tournament method, and the Pareto reservation 
method are well-known methods among them. 

The second task assignment strategy proposed in 
this paper is the Gene-TASP (Parallel Task 
Assignment Strategy based on the Genetic algorithm). 
The Gene-TASP searches optimized task assignment 
through the concurrent execution of the task 
assignment and the period modulation, as described in 
Fig. 7. The Gene-TASP also has a system performance 
criterion P of (11) as its fitness function. The vector 
combination of the fitness function for the Pareto 
solution is performed through α= 2, β=1 for the 
Gene-TASP because feasible solutions of the real-time 
constraints are permissible. 

The chromosome of the Gene-TASP is shown in Fig. 
8. The chromosome consists of super fields indicating 
given tasks, and a task super field consists of its 

 

 
Fig. 7. Gene-TASP task assignment strategy. 
 

 

Fig. 8. The chromosome of the Gene-TASP. 

 

Fig. 6. The chromosome of Gene-TASS modifier. 
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location and its period. Iterative generations of new 
populations are performed until the maximum number 
of the generations is reached. The number of 
chromosomes of a population is 100, and the 
maximum number of the generations is 50,000. As 
shown in Fig. 9, there is a parent pool for the 
reproduction. Through the three fitness functions of 
the Gene-TASP, the parents having the optimal end-to-
end delay, the parents having the optimal system 
utilization, and the parents having the optimal system 
criterion value are selected as the parents with equal 
numbers for the reproduction. The parent selection 
method is similar to the method of the Pareto 
reservation method [28]. Selections of the parents 
having the optimal end-to-end delay and the parents 
having the optimal system utilization are similar to the 
VEGA selection method, where parents having 
optimal performance with one objective are selected 
as parents for the reproduction. 

With the parents, three genetic operators-crossover, 
mutation, and elite selection-are used for the new 
generation of the next population. The rates of the 
invocation are 0.3 for the crossover and 0.5 for the 
mutation. Here, the crossover is performed with the 
super field, but the mutation is performed on the 
subfields. The selection of a subfield for the mutation 
between the field of location and the field of period is 
performed randomly. The heuristic rules that exclude 
the generation of new chromosomes for the Gene-
TASS are also applied to the Gene-TASP. 

 
5. SIMULATIONS 

 
In this section, some simulation tests are performed 

with the assumption of m network nodes, n tasks, and 
k hardware-dependent tasks. Configurations of the 
tasks are shown in Table 1. The ‘H/W’ of Table 1 
indicates whether the task depends on hardware 
resource of a network node or not. The number means 
the number of network node on which the task 
depends. The initial period iT  of the hardware-

dependent tasks are configured as / 4r
iT  in Table 1. 

The ‘PRED’ of Table 1 transmits messages to the 
indicated tasks. The number means the number of 
predecessor from which the task receives messages. 
For examples, task number 1 transmits messages to 
task number 2, and task number 2 receives messages 
from task number 1 and transmits messages to task 
number 3, as shown in the Table 1. The data size is the 
size of the data field of the CAN messages from the 
predecessors. Simulations are performed with three 
task assignment strategies described in Section 4, 
including two proposed task assignment strategies. 

The purposes and methods of the simulations are 
described as follows: 

Firstly, to find the task assignment that can 
guarantee the greatest system utilization, the system 
utilization of the three task assignment strategies with 
a constant number of tasks and an increasing number 
of network nodes is analyzed. An analysis of the 
system utilization is also performed similarly with a 
constant number of network nodes and an increasing 
number of tasks. Through the analysis, the task 
assignment strategy that can guarantee the greatest 
system performance is proposed. 

Secondly, to find the task assignment strategy that 
can expropriate tasks with the highest numbers, three 
task assignments are simulated with a constant 
number of network nodes and an increasing number of 
tasks with real-time constraints. Through the 
simulation, the task assignment strategy that can 
guarantee the greatest amount of system flexibility 
and system extendibility is proposed. 

Thirdly, to find the task assignment strategy that 
can assign a constant number of tasks with the lowest 
number of network nodes, the task assignments are 
simulated with the constant number of tasks. Through 
the simulations, the task assignment strategy that can 
minimize the system requirement the most is proposed.  

Figs. 10 and 11 are individual system utilizations 
and the worst-case delays, which are nearest to their 

 
Fig. 9. New generation of the Gene-TASP. 

Table 1. Task configurations for simulations. 

No. T 
(ms)

C 
(ms) H/W PRED Data 

(Byte) 
Deadline

(ms) 
1 50 20 None None None 200 
2 50 20 1 1 4 200 
3 80 30 2 2 2 260 
4 100 40 3 3 8 360 
5 100 40 None 4 5 400 
6 50 20 None 3 4 260 
7 80 30 None 3 8 400 
8 50 20 None 5 4 400 
9 100 40 None 8 8 300 

10 50 20 None 5 6 350 
11 100 40 None 5 5 400 
12 100 40 None 5 5 400 
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given deadlines, with six tasks and an increased 
number of network nodes from three to six. Even with 
the increased number of network nodes, all task 
assignment strategies meet the deadline constraints in 
Fig. 10. and In Fig. 11, the system utilization is 
decreased with the increased number of network 
nodes in the cases of the task assignment using the 
BnB optimization and the assigner of the Gene-TASS. 
The decrease of the utilization occurs because the 
minimization of the delay is only the purpose of the 
strategy with the BnB optimization and the assigner of 
the Gene-TASS. In particular, the number of network 
nodes with assigned tasks is converged with the two 
strategies because they try to assign the tasks without 
network communication. Consequently, idle network 
nodes without assigned tasks decrease the whole 
system utilization.  

On the other hand, the modifier of the Gene-TASS 
and the Gene-TASP modulate the periods of the tasks, 
so the system utilization is maximized, as shown in 
Fig. 11. The system utilization by the modifier of the 
Gene-TASS is higher than the utilization of the Gene-
TASP because the modifier modulates the period in 
the last step of the Gene-TASP without any 
consideration, but the Gene-TASP searches for the 
Pareto solutions, not the sole solution of the maximum 
system utilization. 

Figs. 12 and 13 are individual system utilizations 
and worst-case delays, which are nearest to their given 
deadlines, with six network nodes and an increased 
number of tasks from seven to eleven. Even with the 
increased number of tasks, all task assignment 
strategies meet the deadline constraints in Fig. 12, 
Contrary to the cases of Fig. 10. In Fig. 13, the system 
utilization is increased with the increased number of 
tasks, in the cases of the task assignment using the 
BnB optimization and the assigner of the Gene-TASS. 
The increase of the utilization is due to the increase of 
the task number with a constant number of network 
nodes.  

However, when the modifier of the Gene-TASS and 
the Gene-TASP modulate the periods of the tasks, the 
system utilization is maximized, as shown in Fig. 13 
similar to Fig. 11. The system utilization by the 
modifier of the Gene-TASS is also higher than the 
utilization of the Gene-TASP for the same reason as in 
Fig. 11. 

Through the analysis of the end-to-end delay and 
system utilization of the three task assignment 
strategies, the final assignment result of the Gene-
TASS assigns tasks with the greatest system utilization, 
regardless of the number of network nodes and the 
number of tasks, when the number of tasks can be 
assigned while still meeting deadlines. Consequently, 

 

Fig. 10. Delays nearest to the deadlines with an 
increased number of network nodes. 

 

 

Fig. 11. System utilization with an increased number 
of network nodes. 

 

 

Fig. 12. Delays nearest to the deadlines with the 
increased number of tasks. 

 

 

Fig. 13. System utilization with the increased number 
of tasks. 
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the Gene-TASS is the best choice when system 
requirement is the maximum system performance and 
the resource of the system is enough to assign 
dedicated tasks. 

The permissible numbers of tasks that can be 
assigned on three network nodes by the task 
assignment strategies are shown in Fig. 14. The 
permissible numbers by the strategy with the BnB 
optimization and by the Gene-TASS are six but the 
permissible number by the Gene-TASP is ten. The 
result of the Gene-TASP is achieved through searching 
for the Pareto solutions of end-to-end delay and 
system utilization. Consequently, the search area of 
the Gene-TASP covers a much wider area than others. 

As shown in Fig. 14, the Gene-TASP can assign the 
highest number of tasks. Consequently, Gene-TASP is 
the best choice when system requirement is the 
maximum number of tasks when the number of 
network nodes is constrained. This capability of the 
Gene-TASP is very important in real applications. 
Since the predefined number of network nodes is 
usual system constraint, the Gene-TASP enables the 
system capacity the maximum. This kind of benefit of 
the Gene-TASP is achieved through real-time 
guarantee through the modulation of the task periods. 
Despite of the highest utilization of the assignment 
with the Gene-TASS below six tasks, the Gene-TASS 
cannot find any assignment with seven or more tasks 
because it cannot modulate the task period for the 
purpose of real-time guarantee. 

The numbers of required network nodes with four 
tasks are shown in the Table 2. As shown in the table, 
the number of required network nodes is smallest with 
the task assignment by the strategy with the BnB 
optimization and by the Gene-TASS. Since the system 
utilization is not the optimization target in this case, 
the strategy with the BnB optimization and the 
assigner of the Gene-TASS find the task assignment 
with minimum number of network nodes. These 
methods attempt to find the task assignment with 
minimum network communication, but the Gene-
TASP searches for the Pareto solution considering 

system utilization. The Gene-TASP aims to increase 
the number of network nodes when the system 
utilization can be increased with an increased number 
of network nodes. 

As shown in the simulation results, the Gene-TASS 
is the best choice for a system in which system 
performance is the most important, and the Gene-
TASP is the best choice for a system in which a higher 
number of running tasks is the most important. To 
assign predetermined number of tasks to minimum 
network nodes, the Gene-TASS and the strategy with 
the BnB optimization are the best choice. 

 
6. CONCLUSIONS 

 
In this paper, a study on task assignment strategies 

was performed for the complex real-time network 
system. Two task assignment strategies, the Gene-
TASs and the Gene-TASp, are proposed to improve 
upon previous strategies. The proposed task 
assignment strategies generate task assignments that 
guarantee end-to-end real-time constraints and also 
optimize system utilization through rate modulation. 
Consequently, the strategies aim to optimize the 
system performance. The proposed task assignment 
strategies are devised using the genetic algorithm with 
the heuristic real-time constraints in the generation of 
new populations. The strategies are differentiated by 
the optimization method of two objectives, end-to-end 
real-time guarantees and system utilization. The first 
one has sequential genetic algorithm routines for the 
objectives, and the second one has one multiple 
objective genetic algorithm routine to find a Pareto 
solution. In addition to the proposals, the 
performances of the proposed strategies and an 
existing task assignment strategy using the BnB 
optimization are compared with one other through 
some simulation tests. According to the comparison of 
the simulation results, the Gene-TASS is revealed to 
be the best choice for a system in which system 
performance is the most important and the Gene-TASP 
is revealed to be the best choice for a system in which 
the acceptance of large number of tasks is the most 
important. To assign a predetermined number of tasks 
to the minimum network nodes, the Gene-TASS and 
the strategy with the BnB optimization are revealed to 
be the best choices. 

For further study, the proposed task assignment 
strategy will be revised for dynamic assignment of 
tasks during the run-time of the network system. The 

 

Fig. 14. The permissible number of tasks with three
network nodes. 

 

Table 2. Required number of network nodes with four 
tasks. 

 Strategy with 
the BnB 

Gene-
TASS 

Gene-
TASP

Required no. of 
network nodes 2 2 4 
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online revision of the task assignment strategy will be 
useful for flexible online resource management of the 
system. 
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