
Task Assignment Strategies for a Complex Real-time Network System 601

Task Assignment Strategies for a Complex Real-time Network System

Hongryeol Kim, Jaejoon Oh, and Daewon Kim

Abstract: In this paper, a study on task assignment strategies for a complex real-time network
system is presented. Firstly, two task assignment strategies are proposed to improve previous
strategies. The proposed strategies assign tasks with meeting end-to-end real-time constraints,
and also with optimizing system utilization through period modulation of the tasks. Consequently,
the strategies aim at the optimizationto optimize of system performance with while still meeting
real-time constraints. The proposed task assignment strategies are devised using the genetic
algorithmswith heuristic real-time constraints in the generation of new populations. The
strategies are differentiated by the optimization method of the two objectives-meeting end-to-end
real-time constraints and optimizing system utilization: the first one has sequential genetic
algorithm routines for the objectives, and the second one has one multiple objective genetic
algorithm routine to find a Pareto solution. Secondly, the performances of the proposed strategies
and a well-known existing task assignment strategy using the BnB(Branch and Bound)
optimization are compared with one other through some simulation tests. Through the
comparison of the simulation results, the most adequate task assignment strategies are proposed
for someas system requirements-: the optimization of system utilization, the maximization of
running tasktasks, and the minimization of the number of network node nodesnumber for a
network system.

Keywords: End-to-end, genetic algorithm, real-time, system utilization, task assignment.

1. INTRODUCTION

Various studies have been performed on network

systems, since network systems enable the
conjunction of various heterogeneous systems and
while minimizing the cost for the conjunction
simultaneously. These days, these kinds of studies are
extended to the field of complex real-time systems,
such as autonomous robots and rolling stocks. The
complex real-time systems require functional
completions in time as well as functional executions
with accuracy. However, delays are inevitable in the
network system because network nodes in the systems
share the network as media for information exchange
with others. Network arbitration for media access
causes the delays. Common complex real-time
systems require several execution flows of their
application programs. Multi-tasking operating systems
are usual solutions for the system requirement, and
delays are also incurred while the application

programs are scheduled by the operating systems on
the nodes of the network systems. The delays by the
operating system scheduling combined with the
delays by the network arbitration sometimes generate
unexpected long end-to-end delay [1].

For the reason mentioned above, a task assignment
strategy that assigns application programs-tasks on
network nodes is essential for the design of the real-
time network system to guarantee a priori that all
deadlines will be met. In addition to the real-time
feature, the task assignment strategy can enable the
optimization of system utilization, and consequently
achieve the optimization of the system performance.

In this paper, a study on the task assignment
strategies is presented for a complex real-time
network system. The target system of this paper
consists of network nodes with real-time multi-tasking
operating systems, and the nodes guarantee the real-
time deadlines of tasks through the operating systems.
The network protocol of the target system is the CAN
(Controller Area Network) [2].

Two kinds of real-time scheduling strategies are
needed for the target network system. The first one is
the real-time scheduling of the operating system.
There has been a plethora of studies in the field of
real-time scheduling of operating systems, and most
of them guarantee real-time scheduling by
periodically invocating tasks [3,4]. Undoubtedly, it is
much easier to guarantee a priori that all deadlines

 Manuscript received April 20, 2005; revised February 6,
2006; accepted May 9, 2006. Recommended by Editor Keum-
Shik Hong.
 Hongryeol Kim, Jaejoon Oh, and Daewon Kim are with the
School of Information Engineering, Myongji University, San
38-2 Nam-dong, Cheoin-gu, Yongin-si, Kyongki-do 449-728,
Korea (e-mails: hr.kim@carrier.co.kr, eng-hon@mju.ac.kr,
dwkim@mju.ac.kr).

International Journal of Control, Automation, and Systems, vol. 4, no. 5, pp. 601-614, October 2006

602 Hongryeol Kim, Jaejoon Oh, and Daewon Kim

will be met with periodically invocating tasks, rather
than with aperiodically invocating tasks. To guarantee
a priori that all deadlines will be met, periodical
resource assignment was performed even for the
aperiodically invocating tasks, as shown in [5]. Real-
time scheduling of the operating system in this paper
is a well-known static scheduling method-the RMS
(Rate Monotonic Scheduling) for periodically
invocating tasks. The second one is the real-time
scheduling for the network arbitration. There also
have also been numerous studies in the field of the
network message scheduling. Some good examples of
the message scheduling were proposed in the field of
the FieldBus. There are two categories for the
scheduling: the first one is scheduling by a network
master on a network system as proposed in the
ProfiBus and the second one is scheduling by every
node on a network system and arbitration mechanism
of the network, as proposed in the CAN. Particularly
for the CAN, many studies have adopted the concept
of the operating system scheduling methods [6-8].
Real-time scheduling of the network message in this
paper is performed through the encoding method of
the CAN message arbitration field with the RMS
priority-the release period of the message.

In this paper, two task assignment strategies are
introduced to improve upon previous strategies. The
proposed strategies assign tasks by meeting end-to-
end real-time constraints, and also with optimizing
system utilization through period modulation of the
tasks. Consequently, the strategies aim at the
optimization of system performance while still
meeting real-time constraints. The proposed task
assignment strategies are devised using the genetic
algorithm with heuristic real-time constraints in the
generation of new populations. The strategies are
differentiated by the optimization method of the two
objectives-meeting end-to-end real-time constraints
and optimizing system utilization: the first one has
sequential genetic algorithm routines for the
objectives and the second one has one multiple
objective genetic algorithm routine to find a Pareto
solution.

In addition to the proposals, the performances of
the proposed strategies and a well-known existing task
assignment strategy using the BnB (Branch and
Bound) optimization are compared with one other
through some simulation tests. Through the
comparison of the simulation results, the most
adequate task assignment strategies are proposed for
some system requirements: the optimization of system
utilization, the maximization of running tasks, and the
minimization of the number of network nodes for a
network system.

The technical backgrounds and previous studies are
reviewed in Section 2 of this paper, and problem
statements of general network systems and the target

system of this paper are described in Section 3. A
performance criterion is also proposed in Section 3 for
the proposal of task assignment strategies in Section 4.
The existing task assignment strategy using the BnB
optimization is described in detail in Section 4, and
the proposal of two task assignment strategies based
on the genetic algorithm is performed using the
problem statements and the performance criterion
shown in Section 3. For the performance evaluation of
the existing task assignment strategy and the two
proposed task assignment strategies, setups of some
simulation tests are introduced and the test results are
analyzed by comparison of performance in Section 5.
Through the comparison results, the most adequate
task assignment strategies are also proposed in
Section 5 for some system requirements: the
optimization of system utilization, the maximization
of running tasks, and the minimization of the number
of network nodes for a network system. Finally, the
conclusions and proposal for further research are
shown in Section 6.

2. TECHNICAL BACKGROUNDS

Since the problem of task assignment considering

relationships of task interconnections and task
executions is known to be NP-hard problem to find
optimal solution [9,10], heuristic optimization
methods and meta-heuristic optimization methods
such as the simulated annealing and the genetic
algorithm are usually used for the optimization.

Chu and Lan [11] chose a heuristic search method,
CP/MISF (Critical Path/Most Immediate Successors
First) and a heuristic optimization method, DF/IHS
(Depth First/Implicit Heuristic Search). They
attempted to minimize the processor computation load
from the viewpoint of system. The processor load was
defined with summation of communications among
tasks and accumulated time of task executions in the
study. A task assignment strategy was proposed in the
study using communication constraints and wait-time
ratios. Kohler and Steiglitz [12] proposed a task
assignment strategy using the BnB (Branch and
Bound) optimization method for a task assignment
strategy. The task assignment strategy was also
proposed for the purpose of minimizing
communications among tasks and execution time of
the tasks. However, these task assignment strategies
cannot guarantee real-time constraints because
minimized communication cost or task execution cost
does not mean task delays within the real-time
deadlines itself. The delay is considered in [13], but
the study focused on the minimization of averaged
delay. Since the feasibility of real-time system is
defined with the worst-case delay, the task assignment
strategy proposed in the study is not also adequate for
real-time systems.

Task Assignment Strategies for a Complex Real-time Network System 603

To investigate real-time systems, Peng et al. [14]
proposed a real-time task assignment strategy with the
BnB optimization. The task assignment strategy was
based on periodic tasks, communication constraints
among them, and the deadlines of the communications.
Since the study focused on the minimization of the
communication cost, there was no consideration of
delay caused by priorities of tasks on a network node.
A good example of an experiment considering both of
the delay caused by priorities of tasks on a network
node and the network delay was performed using a
heuristic optimization in [15]. However, there was no
analysis of end-to-end delay among tasks, so the
synchronousness among scheduling strategies existing
on network system was also not considered for the
delay minimization. The focus of the study was
minimizing search time of optimal solution. Another
feature of the study is that the proposed task
assignment strategy has a constraint, which forces a
specified task to be assigned to a specified node. This
kind of constraint is very usual in actual
implementations because a low-level task controlling
a specified hardware resource must be assigned on
node with the hardware resource.

Tindell et al. [16] chose the simulated annealing
aimed at a network system with a well-known type of
static scheduling, the DMS (Deadline Monotonic
Scheduling) for task scheduling, and with a token-
based message scheduling system. The
synchronousness among the scheduling strategies
existing on the network system was also not
considered in the study.
There were several studies using another meta-
heuristic optimization method, the genetic algorithm.
Chung and Dietz [17] proposed a task assignment
strategy using the genetic algorithm that focused on
the scheduling of an operating system on a standalone
system. Nossal and Galla [18] proposed a task
assignment strategy also using the genetic algorithm
for real-time the network systems. The task
assignment in the study used the genetic algorithm
combined with a heuristic search. Because the study
also aimed to minimize the communication cost, there
was no consideration of delay caused by the priorities
of tasks on network nodes. Task assignment strategies
using the genetic algorithm can be implemented to be
applicable in run time [19,20].

The task assignment strategies have recently
become the focus of research with the assumption of a
specified application, such as robot systems [21] and
process controls [22], or with the assumption of a
specified platform, such as a specified operating
system scheduling method and a specified network
protocol, as shown in [16]. However task modeling
and platform resource modeling are still performed
with an abstractive model, so the general applicability
of the studies can consequently be obtained with the

specified applications or even with the specified
platforms.

In this paper, task assignment strategies are
evaluated for use in a complex real-time network
system, so analytical modeling of the worst-case end-
to-end delay is presented first. In the worst-case delay
modeling, delay caused by the asynchronousness
among task scheduling strategies and network
message scheduling strategy in the path of task
communication is considered, and the system platform
for the worst-case modeling is also specified. The
system platform consists of an operating system
scheduling strategy, network message scheduling, and
message manager for the periodic release of the
messages and for transparent communication among
tasks. Task modeling and platform resource modeling
of the system are performed with an abstractive time
model for general applicability.

Two task strategies proposed in this paper are based
on a meta-heuristic optimization method, the genetic
algorithm with heuristic real-time constraints in the
generation of new populations. The strategies are
differentiated by the optimization method of the two
objectives: meeting end-to-end real-time constraints
and optimizing system utilization. To our knowledge,
this paper is the first to propose task assignment
strategies with the two objectives. The proposed
strategies also have constraints, which force specified
tasks to be assigned at specified nodes, as shown in
[15].

In addition to the proposals, the performances of
the proposed strategies and a well-known existing task
assignment strategy using the BnB optimization [14]
are compared with one other through some simulation
tests. Through the comparison of the simulation
results, the most adequate task assignment strategies
are proposed for some system requirements-the
optimization of system utilization, the maximization
of running tasks, and the minimization of the number
of network nodes for a network system. We believe
that the comparison of task assignment strategies from
the viewpoint of system requirements and the
proposal of the most adequate ones is firstly
performed in this study, and the study will be useful
when the strategies play roles as a part of
development tool of real-time network systems.

3. TARGET SYSTEM AND PROBLEM

STATEMENTS

The target system of this paper is shown in Fig. 1.

One or more tasks are executed on each node of the
system, and the real-time of their execution is
guaranteed by a real-time multi-tasking operating
system on each node, as shown in Fig. 1. The task
operation environment with the multi-tasking
operating systems shown in Fig. 1 is very usual with

604 Hongryeol Kim, Jaejoon Oh, and Daewon Kim

complex network systems such as modern network-
based autonomous robots. The network nodes in Fig.
1 are interconnected with others through the CAN. A
task on a node interfaces with others in the node
where the task is assigned or in other nodes through
the CAN. The scheduling methods of the multi-
tasking operating system are the RMS in this paper,
and the scheduling method of the CAN message is
implemented by encoding the RMS priority into the
arbitration field of the CAN message.

Message transfers among the tasks are performed
by the message managers in Fig. 1. The message
managers have the highest priority in their own
network nodes, and consequently, they can be
executed most frequently among the tasks on their
own nodes. The message managers transmit messages
in the transmitting buffer to the receiving buffers in
their own nodes when the receiving tasks of the
messages are in the node, or transmit the messages to
the transmitting queue of the CAN message when the
receiving tasks are in another node. The message
managers also retrieve the CAN messages from their
receiving queues in the nodes of message managers
and transmit the messages to the receiving buffers of
receiving tasks of the messages.

Through the service by the message managers, the
CAN messages can be released periodically regardless
of aperiodic completion time of the tasks, and
receiving tasks can be executed asynchronously with
their message arrival time [1]. The periodic release of
the CAN message is essential to the RMS scheduling
of the CAN messages, and the periodic executions of
the tasks are also essential to the RMS scheduling of
the tasks. Additionally, task can communicate with

others transparently regardless of their locations,
through the service by the message managers.

A real-time system, particularly a hard real-time
system must guarantee a priori that all deadlines will
be met. For such a guarantee, analysis of the real-time
feasibility is performed based on the analysis of the
worst-case delay. In this section, the worst-case delays
of tasks and their compositions are analyzed in cases
in which the executions of the tasks are dependent on
information exchanges among the tasks on the
network system. The end-to-end delay is defined as
elapse time between the release time of the
transmitting task and the completion time of the
receiving task through message transmission from the
transmitting task to the receiving task. This end-to-end
delay is required to be within deadline for the control
stability of the task performance.

When a transmitting task and a receiving task share
one node, the end-to-end delay is depicted in Fig. 2. In
Fig. 2, the transmitting task delay(①) and the
receiving task delay(③) are task execution delays
caused by scheduling based on the RMS. (1) shows
the worst-case execution delay ir for a task i by the
RMS, when blocking time caused by resource sharing
can be excluded [3].

()
,i

i i j
jj hp i

r
r C C

T∀ ∈

 
= +  

  
∑ (1)

where iC and jC are the computation times of the

task i and task j individually, jT is the release period
of the task j, and ()hp i is the set of tasks with higher

Fig. 1. Network system based on the CAN and multi-task operating system.

Task Assignment Strategies for a Complex Real-time Network System 605

priorities than the task i.
In Fig. 2, the transmitting task and the receiving

task execute with their own periods. Consequently,
waiting time occurs due to the asynchronousness
between the completion time of the transmitting task
and the release time of the receiving task(②). Since
the asynchronous waiting delay cannot be greater than
the release period of the receiving task, the worst-case
end-to-end delay between tasks sharing one node(rete)
is represented by (2). The delays for the message
transfer among message queues and buffers are
included in (1), because the transfer is performed by
the message manager and the message manager has
the highest priority in the node.

,ete trans rcv rcvr r r T= + + (2)

where rtrans and rrcv are the worst-case execution
delay(ri) for the transmitting task and receiving task
individually, represented by (1). Trcv is the release
period of the receiving task.

When a transmitting task and a receiving task are
located at separate network nodes, the end-to-end
delay is depicted in Fig. 3. In this case, the tasks
exchange information by network message through
the CAN. In Fig. 3, The end-to-end delay consists of
transmitting task delay(①), receiving task delay(⑤),
waiting time caused by the asynchronousness(②,④),
and network message delay(③). The transmitting task
delay and the receiving task delay are task execution
delays caused by scheduling based on the RMS, and
are also represented by (1). The waiting time occurs
two times in this case. The first waiting time(②)
occurs due to the asynchronousness between the
completion time of the transmitting task and the
release time of the network message. The second
waiting time(④) occurs due to the asynchronousness
between reception time of the network message and
the release time of the receiving task.

The worst-case network message delay rm of
message m is shown in (3) when the arbitration field

of the CAN is encoded with the RMS priority [6]. In
(3), the transmission delay of the message m is
represented by (4). The transmission delay
represented by (4) is based on the standard CAN
message frame with 11-bit arbitration field. The RMS
priority can be encoded into the standard arbitration
field as shown in [6].

()
,m j

m m j
jj hp m

r J
r C C

T∀ ∈

 +
= +  

  
∑ (3)

where Cm and Cj are transmission delays of message
m and j individually, Tj is release period of message j,
and Jj is the transmission jitter of the message j. The
transmission jitter is the delay taking into account the
difference in the arbitration start time at different
nodes due to propagation delays.

34 8
47 8 ,

5
m

m m bit
s

C S τ
 +  = + +    

 (4)

where mS is the message size in bytes, bitτ is the
time consumed to transmit a bit signal on the network.

Since the first asynchronous waiting delay cannot
be greater than the release period of the network
message and the second asynchronous waiting delay
cannot be greater than the release period of the
receiving task, the worst-case end-to-end delay
between tasks in separate network node(rete) is
represented by (5). The delays for the message
transfer between message queues and buffers are also
included in (1).

,ete trans net m rcv rcvr r T r T r= + + + + (5)

where Tnet is the release period of the network
message m.

In (4), the message transmission delay is
determined by the message size Sm and the
transmission time .bitτ In the case of the CAN, ISO

Fig. 2. End-to-end delay on one network node.

Fig. 3. End-to-end delay between separate network
nodes.

606 Hongryeol Kim, Jaejoon Oh, and Daewon Kim

11898-2(CAN High Speed Physical Layer) and ISO
11898-3(CAN Fault Tolerant Physical Layer) can be
applicable alternatively for the physical layer protocol
of the CAN. The transmission speeds defined by the
norms are 1Mbps and 125Kbps individually. Since the
maximum data size of the CAN message frame is 8
bytes long, the transmission delay of a message frame
of the CAN is about 1ms, even with the lower
125Kbps. Besides, the software timer of the multi-
tasking operating systems, such as the Linux, is
triggered by periodic tick interrupt, and the trigger
period is usually defined with 10ms or more. Actually,
only a few powerful multi-tasking operating systems,
such as Linux ported for Alpha by Compaq, can
guarantee a 10ms or less trigger period [23]. Despite
of the worse real-time capability of the Linux
compared to other application specific real-time
operating systems, trials to adopt the Linux for real-
time systems are widely spread because of its
familiarity and economical efficiency. In many cases,
real-time controls with a few of milliseconds are
implemented in standalone controllers, and the Linux
is used for higher-level controller integrating the
standalone controllers with a few tens of milliseconds
or with a few hundreds of milliseconds.

The trigger period is the base unit of the
computation time and the period of a task, so both the
computation time and the period of the task are
represented by the multiples of the trigger period. As
mentioned above, the message manager has the
shortest period for the minimization of the delay
between the completion time of the transmitting task
and arrival time of message by the transmitting task at
the buffer of the receiving task. Since the transmission
delay of a message is small enough compared to the
period of the message manager, the release period of
all messages are coincide with the period of the
message manager. The period of the message manager
is configured to guarantee enough bandwidth of the
network for all messages of the network system.

Since the summation of the Tnet and the rm is
comparatively smaller than others, (5) can be
rewritten with (6). As shown in (6), the most
important factors governing the end-to-end delay
based on the RMS are the periods of the transmitting
task and receiving task and the calculation time of
them.

2 ,e e trans rcv rcvr r T r γ= + + + (6)

where .trans rcv rcvr T r γ+ + >>
Through the comparison of (2) and (6), the end-to-

end delay is governed by the priority of the
transmitting task, the priority of the receiving task,
their computation time, and the asynchronousness
between the periods of the task rather than the
communication cost of the network. In other words,

the periods and computation time of the tasks are the
most important factors that determine the end-to-end
delay because the periods are the priorities with
scheduling based on the RMS. The computation time
is assumed to be a constant defined by (7) in the
worst-case delay analysis. The computation time Ci of
the task i is determined by the computation power CP
of the network node where the task is assigned, the
memory size MS, operating system OST, and
computation quantity TCS required for task
completion. When the computation time is given
through the features of a network node, the utilization
determines periods of tasks on the network node. To
be exact, due to the constraint of available
computation resources, the utilization of the resource
cannot be greater than 1 in any case. Unfortunately,
the utilization constraint of the resource will be
reduced depending on scheduling method of operating
system. The utilization of a node k is represented by
(8), and (9) is the sufficient condition of utilization of
the RMS to meet the deadlines of tasks on the node
[24]. In (9), h is number of task subsets, where the
period of any task can be divisible by all smaller
periods of other member tasks. The subsets are called
harmonic chains.

(, , ,),iC f CP MS OST TCS= (7)

1
1,

n
i

k
ii

C
u

T=
= ≤∑ (8)

1

(2 1).h
ku h< − (9)

As shown in (8) and (9), the utilization is enhanced
when periods of tasks are shorter, and the constraint of
the utilization is determined by the number of
harmonic chains. Consequently, the enhancement of
the utilization can be achieved through the
minimization of harmonic chains of the task periods
and through the minimization of the task periods
while meeting the constraints of the utilization
determined by the harmonic chains. The optimal
solution of the task periods for the utilization
optimization is known to be NP-complete [24]. The
utilization is the periodic execution capability of the
system functions, and consequently the functional
performance of the system depends on the utilization.
Additionally, the utilization determines the number of
network nodes to expropriate dedicated tasks and the
assignable number of tasks with a dedicated number
of network nodes. System utilization U from (8) and
end-to-end delay DETE from (2) and (6) for whole the
network system with m nodes and l inter-task
communications are shown in (10).

1

,
m

k
k

U u
=

= ∑ (10)

Task Assignment Strategies for a Complex Real-time Network System 607

1
.

l

ETE ete
k

D r
=

= ∑

Since the system performance is better with shorter
end-to-end delay and higher system utilization, a
system performance criterion is proposed in (11) using
(10). In (11), α and β are weight factors for the
system utilization and for the end-to-end delay
individually.

2

1
1 E E

UP
D
α

β
+

=
+

 (11)

4. TASK ASSIGNMENT STRATEGY

In this section, an existing study on task assignment

using the BnB optimization is described in detail, and
two task assignment strategies using (11) and the
genetic algorithm are proposed. The proposed task
assignment strategies optimize both of the end-to-end
delay and system utilization. The proposed task
assignment strategies are for a homogeneous network
system. In other words, the computation time Ci of the
task i is assumed to be identical regardless of its
assignment.

4.1. Task assignment strategy using the BnB optimiza-

tion
Task assignment strategy using the BnB optimization
performs a task assignment that minimizes system
hazard and, consequently, minimizes end-to-end delay
[14]. The system hazard δΘ according to system
assignment δ is shown in (12), and normalized
value ivC is determined with (13). In (12) and (13),
T is the task set of whole network system, ivI is vth
release time of task i, ivr is end-to-end delay of the
vth release time, and ivd is the deadline of the vth
release time.

 ()max ,
i

iv
T T

Cδ
∈

Θ = (12)

 .iv iv
iv

iv iv

r I
C

d I
−

=
−

 (13)

The purpose of the task assignment strategy using
the BnB optimization is to find optimal task
assignment *δ that minimizes system hazard.
Optimal task assignment *δ is the task assignment
that satisfies (14) among all task assignments
satisfying the real-time constraint of the system
hazard, 1.δΘ ≤

 ()* min δ
δ

δ = Θ (14)

The BnB optimization method evaluates the bound
value at each vertex of a search tree, and extension
from the vertex is performed when the bound value is
the same as or higher than previous optimal solution.
The number of vertexes with the BnB is smaller than
those of other heuristic optimization methods;
consequently, the search time of the BnB is shorter
than others.

The task assignment using the BnB optimization
generates a tree with a number of levels that are the
same as the number of tasks. In other words, when
there are m tasks to be assigned, the search tree has m
levels. Each vertex of the tree means the partial
assignment of the tasks or the whole assignment of the
tasks. Since the system hazard is the maximum end-
to-end delay, the BnB optimization method, which
extends the tree only at vertexes equivalent to or
better than the previous optimal solution, provides an
effective solution for the task assignment search with
minimized system hazard.

The limitation of the proposed task assignment
using the BnB optimization for the target system of
Fig. 1 is that the assignment tries to minimize end-to-
end delay by the minimization of network delay.
Consequently, tasks are concentrated upon a few
network nodes. The concentrative assignment means
the dense population of tasks in the network nodes,
and the density means the inevitable increase of task
periods to meet constraint of the utilization, as shown
in (8) and (9). The end-to-end delay will be increased
with the increase of the task periods, as shown in (2)
and (6), and this was not considered in the previous
study. Additionally, the hardware dependency-
constraint of some task assignments into specified
network nodes-is not also considered in the task
assignment strategy. Nevertheless when the periods of
the tasks are not variable, or when it is important to
find the minimum number of required network nodes
for dedicated tasks, the task assignment is efficient.

4.2. Gene-TASS task assignment strategy

The optimization method using the genetic
algorithm is expected to have a shorter search time
compared to ordinary heuristic search methods and to
be adequate for the online optimization through its
incremental optimization feature. Besides, the
optimized result through the genetic algorithm cannot
be validated to be the most optimized, so the genetic
algorithm is usually adequate for the searches for
permissible solutions. In this paper, task assignment
strategies using the genetic algorithm and some
heuristic rules that exclude generations of new
populations are proposed considering further online
application of the strategies.

The first task assignment strategy proposed in this
paper is the Gene-TASS (Sequential Task Assignment
Strategy based on the Genetic Algorithm). The Gene-

608 Hongryeol Kim, Jaejoon Oh, and Daewon Kim

TASS searches optimized task assignments through
two sequential steps, as described in Fig. 4. In the first
step, in order to guarantee that the end-to-end delays
will be within the deadlines, the assigner assigns tasks
to network nodes by differentiating hardware-
dependent tasks and hardware-independent tasks. In
the second step, the modifier modulates the periods of
the tasks at the assigned network nodes to higher
utilization of the network nodes and, consequently, to
higher whole system utilization.

In Fig. 4, the assigner searches permissible task
assignments and the modifier optimizes the periods of
the tasks through the sequential genetic algorithm
routines with a fitness function defined by the system
performance criterion P of (11). To be exact, the
fitness function of the genetic algorithm for the
assigner is the system performance criterion P with
α= 0, β = 1, and the fitness function of the genetic
algorithm for the modifier is the system performance
criterion P with α= 1, β = 0.

The features of the Gene-TASS are as follows:
Firstly, the strategy aims to enhance the system

performance by the modulations of the task periods as
well as the real-time guarantee of end-to-end delay by
the assignment of the tasks. Since chromosomes that
have possibility of real-time violation are not accepted
as new populations with heuristic rules at the
modulation step, the modulated periods do not violate
real-time constraints.

Secondly, the strategy only finds a permissible task
assignment that is permissible within given deadlines,
but does not optimize it. Even with the feature, the
best task assignment during its search is chosen to be
the assignment. Through the search of the just
permissible assignment, the time for the search is
shorter than time for the optimization.

 4 10,
r

i

i

T
T

≤ ≤ (15)

where r
iT is the rising time of the task performance.

Thirdly, the strategy differentiates hardware-
dependent tasks and hardware-independent tasks.
Precisely, the assigner assigns the tasks considering
that specified tasks have constraints to be located at
specified network nodes. This kind of assignment
constraint is introduced in [15], and in this paper, the
constraints are implemented with a heuristic rule that
excludes the generation of new populations. In
addition to the constraints of the task assignment, the
modulations of the task periods are also constrained
with the hardware-dependent tasks for their control
stability. In this paper, the constraint is defined with
(15), the permissible sampling range of a discrete
system [25].

The chromosome of the genetic algorithm for the
assigner is shown in Fig. 5. The chromosome consists
of fields indicating network nodes assigned for given
tasks. Iterative generations of new populations are
performed until the convergence of the fitness value.
The number of chromosomes of a population is 100.
When the difference between the highest fitness value
in the last population and the highest fitness value in
the present population is less than 0.1%, the assigner
judges that the fitness value is converged in the
present population. Parents are selected from the last
population through the roulette wheel method with
probabilities proportional to the fitness values of the
chromosomes. With the parents, three genetic
operators-crossover, mutation, and elite selection-are
used for the new generation of the next population.
The rates of the operator invocation are 0.3 for the
crossover and 0.5 for the mutation.

The chromosome of the genetic algorithm for the
modifier is shown in Fig. 6. The chromosome consists
of super fields indicating network nodes, and a
network node super filed consists of assigned task
periods as its subfield. Iterative generations of new
populations are performed until the maximum number
of the generations is reached. The number of
chromosomes of a population is 100, and the
maximum number of the generations is 2,000. Parents
are selected form the last population through the
roulette wheel method with probabilities proportional
to the fitness values of the chromosomes. With the
parents, three genetic operators are also used for new
generation of the next population. The rates of the
operator invocation are 0.3 for the crossover and 0.45

Fig. 4. Gene-TASS task assignment strategy.

Fig. 5. The chromosome of Gene-TASS assigner.

Task Assignment Strategies for a Complex Real-time Network System 609

for the mutation. The crossover and mutation are
performed with the super field, the field of the
network nodes to preserve assigned location of the
tasks.

Heuristic rules that exclude the generation of new
chromosomes are applied to both of the assigner and
the modifier. The heuristic rules as follows:
1) All the worst-case delays of task communications

are calculated with (2) and (6) for new
chromosomes when the next population is
generated. The delays must be within the deadline,
and any chromosome violating this rule is
excluded in the population.

2) The new chromosome must satisfy (9) at every
network node. Any chromosome violating this rule
is excluded in the population.

3) The new chromosome must satisfy the hardware
dependency of the hardware-dependent tasks. Any
chromosome violating this rule is excluded in the
population.

4) The new chromosome must satisfy the period
constraints of the hardware-dependent tasks
defined with (15). Any chromosome violating this
rule is excluded in the population.

Although the Gene-TASS has the two objectives-the
real-time guarantee and the optimization of the system
utilization-, finding one optimal solution for both of
the objectives cannot be achieved. The shortcoming of
the Gene-TASS is that it has no way to guarantee real-
time constraints through the modulation of the task
periods because the real-time guarantee is achieved by
the assigner prior to the modifier. Consequently, the
search space of the Gene-TASS cannot cover all
feasible solutions.

4.3. Gene-TASP task assignment strategy

As mentioned in Section 3, the problem of the task
assignment strategy proposed in this paper is a kind of
multiple objective optimization problem. Generally, a
solution that is the best adapted to all objectives at the
same time does not exist. There are methods, such as
the weighted sum method, constraint method, and
goal programming method, to solve the multiple

objective optimization problems [26]. The problem
with these methods is that a priori quantitative
evaluation is required for the methods, and the
evaluation must conform to the objectives of the
optimization. The genetic algorithm is known to be
adequate for the multiple objective problem because
the genetic algorithm can find several Pareto solutions
in its iteratively generated populations [27].

The multiple objective genetic algorithm has
multiple fitness functions and collects the Pareto
solutions through the weighted combination of the
fitness functions. The Pareto ranking method, the
Pareto tournament method, and the Pareto reservation
method are well-known methods among them.

The second task assignment strategy proposed in
this paper is the Gene-TASP (Parallel Task
Assignment Strategy based on the Genetic algorithm).
The Gene-TASP searches optimized task assignment
through the concurrent execution of the task
assignment and the period modulation, as described in
Fig. 7. The Gene-TASP also has a system performance
criterion P of (11) as its fitness function. The vector
combination of the fitness function for the Pareto
solution is performed through α= 2, β=1 for the
Gene-TASP because feasible solutions of the real-time
constraints are permissible.

The chromosome of the Gene-TASP is shown in Fig.
8. The chromosome consists of super fields indicating
given tasks, and a task super field consists of its

Fig. 7. Gene-TASP task assignment strategy.

Fig. 8. The chromosome of the Gene-TASP.

Fig. 6. The chromosome of Gene-TASS modifier.

610 Hongryeol Kim, Jaejoon Oh, and Daewon Kim

location and its period. Iterative generations of new
populations are performed until the maximum number
of the generations is reached. The number of
chromosomes of a population is 100, and the
maximum number of the generations is 50,000. As
shown in Fig. 9, there is a parent pool for the
reproduction. Through the three fitness functions of
the Gene-TASP, the parents having the optimal end-to-
end delay, the parents having the optimal system
utilization, and the parents having the optimal system
criterion value are selected as the parents with equal
numbers for the reproduction. The parent selection
method is similar to the method of the Pareto
reservation method [28]. Selections of the parents
having the optimal end-to-end delay and the parents
having the optimal system utilization are similar to the
VEGA selection method, where parents having
optimal performance with one objective are selected
as parents for the reproduction.

With the parents, three genetic operators-crossover,
mutation, and elite selection-are used for the new
generation of the next population. The rates of the
invocation are 0.3 for the crossover and 0.5 for the
mutation. Here, the crossover is performed with the
super field, but the mutation is performed on the
subfields. The selection of a subfield for the mutation
between the field of location and the field of period is
performed randomly. The heuristic rules that exclude
the generation of new chromosomes for the Gene-
TASS are also applied to the Gene-TASP.

5. SIMULATIONS

In this section, some simulation tests are performed

with the assumption of m network nodes, n tasks, and
k hardware-dependent tasks. Configurations of the
tasks are shown in Table 1. The ‘H/W’ of Table 1
indicates whether the task depends on hardware
resource of a network node or not. The number means
the number of network node on which the task
depends. The initial period iT of the hardware-

dependent tasks are configured as / 4r
iT in Table 1.

The ‘PRED’ of Table 1 transmits messages to the
indicated tasks. The number means the number of
predecessor from which the task receives messages.
For examples, task number 1 transmits messages to
task number 2, and task number 2 receives messages
from task number 1 and transmits messages to task
number 3, as shown in the Table 1. The data size is the
size of the data field of the CAN messages from the
predecessors. Simulations are performed with three
task assignment strategies described in Section 4,
including two proposed task assignment strategies.

The purposes and methods of the simulations are
described as follows:

Firstly, to find the task assignment that can
guarantee the greatest system utilization, the system
utilization of the three task assignment strategies with
a constant number of tasks and an increasing number
of network nodes is analyzed. An analysis of the
system utilization is also performed similarly with a
constant number of network nodes and an increasing
number of tasks. Through the analysis, the task
assignment strategy that can guarantee the greatest
system performance is proposed.

Secondly, to find the task assignment strategy that
can expropriate tasks with the highest numbers, three
task assignments are simulated with a constant
number of network nodes and an increasing number of
tasks with real-time constraints. Through the
simulation, the task assignment strategy that can
guarantee the greatest amount of system flexibility
and system extendibility is proposed.

Thirdly, to find the task assignment strategy that
can assign a constant number of tasks with the lowest
number of network nodes, the task assignments are
simulated with the constant number of tasks. Through
the simulations, the task assignment strategy that can
minimize the system requirement the most is proposed.

Figs. 10 and 11 are individual system utilizations
and the worst-case delays, which are nearest to their

Fig. 9. New generation of the Gene-TASP.

Table 1. Task configurations for simulations.

No. T
(ms)

C
(ms) H/W PRED Data

(Byte)
Deadline

(ms)
1 50 20 None None None 200
2 50 20 1 1 4 200
3 80 30 2 2 2 260
4 100 40 3 3 8 360
5 100 40 None 4 5 400
6 50 20 None 3 4 260
7 80 30 None 3 8 400
8 50 20 None 5 4 400
9 100 40 None 8 8 300

10 50 20 None 5 6 350
11 100 40 None 5 5 400
12 100 40 None 5 5 400

Task Assignment Strategies for a Complex Real-time Network System 611

given deadlines, with six tasks and an increased
number of network nodes from three to six. Even with
the increased number of network nodes, all task
assignment strategies meet the deadline constraints in
Fig. 10. and In Fig. 11, the system utilization is
decreased with the increased number of network
nodes in the cases of the task assignment using the
BnB optimization and the assigner of the Gene-TASS.
The decrease of the utilization occurs because the
minimization of the delay is only the purpose of the
strategy with the BnB optimization and the assigner of
the Gene-TASS. In particular, the number of network
nodes with assigned tasks is converged with the two
strategies because they try to assign the tasks without
network communication. Consequently, idle network
nodes without assigned tasks decrease the whole
system utilization.

On the other hand, the modifier of the Gene-TASS
and the Gene-TASP modulate the periods of the tasks,
so the system utilization is maximized, as shown in
Fig. 11. The system utilization by the modifier of the
Gene-TASS is higher than the utilization of the Gene-
TASP because the modifier modulates the period in
the last step of the Gene-TASP without any
consideration, but the Gene-TASP searches for the
Pareto solutions, not the sole solution of the maximum
system utilization.

Figs. 12 and 13 are individual system utilizations
and worst-case delays, which are nearest to their given
deadlines, with six network nodes and an increased
number of tasks from seven to eleven. Even with the
increased number of tasks, all task assignment
strategies meet the deadline constraints in Fig. 12,
Contrary to the cases of Fig. 10. In Fig. 13, the system
utilization is increased with the increased number of
tasks, in the cases of the task assignment using the
BnB optimization and the assigner of the Gene-TASS.
The increase of the utilization is due to the increase of
the task number with a constant number of network
nodes.

However, when the modifier of the Gene-TASS and
the Gene-TASP modulate the periods of the tasks, the
system utilization is maximized, as shown in Fig. 13
similar to Fig. 11. The system utilization by the
modifier of the Gene-TASS is also higher than the
utilization of the Gene-TASP for the same reason as in
Fig. 11.

Through the analysis of the end-to-end delay and
system utilization of the three task assignment
strategies, the final assignment result of the Gene-
TASS assigns tasks with the greatest system utilization,
regardless of the number of network nodes and the
number of tasks, when the number of tasks can be
assigned while still meeting deadlines. Consequently,

Fig. 10. Delays nearest to the deadlines with an
increased number of network nodes.

Fig. 11. System utilization with an increased number
of network nodes.

Fig. 12. Delays nearest to the deadlines with the
increased number of tasks.

Fig. 13. System utilization with the increased number
of tasks.

612 Hongryeol Kim, Jaejoon Oh, and Daewon Kim

the Gene-TASS is the best choice when system
requirement is the maximum system performance and
the resource of the system is enough to assign
dedicated tasks.

The permissible numbers of tasks that can be
assigned on three network nodes by the task
assignment strategies are shown in Fig. 14. The
permissible numbers by the strategy with the BnB
optimization and by the Gene-TASS are six but the
permissible number by the Gene-TASP is ten. The
result of the Gene-TASP is achieved through searching
for the Pareto solutions of end-to-end delay and
system utilization. Consequently, the search area of
the Gene-TASP covers a much wider area than others.

As shown in Fig. 14, the Gene-TASP can assign the
highest number of tasks. Consequently, Gene-TASP is
the best choice when system requirement is the
maximum number of tasks when the number of
network nodes is constrained. This capability of the
Gene-TASP is very important in real applications.
Since the predefined number of network nodes is
usual system constraint, the Gene-TASP enables the
system capacity the maximum. This kind of benefit of
the Gene-TASP is achieved through real-time
guarantee through the modulation of the task periods.
Despite of the highest utilization of the assignment
with the Gene-TASS below six tasks, the Gene-TASS
cannot find any assignment with seven or more tasks
because it cannot modulate the task period for the
purpose of real-time guarantee.

The numbers of required network nodes with four
tasks are shown in the Table 2. As shown in the table,
the number of required network nodes is smallest with
the task assignment by the strategy with the BnB
optimization and by the Gene-TASS. Since the system
utilization is not the optimization target in this case,
the strategy with the BnB optimization and the
assigner of the Gene-TASS find the task assignment
with minimum number of network nodes. These
methods attempt to find the task assignment with
minimum network communication, but the Gene-
TASP searches for the Pareto solution considering

system utilization. The Gene-TASP aims to increase
the number of network nodes when the system
utilization can be increased with an increased number
of network nodes.

As shown in the simulation results, the Gene-TASS
is the best choice for a system in which system
performance is the most important, and the Gene-
TASP is the best choice for a system in which a higher
number of running tasks is the most important. To
assign predetermined number of tasks to minimum
network nodes, the Gene-TASS and the strategy with
the BnB optimization are the best choice.

6. CONCLUSIONS

In this paper, a study on task assignment strategies

was performed for the complex real-time network
system. Two task assignment strategies, the Gene-
TASs and the Gene-TASp, are proposed to improve
upon previous strategies. The proposed task
assignment strategies generate task assignments that
guarantee end-to-end real-time constraints and also
optimize system utilization through rate modulation.
Consequently, the strategies aim to optimize the
system performance. The proposed task assignment
strategies are devised using the genetic algorithm with
the heuristic real-time constraints in the generation of
new populations. The strategies are differentiated by
the optimization method of two objectives, end-to-end
real-time guarantees and system utilization. The first
one has sequential genetic algorithm routines for the
objectives, and the second one has one multiple
objective genetic algorithm routine to find a Pareto
solution. In addition to the proposals, the
performances of the proposed strategies and an
existing task assignment strategy using the BnB
optimization are compared with one other through
some simulation tests. According to the comparison of
the simulation results, the Gene-TASS is revealed to
be the best choice for a system in which system
performance is the most important and the Gene-TASP
is revealed to be the best choice for a system in which
the acceptance of large number of tasks is the most
important. To assign a predetermined number of tasks
to the minimum network nodes, the Gene-TASS and
the strategy with the BnB optimization are revealed to
be the best choices.

For further study, the proposed task assignment
strategy will be revised for dynamic assignment of
tasks during the run-time of the network system. The

Fig. 14. The permissible number of tasks with three
network nodes.

Table 2. Required number of network nodes with four
tasks.

 Strategy with
the BnB

Gene-
TASS

Gene-
TASP

Required no. of
network nodes 2 2 4

Task Assignment Strategies for a Complex Real-time Network System 613

online revision of the task assignment strategy will be
useful for flexible online resource management of the
system.

REFERENCES

[1] H. Kim, J. Kim, and D. Kim, “Development of
coordinated scheduling strategy with end-to-end
respose time analysis for the CAN-based
distributed control systems,” Proc. of IEEE/RSJ
International Conference on Intelligent Robot
and System, pp. 2099-2104, 2004.

[2] CAN Specification Version 2.0, Robert Bosch
GmbH, 1991.

[3] J. Lehoczky, L. Sha, and Y. Ding, “The rate
monotonic scheduling algorithm: Exact
characterization and average case behavior,”
Proc. of IEEE Real-Time Systems Symposium,
1989.

[4] C. L. Liu and J. W. Layland, “Scheduling
algorithms for multiprogramming in a hard-
realtime environment,” Journal of the ACM, vol.
20, no. 1, pp. 46-61, 1973.

[5] M. Spuri and G. Buttazzo, “Scheduling aperiodic
tasks in dynamic priority systems,” Journal of
Real-time Systems, vol. 10, pp. 179-210, 1996.

[6] K. Tindell and A. Burns, “Guaranteed message
latencies for distributed safety-critical hard real
time control networks,” Technical Report YCS
94-229, Dept. Computer Science, Univ. of York,
York, UK, 1994.

[7] M. Di Natale, “Scheduling the CAN bus with
earliest deadline techniques,” Proc. of the IEEE
Real-Time Symposium, pp. 259-268, 2000.

[8] K. M. Zuberi and K. G. Shin, “Non-preemptive
scheduling of messages on controller area
network for real-time control applications,” Proc.
of Real-Time Technology and Applications
Symposium, pp. 240-249, 1995.

[9] J. B. Sinclair, “Efficient computation of optimal
assignments for distributed tasks,” Journal of
Parallel and Distributed Computing, vol. 4, pp.
342-362, 1987.

[10] V. M. Lo, “Heuristic Algorithms for task
assignment in distributed systems,” IEEE Trans.
on Computers, vol. 37, no. 11, pp. 1384-1397,
1988.

[11] W. W. Chu and L. M. Lan, “Task allocation and
precedence relations for distributed real-time
system,” IEEE Trans. on Computers, vol. 36, no.
6, pp. 667-679, 1987.

[12] W. H. Kohler and K. Steiglitz, “Computer and
job-shop scheduling theory,” Enumerative and
Iterative Computational Approach, pp. 229-287,
John Wiley & Sons, 1976.

[13] W. W. Chu and K. Leung, “Module replication
and assignment for real-time distributed
processing systems,” Proc. of the IEEE, vol. 75,

no. 5, pp. 547-562, 1987.
[14] D.-T. Peng, K. G. Shin, and T. F. Abdelzaher,

“Assignment and scheduling communicating
periodic tasks in distributed real-time systems,”
IEEE Trans. on Software Engineering, vol. 23,
no. 12, pp. 745-758, 1997.

[15] M. A. Moncusi, J. M. Banus, J. Labarta, and A.
Arenas, “A new heuristic algorithm to assign
priorities and resources to tasks with end-to-end
deadlines,” Proc. of International Conference on
Parallel and Distributed Processing Techniques
and Applications, vol. IV, pp. 2102-2108, 2001.

[16] K. Tindell, A. Burns, and A. J. Wellings,
“Allocating real-time tasks (an np-hard problem
made easy),” Journal of Real-Time Systems, vol.
4, no. 2, pp. 145-165, 1992.

[17] T. M. Chung and H. G. Dietz, “Adaptive genetic
algorithm: Scheduling hard real-time control
programs with arbitrary timing constraints,”
Technical Report of Purde University, 1995.

[18] R. Nossal and T. M. Galla, “Solving NP-
complete problems in real-time system design by
multichromosome genetic algorithms,” Proc. of
SIGPLAN Workshop on Languages, Compilers,
and Tools for Real-Time Systems, pp. 68-76,
1997.

[19] A. S. Wu, H. Yu, S. Jin, K. Lin, and G. Schivone,
“An incremental genetic approach to
multiprocessor scheduling,” IEEE Trans. on
Parallel and Distributed Systems, vol. 15, no. 9,
pp. 824-834, 2004.

[20] Y.-H. Lee and C. Chen, “A modified genetic
algorithm for task scheduling in multiprocessor
systems,” Proc. of Workshops on Compiler
Techniques for High-Performance Computing,
2003.

[21] T. C. Lueth and T. Laengle, “Task description,
decomposition, and allocation in a distributed
autonomous multi-agent robot system,” Proc. of
International Conference of Intelligent Robots
and Systems, pp. 1516- 1523, 1994.

[22] P. Altenbernd, C. Ditze, P. Laplante, and W.
Halang, “Allocation of Periodic real-time tasks,”
Proc. of IFAC/IFIP Workshop, 1995.

[23] “Alpha Linux Ready Systems.” Available:
http://h18002.www1.hp.com/alphaserver/linux/

[24] T. W. Kuo and A. K. Mok, “Incremental
reconfiguration and load adjustment in adaptive
real-time systems,” IEEE Trans. on Computers,
vol. 46, no. 12, pp. 1313-1324, 1997.

[25] K. J. Astrom and B. Wittenmark, Computer-
Controlled Systems, Prentice Hall, 1997.

[26] C. L. Hwang and K. Yoon, Multiple Attribute
Decision Making, Methods and Application, a
State-of-Art Survey, Springer-Verlag, 1981.

[27] J.-H. Chen, “Theoretical analysis of multi-
objective genetic algorithms - convergence time,

614 Hongryeol Kim, Jaejoon Oh, and Daewon Kim

population sizing and disequilibrium,” Report
for IEEE NNS Walter Karplus Research Grant,
2003.

[28] H. Tamaki, H. Kita, and S. Kobayasi, “Multi-
objective optimization by genetic algorithms: A
Review,” Proc. of the IEEE International
Conference on Evolutionary Computation, pp.
517-522, 1996.

Hongryeol Kim received the B.S. and
M.S. degrees in Electrical Engineering
from Myongji University in 1996 and
1998. He joined R&D Center of
Carrier Korea Ltd. in 1998. He is
currently pursuing a Ph.D. degree at
the School of Information Engineering,
Myongji University. His research
interests include real-time network

controls and intelligent robot control architectures.

Jaejoon Oh received the B.S. degree
in Mechanical Engineering from
Kookmin University in 2002, and M.S.
degree in Information Engineering
from Myongji University in 2004.
Currently, he joined R&D Center of
the ATI Ltd. His research interests
include robot controls and system
control architectures.

Daewon Kim received the B.S., M.S.,
and Ph.D. degrees in Control and
Measurement Engineer-ing from Seoul
National University in 1983, 1985, and
1990. He was a Senior Engineer at the
R&D Center of Daewoo Heavy
Industry Ltd. from 1987 to 1992. He is
a Professor in the Department of
Information Engineering is Myongji

University from 1992. His research interests include
distributed control systems and personal robots.

