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Abstract
Gale and Shapley’s matching model has a “stable matching,” where no

pair of a firm and a worker prefer each other. The main application has been
a one-time matching with a centralized matchmaking mechanism. However,
not many job markets are centralized, and participants may remain active in
the market even after they are matched. This paper studies an infinite-horizon
decentralized game. Every period, firms with vacant positions make offers
to workers, who then decide which offers to accept. The game depends on
whether agents commit to their relationships. With no commitment, a worker
can leave the current employer but may also be dismissed. With two-sided
commitment, matched pairs withdraw from the market. With one-sided com-
mitment, workers are protected from dismissal but remain active in the market,
as in the case of tenured professors. We characterize stationary equilibria for
each commitment structure. Without commitment, equilibrium outcomes co-
incide with stable matchings; neither side of the market is favored and the
set of unemployed workers is equilibrium-invariant. With commitment, either
one-sided or two-sided, an equilibrium may reach an unstable matching even
if there is no initial commitment. With one-sided commitment, an equilibrium
may even yield an unstable matching where all workers are worse off than in
every stable matching. In this case, the workers are better off if job protections
are removed.
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1 Introduction

The basic idea of matching theory is that a matching between agents is not stable if
there exists a pair of agents who prefer each other to their current partners. Such a
pair is called a “blocking pair,” and matchings with no blocking pair are called “sta-
ble matchings.” For the standard matching problem, a stable matching exists for
any number of agents and any profile of preferences, as shown by Gale and Shapley
(1962). Gale and Shapley also give an algorithm that finds a stable matching. The
algorithm has been used since early 1950s by a centralized matchmaking mecha-
nism to assign new American physicians to hospitals (Roth, 1984). The hypothesis
of Roth (1991) is that the success of a centralized labor market depends on whether
the matchmaking mechanism generates a stable matching.

The focus of the literature has been matching markets that are centralized, where
participants submit preferences to a center and a matching is determined by an algo-
rithm. On the other hand, many markets—including the market for economists—are
decentralized, where a matching is determined by a series of offers and replies cho-
sen strategically by the agents. How does a decentralized market compare with a
centralized one? Does a decentralized market generate a stable matching? Is the
answer sensitive to the way in which the decentralized market operates?

To address these questions, this paper studies equilibria in a dynamic game of
matching. We extend the original Gale–Shapley model to a dynamic and nonco-
operative setting where firms and workers interact repeatedly in a decentralized
manner. In every period, firms with vacant positions make offers to workers, who
then choose individually which offer to accept. To raise realism, we assume that
each worker observes only the offers made to her. The market takes place every
period—for example, once a year—and all agents derive utility from their matching
in each period. We focus on stationary equilibria, where actions vary only with the
payoff-relevant state of the game.

Our dynamic matching model makes it possible to analyze the role of commit-
ment, in particular, how equilibrium matching depends on whether agents commit
themselves to their employment relationships. In our stylized model, three interest-
ing possibilities can be considered. The first possibility is that, once a pair of agents
are matched, they withdraw from the market and stay together permanently. The
second possibility is that agents make no commitment beyond one period. That is,
employees can accept new job offers but may also be dismissed. The third possibil-
ity is that firms make commitments while workers do not. That is, workers remain
active in the job market but are protected from dismissal, as in the case of tenured
professors and government employees.

In the absence of commitment, we show that every stationary equilibrium yields
a stable matching. An implication is that if a worker is unemployed in one equilib-
rium, he is unemployed in every equilibrium. We also show that, in the absence of
commitment, stationary equilibria can yield any stable matching: no stable match-
ings are ruled out. This is in contrast with an important result in the matching

1



theory: Gale–Shapley algorithm favors one side of the market. In the static model,
if one uses Gale–Shapley algorithm where firms make offers and workers passively
respond to the offers, the algorithm generates what is known as the firm-optimal
stable matching, which is a stable matching that is unambiguously best for all firms
and worst for all workers. If the roles of firms and workers are reversed in the al-
gorithm, the outcome changes to the worker-optimal stable matching. The result
has an obvious practical importance: the American hospital-intern matching market
used the hospital-optimal algorithm for 50 years but recently changed the algorithm
to the student-optimal one (Roth and Peranson, 1999). In contrast, the result in the
present paper shows that, in decentralized and dynamic matching markets with no
commitment, which side of the market makes offers is irrelevant.

On the other hand, if at least one side of the market makes commitment, a sta-
tionary equilibrium need not yield a stable matching. Of course, the result is trivial
if the game starts with many committed firms and workers and no stable matching
is reachable. However, the result obtains even if agents start with no commitment.
Without any initial commitment and without any random shock or mistake, it is
possible that agents knowingly and willingly reach an unstable matching and stay
there. A blocking pair exists in the equilibrium matching but does not get together.
For the one-sided commitment case, the reason is that, if the firm in the blocking
pair makes an offer to the blocking partner, the action triggers a chain reaction in
which a firm that lost a worker takes another worker from another firm. In the end,
the firm who started the process ends up losing the blocking partner. Anticipating
this, the firm in the blocking pair does not make an offer to the blocking partner.

For the one-sided commitment case, it is even possible that the equilibrium out-
come is an unstable matching where all workers are worse off than in any stable
matching. This is interesting since job protections are intended to protect workers.
As the model predicts, if job protections are lifted, every equilibrium yields a stable
matching. Therefore, in the example, all workers are better off if job protections are
removed.

An example of workers who are protected from dismissal is public school teach-
ers in the US. In most states, teachers in public schools are strongly protected by
state law and the collective bargaining agreement between the district and the teach-
ers’ union. Dismissing a teacher is known to be difficult and hence rare because
the principal has to go through a lengthy legal procedure (Bridges, 1992; Ballou,
1999). Weakening job protections for public school teachers has been a major po-
litical issue but met a strong resistance from teachers’ unions. For example, in 2005,
Governor Schwarzenegger of California proposed a measure, called Proposition 74,
to make it easier to dismiss teachers. According to the press, California Teachers
Association spent more than $7 million to defeat the measure. The measure was
indeed rejected by the public in a special election.

The results of this study suggest that job protections need not be good for teach-
ers. The result for the no-commitment case shows that, without job protections, the
market reaches a stable matching and has no systematic bias towards either side of
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the market. With job protections, unstable matchings are possible but teachers may
not gain from it. It is theoretically possible that job protections make all teachers
worse off.

There are a few papers that also study decentralized matching markets.
Haeringer and Wooders (2006) study a similar game but there are a few critical
differences. They assume that once a pair forms a partnership, it is the end of the
game for the pair, as in our two-sided commitment case. Furthermore, they assume
that the payoff realizes only once and depends only on the identity of the partner.
There are no time preferences. Their model therefore can be thought of as describ-
ing a job market for a single year. Our model, on the other hand, describes the
dynamics of a job market over years where agents collect payoffs as they go along.
Technically, their model is similar to a bargaining model while ours is similar to a
repeated game.

Konishi and Sapozhnikov (2005) and Niederle and Yariv (2007) also consider
similar models with realistic details on salary or the length of offers. But, as in
Haeringer and Wooders, agents who get matched exit the game.

There is also a literature of search models of matching. Our model is not a search
model: we assume that market participants know each other well and do not have
to rely on random encounters. Within the search-model literature, Adachi (2003)
is particularly close to our paper since it is also based on the Gale–Shapley model.
But, as in the above papers, he also deals only with the case where agents exit as
soon as they get matched. Further, to make the distribution of agents stationary, he
uses a “replacement assumption”: when agents exit, their clones take their places.
He shows that, as the discount factor goes to one, the set of equilibrium outcomes
converges to the set of stable matchings. As we show, the result does not hold if
agents know each other and no replacement arrives, even if the discount factor is
close to one.

Blum, Roth, and Rothblum (1997) consider an algorithm that finds a stable
matching when some of the agents are initially matched. Towards the end of the
paper, the authors study a game similar to ours with one-sided commitment. How-
ever, the payoff realizes only once and depends only on the final matching. The
paper characterizes Nash equilibria in “preference strategies,” where each agent
uses a single (possibly false) preference ordering for decisions at all nodes [see also
Pais (2005) for an extension].

Alcalde and Romero-Medina (2000), in the context of mechanism design theory,
study a game where only one round of offers and replies takes place. That is, firms
make offers, workers reply, and the game ends. They show that this game achieves
(or implements) stable matchings [see also Alcalde, Pérez-Castrillo, and Romero-
Medina (1998)].

There is also a strand of literature that studies, within the original static model,
whether a myopic adjustment process based on the blocking notion converges to
a stable matching. Knuth (1976) gives an example showing that a sequence of
successive myopic blockings may form a cycle and never reach a stable matching.
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Roth and Vande Vate (1990) show that, if a blocking pair is chosen randomly at
each step of the process, the process reaches a stable matching with probability one.
The sequential blocking process implicity assumes that no commitment is made by
the agents. The critical feature of the process is that the agents are myopic: in each
step, the acting blocking pair behaves as if the process terminates in their turn.

Our dynamic matching game also brings some insights from the literature of
dynamic coalition-formation games [see, e.g., Chatterjee, Dutta, Ray, and Sengupta
(1993), Bloch (1996), Ray and Vohra (1999), Bloch and Diamantoudi (2007)] to
the study of decentralized matching market. With a dynamic game of coalition
formation, in each period a proposer is selected among the set of active players
using a protocol (often exogenously given) to make a proposal of forming a coalition
and prospective members respond sequentially to such a proposal. This coalition is
formed if all prospective members accept the proposal. Therefore, in each period, at
most one coalition can form. In contrast, in our dynamic matching game, all active
firms can simultaneously make offers and several firm-worker pairs can form in a
single period. Another feature of our game is the different commitment structures
that naturally arise in a labor market.

In the next section, we introduce a standard static model of matching. Section 3
defines our dynamic game of matching. Sections 4–6 study respectively the three
aforementioned commitment structures. A short conclusion follows. The appendix
contains some details omitted from the main text.

2 Static Matching Problem

In a static matching problem, introduced by Gale and Shapley (1962), there are two
disjoint finite sets F and W of firms and workers. An agent refers to either a firm or
a worker. Each agent i has a utility function ui such that

u f : W ∪ { f } → R for all f ∈ F,
uw : F ∪ {w} → R for all w ∈ W.

Here, ui( j) denotes agent i’s utility of being matched with agent j; ui(i) is the agent’s
utility of being unmatched. We normalize utilities so that ui(i) = 0 for all i. If
ui( j) ≥ 0, we say j is acceptable to i. We assume strict preferences: ui( j) = ui(k)
only if j = k.

For simplicity, we assume that each firm has only one position. A matching is
then a function µ : F ∪ W → F ∪ W such that (i) for all f ∈ F, µ( f ) ∈ W ∪ { f },
(ii) for all w ∈ W, µ(w) ∈ F ∪ {w}, and (iii) for all i, j ∈ F ∪ W, if µ(i) = j then
µ( j) = i. Here, µ(i) denotes the agent with whom i is matched. If µ(i) = i, then i is
not matched with anyone. Let µ∅ denote the matching in which no one is matched.

A matching µ is individually rational if, for all i ∈ F ∪W, µ(i) is acceptable to
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i. A matching µ is blocked by a pair ( f ,w) ∈ F ×W if

u f (w) > u f (µ( f )),
uw( f ) > uw(µ(w)).

That is, f and w both prefer each other to their partners under µ. A matching µ is
stable if it is individually rational and has no blocking pair. By Gale and Shapley
(1962), a stable matching exists for any matching problem.

3 Dynamic Matching Game

We consider a situation where agents are matched every period in a de-
centralized fashion. A dynamic matching game, parameterized by a list
(F,W, (ui, δi)i∈F∪W , Fc,Wc), is defined as follows.

3.1 Periods and Payoffs

Time periods are discrete and indexed by t = 1, 2, 3, . . . . For academic labor mar-
kets, think of a period as one year. In each period, agents derive a payoff from the
realized matching. The period-payoff function for agent i is ui introduced above and
is time-invariant. Each agent i maximizes the discounted sum of period-payoffs,

∞∑

t=1

δt−1
i ui(µt(i)),

where µt is the realized matching in period t and δi ∈ (0, 1) is the discount factor.

3.2 Active Agents

At the beginning of each period t = 1, 2, . . . , all agents observe the matching real-
ized in the previous period, denoted by µt−1. We assume µ0 = µ∅: no one is matched
before the initial period.

The matching µt−1 determines the set of firms and workers who are not able to
move in period t. The set of inactive firms in period t is given by Fc(µt−1) ⊆ F.
These firms have committed themselves to their employees in µt−1. During period t,
therefore, they can neither dismiss their employees nor hire new ones. That is,
their current employees have tenure and there jobs are protected. Its complement,
F \ Fc(µt−1), is the set of active firms, which have not made any commitment to any
worker. Therefore, active firms retain the right to dismiss their current employees if
they have any. Similarly, let Wc(µt−1) denote the set of inactive workers in period t,
who cannot switch their employers in period t. The complement, W \ Wc(µt−1),
is the set of active workers, who have no commitment and can leave their current
employers if they have been employed.

We consider the following three specifications for Fc and Wc.
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Case 1: No commitment. All firms and workers are active regardless of the pre-
vious matching: Fc(µt−1) = Wc(µt−1) = ∅. Thus, firms can dismiss their employees,
and workers can leave their current employers. That is, all labor contracts expire in
one period.

Case 2: Two-sided commitment. All matched agents are inactive:

Fc(µt−1) = { f ∈ F : µt−1( f ) , f },
Wc(µt−1) = {w ∈ W : µt−1(w) , w}.

Thus, once a firm and a worker are matched, they stay together permanently.
Case 3: One-sided commitment. All the matched firms are inactive, while all

workers are active:

Fc(µt−1) = { f ∈ F : µt−1( f ) , f },
Wc(µt−1) = ∅.

Thus, workers cannot be dismissed but they may switch to other firms.

3.3 Period-Game

In every period, the agents play the following two-stage game.
In the first stage, every firm simultaneously makes an offer to at most one

worker. An active firm can make an offer to any worker while an inactive firm
has no option but to keep its employee under µt−1. For convenience, we treat inac-
tive firms as if they make new offers to their current employees (i.e., renewal offers).
Thus, firm f ’s action, denoted by o f , is constrained by


o f ∈ W ∪ { f } if f < Fc(µt−1),
o f = µt−1( f ) if f ∈ Fc(µt−1),

where o f = f means that f makes no offer to any worker. Let O f (µt−1) denote the
set of admissible actions for f .

In the second stage, each worker w privately observes the offers made to her in
the first stage, denoted Ow ≡ { f ∈ F : o f = w}. As noted above, Ow includes the
renewal offer from the current employer if w has tenure. Workers do not observe
any offer made to other workers in the current period. As noted above, each worker
observes the entire matching realized in previous periods. Given these observations,
each worker simultaneously accepts at most one offer. Active workers w can accept
any offer or reject all. Inactive workers have no choice but to accept the renewal
offer from their current employer. Thus, worker w’s response, denoted by rw, is
constrained by 

rw ∈ Ow ∪ {w} if w < Wc(µt−1),
rw = µt−1(w) if w ∈ Wc(µt−1).
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Let Rw(µt−1,Ow) denote the set of admissible responses for w.
Given the actions of firms and workers, the matching in period t, denoted µt, is

determined by
µt(w) = r(w) for all w ∈ W.

3.4 Histories and Strategies

A history for firm f at the beginning of period t is an ordered list

ht
f = (µ0 = µ∅, o1

f , µ
1, o2

f , . . . , o
t−1
f , µt−1),

where oτf is the offer that f made in period τ and µτ is the matching realized in that
period. While µτ is public information, oτf is private information. Let Ht

f denote the
set of histories for f at the beginning of period t. Let H f ≡ ∪∞t=1Ht

f be the set of all
histories for f .

A strategy of firm f is a function σ f : H f → ∆(W∪{ f }) such that for all ht
f ∈ H f ,

σ f (ht
f ) ∈ ∆(O f (µt−1)), where µt−1 is the last entry of ht

f .
Similarly, a history for worker w at period t (when she makes a decision) is an

ordered list
ht

w = (µ0 = µ∅,O1
w, r

1
w, µ

1,O2
w, . . . , µ

t−1,Ot
w),

where Oτ
w is the set of offers made to w in period τ (including a renewal offer if

any) and rτw is her reply in that period. Let Ht
w denote the set of all histories for

w at period t. Let Hw ≡ ∪∞t=1Ht
w be the set of all histories for w. A strategy of

worker w is then a function σw : Hw → ∆(F ∪ {w}) such that, for all ht
w ∈ Hw,

σw(ht
w) ∈ ∆(Rw(µt−1,Ot

w)), where µt−1 and Ot
w are the last two entries of ht

w.
A strategy profile σ = (σi)i∈F∪W determines the expected payoff for each agent

in the dynamic game. We limit ourselves to sequential equilibria in stationary strate-
gies, where each agent’s strategy depends only on the payoff-relevant state of the
game, as we now define formally.

3.5 Stationary Strategies

In our dynamic matching game, the state variable is the matching in the previous
period. However, distinct matchings may induce the same continuation game, de-
pending on the commitment structure. We write µ ∼ µ′ if µ and µ′ induce the
same continuation game, and we say that µ and µ′ are continuation equivalent. The
equivalence relation ∼ depends on the commitment structure of the game as follows.

In the no-commitment case, all matchings are continuation equivalent: µ ∼ µ′

for all µ, µ′. In the absence of commitment, the continuation game is the same
regardless of what happened in the previous periods.

In the two-sided commitment case, two matchings are continuation equivalent if
and only if the set of unmatched agents is identical: µ ∼ µ′ if and only if {i ∈ F∪W :
µ(i) = i} = {i ∈ F∪W : µ′(i) = i}. The agents who have been matched cannot change
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their partner in the rest of the game. So what matters for the remaining agents is the
set of remaining agents. How the matched agents are matched is irrelevant.1

In the one-sided commitment case, no two matchings are continuation equiva-
lent: µ ∼ µ if and only if µ = µ′. Even if the set of matched agents is the same, the
continuation game depends on how the agents are currently matched.

With the equivalence relation, we can define stationary strategies as follows.
A firm f ’s strategy σ f is stationary if for any two histories h f = (. . . , µ) and
h′f = (. . . , µ′) (possibly with different lengths), if µ ∼ µ′ then σ f (h f ) = σ f (h′f ).
For workers’ strategies, there is another requirement saying that the set of offers
received in the current period is also identical. That is, a worker w’s strategy σw is
stationary if for any two histories hw = (. . . , µ,Ow) and h′w = (. . . , µ′,O′w), if µ ∼ µ′
and Ow = O′w then σw(hw) = σw(h′w). A stationary equilibrium is a sequential
equilibrium in which everyone’s strategy is stationary.

4 When No One Commits

We first consider the case where no one makes any commitment. The following
result shows that, in the absence of commitment, the static notion of stability does
a good job in predicting the outcome of stationary equilibrium.

Proposition 1 Consider any dynamic matching game with no commitment. Then
for any stationary equilibrium, the realized matching is identical in all periods and
is stable. Conversely, for any stable matching, there exists a stationary equilibrium
that yields this matching every period.

In the absence of commitment, what happened in the previous periods is payoff-
irrelevant and therefore is ignored by agents in stationary equilibria. Stated differ-
ently, what happens in the current period does not affect the outcome in the future.
Because of this independence, agents can disregard the future and behave as in the
static model.

A useful fact is that, for a fixed preference profile, the set of unmatched agents is
identical in all stable matchings (Roth and Sotomayor, 1990). If an agent (worker or
firm) is alone in one stable matching, he is alone in every stable matching. Therefore
all the stationary equilibria make no difference for this agent.

5 When Both Sides Commit

We now consider the case where both sides of the market commit to their employ-
ment relationships. We first show that every stable matching is the outcome of some

1Technically speaking, two distinct matchings with the same set of unmatched agents induce
different continuation games, since the matched agents’ unique admissible action is labeled differ-
ently; where each matched firm has to make a renewal offer depends on the matching. But since the
matched agents have no choice, we focus on the continuation game among the unmatched agents.
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stationary equilibrium. Thus, no stable matching can be ruled out as an equilibrium
outcome.

Proposition 2 Consider any dynamic matching game with two-sided commitment.
For any stable matching, there exists a stationary equilibrium that yields this match-
ing every period.

The proposition does not say anything about the outcomes in out-of-equilibrium
subgames, but there actually exists a stationary equilibrium that induces a stable
matching in every subgame. Specifically, for every subset of agents S ⊆ F ∪ W,
choose any stable matching µS for the subset. Given a collection {µS }S⊆F∪W , we
can show that there exists a stationary equilibrium such that, after any history, µS is
formed where S is the set of active agents.

In Proposition 2, the equilibrium matching is determined completely in the ini-
tial period and there is no movement thereafter. The next result shows that stationary
equilibria do not always have this feature.

Proposition 3 (Equilibria may involve a delay) For some dynamic matching game
with two-sided commitment, there exists a stationary equilibrium where some pairs
are formed after the first period.

Here is an example that shows why a delay is possible. There are 4 firms and 4
workers, whose ordinal preferences are given by

f1 f2 f3 f4 w1 w2 w3 w4

w1 w3 w3 w4 f4 f3 f1 f2

w3 w2 w4 w3 f1 f2 f4 f3
... w4 w1 w2 f3 f4 f2 f1

... w2 w1 f2 f1 f3 f4

f3 f4 w1 w2 w3 w4

If the agents are sufficiently patient, there exists a stationary equilibrium in which
{ f1,w1} and { f2,w2} are matched in period 1 while { f3,w3} and { f4,w4} are matched
in period 2. The complete description of the equilibrium is given in the appendix.
Here we describe informally how the equilibrium works. In the initial period, every
firm makes an offer. Firms f1 and f2 make offers to w1 and w2, respectively, and
get accepted. Firms f3 and f4 also make offers to w1 and w2, respectively, and get
rejected. In the second period, f3 and f4 make offers to w3 and w4, respectively, and
get accepted.

The offers made by f3 and f4 in the first period are rejected in equilibrium. Why
do not f3 and f4 make offers to w3 and w4 directly in the first period? The answer is
simply that if f3, for example, deviates in the first period and makes an offer to w3,
the offer will be rejected. As we will see shortly, the continuation equilibrium will
match f3 with w4. Since f3 prefers w3, the deviation does not make it better off.
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Why does w3 reject f3 when f3 deviates? The key is that, as the recipient of
f3’s offer, w3 knows that w1 did not receive an offer from f3. Without an offer from
f3, the equilibrium prescribes w1 to reject f1. We will see why w1 behaves in this
way, but first let’s see why w3 rejects f3. If w3 rejects f3, the behavior of w1 implies
that the only { f2,w2} is matched in the current period. In the next period, the set of
active agents is F ∪ W \ { f2,w2} and the continuation strategy prescribes they are
matched immediately as [{ f1,w1}, { f3,w4}, { f4,w3}], which is a stable matching for
the 6 agents. In the matching, w3 gets her second choice, while f3 is only her fourth
choice. If w3 is patient enough, therefore, she prefers to wait for her second choice.

The preceding paragraph does not explain why w1 rejects f1 in the event that
w1 did not receive an offer from f3. The key to the answer is that, in this particular
event, w1 believes that f3 made an offer to w4. Since offers are private information,
w1 does not know where f3 made an offer or whether f3 made an offer at all. In the
sequential equilibrium we construct, w1 holds the particular belief we described.
The belief is not unreasonable since, for f3, making an offer to w4 is the second
best response. The action is actually the best response if f3 is sufficiently impatient.
If f3 indeed made an offer to w4, the equilibrium prescribes w4 to accept the offer.
Therefore w1 believes that if she rejects f1, the set of active agents in the next period
will be { f1, f4,w1,w3} and the continuation strategy will prescribe the agents to be
matched immediately as [{ f1,w3}, { f4,w1}]. The outcome is a stable matching for
the 4 agents, where both workers get their first choice. Thus, by rejecting f1 in the
initial period, w1 can get her first choice in the next period. If w1 is patient enough,
therefore, she prefers to wait for her first choice.

The equilibrium outcome, where { fi,wi} is matched for all i, is not a stable
matching, being blocked by f2 and w3. This brings us to the following result.

Proposition 4 (An equilibrium matching may be unstable) For some dynamic
matching game with two-sided commitment, there exists a stationary equilibrium
whose final matching is not stable.

The question is why the blocking pair does not form. Why does not f2 make an
offer to w3 in the first period? They prefer each other, and once they are matched,
they commit to each other. The answer is that, if f2 makes an offer to w3, the offer
will be rejected. In the continuation equilibrium, f2 will be matched with w2. Thus
the deviation only delays the matching with the same worker. The question is then:
why does w3 reject f2? The answer is that if w3 rejects f2, the set of active agents in
the next period is F∪W \{ f1,w1} and the continuation strategy prescribes them to be
matched as [{ f2,w2}, { f3,w4}, { f4,w3}], which is a stable matching for the 6 agents.
In the matching, w3 gets her second choice, while her blocking partner, f2, is only
her third choice. If w3 is patient enough, therefore, she rejects the blocking partner
in order to be matched with an even more desirable firm in the next period.

The above description shows that the incentives that support delay and insta-
bility in the equilibrium have a similar structure. Delay and instability prevail in
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equilibrium because a firm’s attempt to deviate from the equilibrium to either get
the same worker earlier or get together with the blocking partner is thwarted by a
rejection from the worker. The worker rejects the firm since doing so affects the
continuation play in the worker’s favor. This is the case even though offers are ob-
served privately and the rejected offer is a deviation from an equilibrium. Rejecting
a private out-of-equilibrium offer can change the continuation play since the devia-
tion by the firm also affects the behavior of the worker who did not receive an offer
from this firm.

The results of delay and instability are not driven by our assumption that offers
are private information. The results survive if offers are publicly observable. It
suffices to modify the strategy profile so that, once a firm deviates in the first period,
the continuation equilibrium selects the worker-optimal stable matching. Then, for
example, if f2 deviates and makes an offer to w3, then all workers reject all offers
since they will get their first choice in the next period.

The results do rely on the standard assumption that the continuation equilibrium
can vary with the state in any way. There is no a priori restriction on the relation-
ship between the current state and equilibrium selection for the continuation game.
Although the assumption is standard, you may wonder whether there might be a
reasonable restriction on how the continuation equilibrium relates to the state. We
suggest one simple restriction and studies its implications in Appendix A.

6 When Only Firms Commit

We now turn to the one-sided commitment case. As in academic job markets for
seniors, workers are protected but do not commit themselves to their employers. In
stationary equilibria, the payoff-relevant state is the matching in the previous period.

Proposition 5 For some dynamic matching game with one-sided commitment, there
exists a stationary equilibrium in which, in every period, the realized matching
is unstable and such that every stable matching is a Pareto improvement for the
workers.

Proof. Here is an example that proves the result. There are 3 firms and 3 workers,
whose ordinal preferences are given by

f1 f2 f3 w1 w2 w3

w1 w3 w3 f3 f2 f1

w3 w2 w1 f1 f3 f2

w2 w1 w2 f2 f1 f3

f1 f2 f3 w1 w2 w3

To simplify the exposition, we here assume that all workers are myopic: δw = 0 for
all w. The result itself holds even if workers are very patient, as we will discuss.
By the assumption, workers simply take the best acceptable offer every period. We
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show that there exists a stationary equilibrium in which each fi makes an offer to
wi in the initial period and the offers are accepted immediately. No firm can move
thereafter. The outcome is not a stable matching since it is blocked by f2 and w3.
The complete description of the equilibrium strategy profile is given in Figure 1.
Here we highlight why the (unique) blocking pair does not get together.

To see why, suppose that f2 makes an offer to w3 in the first period. Since they
are a blocking pair and workers are myopic, w3 accepts. Therefore, in contrast to
the two-sided commitment case, a firm’s attempt to get together with its blocking
partner does not receive an immediate rejection. However, since workers make
no commitment, f2 may lose w3 later. The continuation equilibrium proceeds as
depicted in the following figure.

f1 w1

f2 w2

f3 w3

Period 2

f1 w1

f2 w2

f3 w3

Period 3

f1 w1

f2 w2

f3 w3

Period 4

f1 w1

f2 w2

f3 w3

Periods 5–

The firm that can move in period 2 is f3. Having failed to get its first choice, f3

makes an offer to its second choice, w1. The offer is accepted since f3 is the first
choice for w1. In the next period, the only active firm is f1. Having lost its first
choice, f1 makes an offer to its second choice, w3. The offer is accepted since f1 is
the first choice for w3. In period 4, f2 has no choice but to make an offer to w2 since
the other workers are with their first choices. The matching is then completed. The
result is actually the unique stable matching. The deviation by f2 therefore helps
the market reach a stable matching.

The question is whether f2 gains from the deviation. While f2 ends up with
the same worker as in equilibrium, the deviation induces a different sequence of
matchings. After the deviation, f2 is matched with its first choice for two periods
and has no worker for one period. The subsequent periods are not affected. Thus,
f2 does not gain from the deviation if and only if

(1 + δ f2)u f2(w3) ≤ (1 + δ f2 + δ2
f2)u f2(w2).

The inequality holds if u f2(w3) − u f2(w2) is sufficiently small. Thus the deviation
does not make the firm better off if the marginal gain from getting a better worker
is sufficiently small. The same argument explains the incentives of f2 in states
{s10, s13, s21} (see Figure 1). In this example, the deviation affects f2 only in the
short run: f2 gets the same worker eventually. As we shall discuss shortly, we can
also construct a similar example where the deviation makes f2 worse off perma-
nently: after the deviation, f2 ends up with a worker who is less desirable than the
worker it gets in equilibrium.

The incentives of f2 in the other parts of the strategy are simple. The firm makes
an offer to w2 in {s4, s7, s15, s29}, but the reason is simply that w3—the firm’s first
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f1 w1

f2 w2

f3 w3

s1
f1 w1

f2 w2

f3 w3

s2
f1 w1

f2 w2

f3 w3

s3
f1 w1

f2 w2

f3 w3

s4
f1 w1

f2 w2

f3 w3

s5

f1 w1

f2 w2

f3 w3

s6
f1 w1

f2 w2

f3 w3

s7
f1 w1

f2 w2

f3 w3

s8
f1 w1

f2 w2

f3 w3

s9
f1 w1

f2 w2

f3 w3

s10

f1 w1

f2 w2

f3 w3

s11
f1 w1

f2 w2

f3 w3

s12
f1 w1

f2 w2

f3 w3

s13
f1 w1

f2 w2

f3 w3

s14
f1 w1

f2 w2

f3 w3

s15

f1 w1

f2 w2

f3 w3

s16
f1 w1

f2 w2

f3 w3

s17
f1 w1

f2 w2

f3 w3

s18
f1 w1

f2 w2

f3 w3

s19
f1 w1

f2 w2

f3 w3

s20

f1 w1

f2 w2

f3 w3

s21
f1 w1

f2 w2

f3 w3

s22
f1 w1

f2 w2

f3 w3

s23
f1 w1

f2 w2

f3 w3

s24
f1 w1

f2 w2

f3 w3

s25

f1 w1

f2 w2

f3 w3

s26
f1 w1

f2 w2

f3 w3

s27
f1 w1

f2 w2

f3 w3

s28
f1 w1

f2 w2

f3 w3

s29
f1 w1

f2 w2

f3 w3

s30

f1 w1

f2 w2

f3 w3

s31
f1 w1

f2 w2

f3 w3

s32
f1 w1

f2 w2

f3 w3

s33
f1 w1

f2 w2

f3 w3

s34 f1 : w1 � w3 � w2
f2 : w3 � w2 � w1
f3 : w3 � w1 � w2

w1 : f3 � f1 � f2
w2 : f2 � f3 � f1
w3 : f1 � f2 � f3

Figure 1: Firms’ strategies in the proof of Proposition 5. The solid lines denote the
matching at the beginning of the period and the dashed arrows denote the offers pre-
scribed by our equilibrium strategies.
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choice—has been or is being approached by her first choice. In the other states
where f2 can move, it makes an offer to the first choice and gets accepted.

The incentives of f1 and f3 are straightforward and no condition is necessary on
their patience or payoff function. First, f1 can always secure its second choice (w3)
since it is the first choice for the worker. In the equilibrium, f1 does not make an
offer to its first choice (w1) only when the worker has been or is being approached
by her first choice (s6, s14, s18, s23, and s29). Similarly, f3 can always secure its
second choice (w1), but it is not liked by its first choice (w3). In the equilibrium, f3

does not make an offer to its first choice only when the first choice has been or is
being approached by other firms (s2, s14–s16, s18, s20, s26, and s27). �

Intuitively, the unstable matching is sustained as equilibrium outcome since any
attempt by f2 to get the blocking partner succeeds only temporarily and backfires in
the long run. The temporal success for f2 in getting w3 intensifies the competition
among the firms. At the end, f2 loses w3 to f1. If the loss from having no worker is
large relative to the marginal gain from the better worker, the net effect of initiating
a recruiting war is negative.

A comparison between the equilibrium and the unique stable matching (s8) re-
veals that none of the workers prefers the equilibrium outcome. While w2 is indiffer-
ent, the other workers prefer the stable matching. This is interesting since workers
are the ones who are protected by tenure. Without job protections, the stable match-
ing is the unique equilibrium outcome. In this example, the workers are better off if
job protections are removed.

The conclusion of Proposition 5 remains if workers and firms are very patient.
In the Appendix, we construct an example showing that the proposition holds when
δi → 1 for all i ∈ F ∪W. However, the construction is considerably more involved
since we need to specify each worker’s action contingent on every possible set of
offers. Even with the small number of agents, constructing an equilibrium strategy
profile is not easy since there are 34 states. The example is therefore relegated to
Appendix B.4. In this example, if a firm deviates by making an offer to the blocking
partner, it gets the worker only temporarily and ends up with a worker who is strictly
less desirable than the permanent employee in the equilibrium.

If workers are myopic, we can also show that every stable matching can be
supported as a permanent equilibrium outcome.2 Whether the result extends to
non-myopic workers is open at this point.

7 Conclusion

We considered a dynamic matching game in which firms and workers interact re-
peatedly in a decentralized job market. The main question was whether a decentral-

2Formally, consider any dynamic matching game with one-sided commitment where δw = 0 for
all w. Then for any stable matching, there exists a stationary equilibrium that yields this matching
every period. See Appendix B.5 for the proof.
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ized matching market generates a stable matching of Gale and Shapley (1962) and
how the answer varies with the commitment structure of the market. Without com-
mitment, we show that every stationary equilibrium matching is stable and every
stable matching can be sustained by a stationary equilibrium. Once commitment
is possible, this equivalence breaks down. It is possible for an equilibrium match-
ing to be unstable. When only firms commit (i.e., there is job security), it is even
possible that an equilibrium matching makes every worker worse off than any sta-
ble matching, illustrating the adverse effect job protection may have on workers’
welfare.

To simplify our analysis, our dynamic matching game builds on the classical
one-to-one matching model without monetary transfers (i.e., salary negotiations).
Extending a many-to-one matching model with monetary transfers such as the one
in Crawford and Knoer (1981) and Kelso and Crawford (1982) would certainly
bring us closer to modeling real labor market dynamics. Recently, salary compe-
tition in matching model has been brought into focus by, for example, Bulow and
Levin (2006) and Crawford (2006, forthcoming). It would be also interesting to
make the commitment structure endogenous by letting players choose whether to
commit.
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A Appendix: An Equilibrium Refinement for Two-Sided Commitment: Con-
sistency

To motivate the refinement, suppose that, after a history, 3 firms and 3 work-
ers are active, and the continuation equilibrium prescribes them to be matched
as [{ f1,w1}, { f2,w2}, { f3,w3}]. Suppose further that, for whatever reason, only pair
{ f1,w1}was formed in the current period. Stationarity alone does not put any restric-
tion on how the remaining four agents will be matched in the continuation game.
However, one natural expectation is that the remaining agents will be matched as
[{ f2,w2}, { f3,w3}] since it was the initial expectation. It appears to be a strong focal
point. Why does anyone expect [{ f2,w3}, { f3,w2}]?

The formalize the idea, let us limit ourselves to pure strategies. For any pure-
strategy stationary strategy profile σ and any subset S ⊆ F ∪W, let m(σ, S ) denote
the matching within S that realizes as the final result under σ in the continuation
game where S is the initial set of active agents.

Definition A pure-strategy stationary equilibrium is consistent if for any subset
S ⊆ F ∪ W and any subset T ⊆ S , if T is obtained from S by removing some
matched pairs in µ ≡ m(σ, S ) (i.e., for any firm f ∈ S \T , µ( f ) is a worker in S \T ),
then m(σ,T ) = µ|T .

Thus, if µ is the final matching in a continuation game, then after some of the
pairs in µ are formed, the remaining agents are matched according to µ.

Proposition 6 For any dynamic matching game with two-sided commitment and
for any pure-strategy consistent stationary equilibrium, the final matching is stable.

Proof. Let µ be the final matching (namely, µ = m(σ, F ∪ W)) and suppose that
it is unstable. Let ( f ,w) be a blocking pair for µ. We choose a pair so that f
is the most preferred firm to form a blocking pair with w. Then consider a subset
T = { f , µ( f ),w, µ(w)}∪{i ∈ F∪W : µ(i) = i}. Within the subset, f is w’s first choice
among the firms for which w is acceptable. Therefore, if T is the set of active agents
and f makes an offer to w, w will accept. So, in the continuation game, f gets w
or someone better. However, consistency requires f to be matched with µ( f ) in the
continuation game. This is a contradiction since f prefers w to µ( f ). �
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Proposition 7 There exists a dynamic matching game with two-sided commitment
where every pure-strategy stationary equilibrium is inconsistent.

Proof. Consider a 5 × 5 matching problem with the following ordinal preferences:

f1 f2 f3 f4 f5 w1 w2 w3 w4 w5

w1 w2 w3 w4 w5 f2 f1 f1 f4 f3

w3 w1 w5 ...
... f3 f2 f3 f3 f5

w2 ... w1 f1 ...
...

...
...

... w4 ...
f3

The unique stable matching is where { fi,wi} is formed for all i. Denote the matching
by µ1. Suppose, toward a contradiction, that there exists a pure-strategy consistent
stationary equilibrium. Then, by Proposition 6, the final result of the equilibrium is
µ1. Consider a subset S ≡ { f1, f2, f3,w1,w2,w4}. Within the subset, there is a unique
stable matching, which is µ2 ≡ [{ f1,w2}, { f2,w1}, { f3,w4}]. Consider the continua-
tion game where S is the initial set of active agents. Observe that the continuation
equilibrium remains stationary and consistent. Therefore, by Proposition 6, the fi-
nal result of the continuation equilibrium is µ2 (i.e., m(σ, S ) = µ2). Now, consider a
subset T ≡ { f1, f2,w1,w2}. Since T is obtained from S by removing a matched pair
in µ2, consistency implies that in the continuation game where T is the initial set of
active agents, the final result is µ2|T = [{ f1,w2}, { f2,w1}]. On the other hand, T is
also obtained from the entire set of F ∪W by removing three matched pairs in µ1.
Therefore, consistency also implies that the same continuation game for T results
in µ1|T = [{ f1,w1}, { f2,w2}]. �

B Appendix: Proofs

B.1 Proof of Proposition 1

To prove the first statement, consider any stationary equilibrium. First, suppose, by
way of contradiction, that the equilibrium yields an unstable matching µt in some
period t. Let { f ,w} be a blocking pair for µt. Since the firms’ strategies are station-
ary, w’s action in period t does not affect the offers she will receive in the subsequent
periods. This implies that, in period t, worker w’s best action is to accept the most
preferred acceptable offer. Since w prefers f to µt(w), it follows that w does not
receive an offer from f in this period. Suppose then that, in period t, firm f deviates
from the equilibrium and makes an offer to w. By the observation above, w will
accept the offer and this has no influence over the other agents’ strategies in the
continuation game. Therefore, f gains from the deviation, a contradiction.

The above paragraph shows that the realized matching is stable in every period.
Since firms’ strategies are stationary, the realized matching is the same in every
period.
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To prove the converse, choose any stable matching µ and consider the follow-
ing strategy profile: in every period, each firm f makes an offer to µ( f ) and each
worker w accepts the most preferred acceptable offer. The workers’ strategies are
optimal given that the firms’ strategies are stationary. The firms’ strategies are also
optimal since making an offer to a preferred worker will be rejected since µ is sta-
ble, and making an offer to a less preferred worker will have no influence over the
subsequent periods.

B.2 Proof of Proposition 2

For any subset S ⊆ F ∪ W, let µS be any stable matching among S . Let σ be
the strategy profile defined as follows. Consider any period and let S be the set of
active agents. Each active firm f makes an offer to µS ( f ). Each active worker w
who received an offer from µS (w) (and possibly others) accepts the most preferred
offer. For each active worker w who did not receive an offer from µS (w), let T be
defined by

T ≡ {w, µS (w)} ∪ Ow ∪ {i ∈ S : µS (i) ∈ Ow ∪ {i}}. (1)

Then w accepts the most preferred offer if

max
i∈Ow

uw(i) > δwuw(µT (w)). (2)

Otherwise, w rejects all offers.
Let β be the belief system derived from the strategy profile above, with the

following additional rule: in every period, if the set of active agents is S and an
active worker w did not receive an offer from µS (w), then w believes that µS (w) did
not make an offer to any worker.

We claim that (σ, β) is a sequential equilibrium. To see this, take any period and
let S be the set of active agents.

We first examine firms’ incentives. Let f be an active firm. If the firm follows
the equilibrium strategy, it will be matched with w ≡ µS ( f ) in the current period
(where w = f is a possibility). If f makes an offer to any worker w′ that f prefers to
w, then since µS is a stable matching, the offer will be rejected. In the next period,
therefore, the set of active agents will be { f ,w} ∪ {i ∈ S : µS (i) = i} and the best
outcome for f is to get w. Since f gets w earlier in equilibrium, the firm does not
gain from the deviation. Similarly, the firm does not gain by not making any offer.

Now, consider workers’ incentives. Let w be an active worker. There are two
cases. First, suppose that w receives an offer from µS (w), i.e., µS (w) ∈ Ow. In this
event, if w rejects all offers, the set of active firms in the next period will be

Ow ∪ { f ∈ F : µS ( f ) = f }.

Since µS is stable, w prefers µS (w) to any f such that µS ( f ) = f and for which w is
acceptable. Therefore, if µS (w) ∈ Ow, worker w gains nothing by waiting.
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Suppose µS (w) < Ow. By the definition of β, worker w believes that µS (w) did
not make an offer to any worker. According to the belief, if w rejects all offers,
the set of active agents in the next period will be T in (1) and hence the expected
(average) utility is the right-hand side of (2). On the other hand, the maximum
utility from accepting an offer in the current period is given by the left-hand side.

B.3 Proof of Propositions 3 and 4

Suppose that there are 4 firms and 4 workers and their ordinal preferences are given
by

f1 f2 f3 f4 w1 w2 w3 w4

w1 w3 w3 w4 f4 f3 f1 f2

w3 w2 w4 w3 f1 f2 f4 f3
... w4 w1 w2 f3 f4 f2 f1

... w2 w1 f2 f1 f3 f4

f3 f4 w1 w2 w3 w4

We now construct a stationary equilibrium (σ, β) under which { f1,w1} and { f2,w2}
are matched in period 1 and { f3,w3} and { f4,w4} are matched in period 2. The final
matching is blocked by f2 and w3.

In all periods where everyone is active (including the first period), firms make
offers as follows:

f1 → w1, f2 → w2, f3 → w1, f4 → w2.

Each worker w simply accepts the most preferred acceptable offer if the following
condition holds:

Ow1 ∩ { f1, f4} , ∅ and Ow1 , { f1} if w = w1,

Ow2 ∩ { f2, f3} , ∅ and Ow2 , { f2} if w = w2,

Ow3 , { f2}, { f3} if w = w3,

Ow4 , { f1}, { f4} if w = w4.

Otherwise, w rejects all firms.
For any proper subset S ( F ∪ W, let µS be a stable matching within S . The

choice of µS is arbitrary with the following exceptions:

S µS

{ f3, f4,w3,w4} [{ f3,w3}, { f4,w4}]
{ f1, f4,w1,w3} [{ f1,w3}, { f4,w1}]
{ f2, f3,w2,w4} [{ f2,w4}, { f3,w2}]
F ∪W \ { f2,w2} [{ f1,w1}, { f3,w4}, { f4,w3}]
F ∪W \ { f1,w1} [{ f2,w2}, { f3,w4}, { f4,w3}]

(3)
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With a collection {µS }S(F∪W , we now specify the strategies in periods where the
set of active agents is a proper subset S ( F∪W, in the same way as in Proposition 2.
So, firms make offers to their partners in µS . A worker w accepts the most preferred
offer if the offer from the expected firm (µS (w)) arrived. If the expected offer did
not arrive to worker w, then let

T ≡ {w, µS (w)} ∪ Ow ∪ {i ∈ S : µS (i) ∈ Ow ∪ {i}}.

Then w accepts the most preferred offer if maxi∈Ow uw(i) > δwuw(µT (w)), and rejects
all offers otherwise.

Let β be the belief system derived from the strategy profile defined above, with
the following two additional rules. First, in periods where everyone is active and
the set of offers made to worker w1 is Ow1 = { f1} (thus the expected offer from f3

did not arrive), then w1 believes that f3 made an offer to w4. Similarly, in periods
where everyone is active and the set of offers made to worker w2 is Ow2 = { f2}, then
w2 believes that f4 made an offer to w3. Second, in all other cases where a worker w
was expecting an offer from a firm f but the offer did not come, the worker believes
that f did not make an offer to any worker.

We now show that (σ, β) is a sequential equilibrium. Since the only difference
from Proposition 2 is when everyone is active, we only check incentives in this state.

Firm f1 has no incentive to deviate since it gets its first choice in equilibrium.
Firm f2 gets only its second choice (w2) but does not gain by deviating. Indeed, if f2

makes an offer to w3 or w1, this offer will be rejected and the firm will be matched
with w2 in the next period.3 Similarly, by not making any offer, f2 only delays its
matching with w2. Finally, if f2 makes an offer to w4, this offer will be accepted,
which is not good for f2 since it prefers w2.

Firm f3, on the other hand, gets his first choice (w3) only in the next period. If
this firm is patient enough (i.e., δ f3 > u f3(w4)/u f3(w3)), therefore, the only possible
reason to deviate is to get the first choice in the current period. However, if f3 makes
an offer to w3, then Ow3 = { f3} and hence the offer will be rejected. A symmetric
argument applies to f4.

For workers’ incentives, we start with w1 and w2. Since they are symmetric, we
need only to consider w1. If she receives an offer from f4, her optimal action is to
accept the offer since f4 is her top choice. So, in what follows, suppose that w1 did
not receive an offer from f4. We divide the remaining case into two.

Suppose Ow1 , { f1}. Then it can be checked that w1 believes that if she rejects
all offers, she will get the second choice ( f1) in the next period.4 So, the optimal
choice for w1 depends on whether f1 ∈ Ow1 . If f1 ∈ Ow1 , then w1 should accept
f1 in the current period since it is the best offer at hand and rejecting all offers will

3The set of active players in the next period will be F ∪W \ { f1,w1}.
4For example, suppose Ow1 = { f1, f2}. Then w1 believes that f3 did not make any offer and f4

made an offer to w2. According to w2’s strategy, w2 will reject the offer from f4. So if w1 rejects all
offers, she believes that, in the next period, everyone will be active and she will get f1.
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only delay the matching with the same firm. If f1 < Ow1 , on the other hand, the
optimal reply depends on the firm’s patience. If the firm is sufficiently patient (i.e.,
δ f1 > uw1( f3)/uw1( f1)), the optimal reply is to reject all offers now and get f1 in the
next period.

Now, suppose Ow1 = { f1}. By the construction of β, w1 believes that f3 made an
offer to w4 and this offer will be accepted. Thus, w1 believes that if she rejects f1,
the set of active agents in the next period will be { f1, f4,w1,w3} and hence she will
get f4, which is her first choice. If w1 is patient enough, therefore, she prefers to
wait for her first choice.

Finally, consider w3 and w4. Since they are symmetric, we only discuss w3. If
she receives an offer from her top choice ( f1), she obviously accepts it. So, suppose
that she did not receive an offer from f1. If Ow3 = { f2} and w3 rejects the offer,
the set of active agents in the next period will be F ∪ W \ { f1,w1} and w3 will get
her second choice ( f4). Since the offer at hand is her third choice, if w3 is patient
enough, she prefers to wait for her second choice. Similarly, if Ow3 = { f3} (which
is the fourth choice for w3) and w3 rejects the offer, the set of active agents in the
next period will be F ∪W \ { f2,w2} and so w3 will get her second choice ( f4).5 So
if w3 is patient enough, she prefers to wait. If f4 ∈ Ow3 , it can be checked that if
w3 rejects all offers, she will get either f4 in the next period or f3 in the following
period. Since she prefers f4 to f3, she prefers to accept f4 in the current period.
Similarly, if Ow3 = { f2, f3}, rejecting all offers will give her f3 in two periods, so she
should accept f3 in the current period.

B.4 Proof of Proposition 5 for Patient Workers

The proof of Proposition 5 in the main text relies on an example where δw = 0 for
all workers and therefore poses a question whether the result extends if the workers
are patient. This section gives an example showing that the result does extend even
if δw is close to 1 for all workers.

We consider a 3 × 3 matching problem with the following ordinal preferences:

f1 f2 f3 w1 w2 w3

w1 w3 w3 f2 f3 f1

w3 w2 w1 f3 f2 f2

w2 w1 w2 f1 f1 f3

f1 f2 f3 w1 w2 w3

5Note that w1 will reject f1.
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Each agent’s utility function is given by

ui( j) =



100 if j is i’s first choice,
70 if j is i’s second choice,
40 if j is i’s third choice,
0 if j is i’s last choice.

There are two stable matchings:

[{ f2,w1}, { f3,w2}, { f1,w3}],
[{ f3,w1}, { f2,w2}, { f1,w3}].

In the equilibrium we construct, each firm fi makes an offer to wi, respec-
tively, in the first period and they are all accepted. The realized matching, i.e.,
[{ f1,w1}, { f2,w2}, { f3,w3}], is not stable since it is blocked by { f2,w3}. Note that
each of the stable matchings is a Pareto improvement for the workers.

Figure 2 describes the equilibrium strategy profile. For firms, the dashed arrows
specify to whom each active firm makes an offer in the state. For workers, it is
more complicated since a worker’s response depends on not only the state but also
the set of offers made to the worker. In the particular equilibrium we constructed,
each worker’s strategy in a given state s can be summarized by a cutoff denoted by
cw(s,O) ∈ F ∪ {w}, where O is the set of offers made to the worker. The worker
w simply chooses the most preferred offer that is at least as good as cw(s,O). In
most cases, the cutoff is the worker herself, i.e., cw(s,O) = w, which means that
the worker chooses the most preferred acceptable firm. In the several cases where
cw(s,O) , w, the cutoffs are specified in Figure 2 in square brackets attached to the
worker (e.g., [ f2]). Nothing is attached if the cutoff is oneself.

If the worker is currently employed, her current job is included in the offer set.
Therefore, if the current job is less preferred to the cutoff, the worker resigns from
the current job. For example, w3 in s25 resigns from f2 since f2 is less preferred to
f1.

Except for worker 1 in states 6 and 14, the cutoffs are independent of the set
of offers. In states 6 and 14, worker 1’s cutoff depends on the number of offers
(including the renewal offer).

To complete the description of the equilibrium, we need to specify workers’ out-
of-equilibrium beliefs since offers are private information. If a firm is prescribed to
make an offer to a worker but deviates, this worker observes only the fact that the
firm makes no offer to her. She does not observe where the firm makes an offer. In
the particular equilibrium we construct, the worker in this situation is assumed to
believe that the firm does not make any offer to any worker. The particular belief
was chosen to simplify our construction of an equilibrium.

The strategy profile together with the belief system is a sequential equilibrium
if the agents are sufficiently patient. A sufficient condition is that δi ≥ 3√0.7 ≈ 0.89
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f1 w1

f2 w2

f3 w3

s1
f1 w1

f2 w2

f3 w3

[ f3]
s2

f1 w1

f2 w2

f3 w3

[ f3]
s3

f1 w1

f2 w2

f3 w3

s4
f1 w1

f2 w2

f3 w3

s5

f1 w1

f2 w2

f3 w3

[ f3] if |O|≥2
[ f2] if |O|=1

s6
f1 w1

f2 w2

f3 w3

s7
f1 w1

f2 w2

f3 w3

s8
f1 w1

f2 w2

f3 w3

s9
f1 w1

f2 w2

f3 w3

s10

f1 w1

f2 w2

f3 w3

s11
f1 w1

f2 w2

f3 w3

[ f2]
s12

f1 w1

f2 w2

f3 w3

s13
f1 w1

f2 w2

f3 w3

[ f3] if |O|≥2
[ f2] if |O|=1

[ f2]

s14
f1 w1

f2 w2

f3 w3

[ f2]

[ f3]

s15

f1 w1

f2 w2

f3 w3

s16
f1 w1

f2 w2

f3 w3

s17
f1 w1

f2 w2

f3 w3

[ f3]

s18
f1 w1

f2 w2

f3 w3

[ f2]
s19

f1 w1

f2 w2

f3 w3

s20

f1 w1

f2 w2

f3 w3

s21
f1 w1

f2 w2

f3 w3

s22
f1 w1

f2 w2

f3 w3

s23
f1 w1

f2 w2

f3 w3 [ f1]

s24
f1 w1

f2 w2

f3 w3 [ f1]

s25

f1 w1

f2 w2

f3 w3

s26
f1 w1

f2 w2

f3 w3

[ f2]
s27

f1 w1

f2 w2

f3 w3

s28
f1 w1

f2 w2

f3 w3

s29
f1 w1

f2 w2

f3 w3

[ f3]

s30

f1 w1

f2 w2

f3 w3

[ f2]

s31
f1 w1

f2 w2

f3 w3

[ f2]

s32
f1 w1

f2 w2

f3 w3

[ f3]
s33

f1 w1

f2 w2

f3 w3

s34 f1 : w1 � w3 � w2
f2 : w3 � w2 � w1
f3 : w3 � w1 � w2

w1 : f2 � f3 � f1
w2 : f3 � f2 � f1
w3 : f1 � f2 � f3

Figure 2: A stationary equilibrium that yields an unstable matching. The square brack-
ets denote the cutoffs used by the workers.
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for all agents. Verifying sequential rationality is extremely tedious. We therefore
provide a computer program (a MATLAB code) that verifies sequential rationality
when δi = 0.9 for all i. Below we informally discuss why the blocking pair does not
form.

If f2 deviates in the first period and makes an offer to its blocking partner, w3,
then the offer would be accepted but trigger a chain of movements in subsequent
periods as depicted in the following figure.

f1 w1

f2 w2

f3 w3

resigns

Period 2

f1 w1

f2 w2

f3 w3

Period 3

f1 w1

f2 w2

f3 w3

Period 4

f1 w1

f2 w2

f3 w3

Periods 5–

In the next period, the firm that moves is f3. Having failed to get w3, firm f3 makes
an offer to w2 and gets accepted.6 At the same time, w1 resigns from f1. This move
by w1 enables f1 to make an offer to w3 in period 3. The offer is accepted since f1

is the first choice for w3. In period 4, f2 has no choice but to make an offer to w1

since the other workers are with their first choice. The matching is then completed.
Note that f2, who initiates the process, ends up with a worker who is less desirable
than the one the firm gets in equilibrium. Therefore, if f2 is sufficiently patient, the
deviation makes the firm worse off.

B.5 Proof of the Result in Footnote 2

As before, since workers are myopic and make no commitment, they simply accept
the best acceptable offers every period. Since the state space and the action sets
are finite, there exists a stationary equilibrium σ.7 But the equilibrium outcome
is unknown. Let µ be any stable matching. To support µ, we construct another
strategy profile σ′ as follows. If all agents are active, each firm f makes an offer
to µ( f ). If not all agents are active, follow σ. Thus, σ′ differs from σ only when
all agents are active. We shall show that σ′ is a stationary equilibrium. By the
construction of σ′, it suffices to consider the state in which everyone is active. So,
suppose that in period τ, everyone is active and a firm f deviates from σ. Since the
outcome induced by the deviation may be stochastic, consider any path of play that
occurs with a positive probability after the deviation. Let {wt}∞t=τ be the sequence
of workers that f is matched with along the path (where wt ∈ W ∪ { f }). For any
t ≥ τ, if wt < {µ( f ), f }, then wt prefers f to µ(wt) since wt receives an offer from
µ(wt) in period τ and a worker’s period-payoff is non-decreasing over time. Since µ

6If f3 deviates by making an offer to w1, the offer will be accepted but the worker stays with the
firm only for one period. After losing w1, the firm will be eventually matched with w2. The state
transition is s2→ s6→ s15→ s5. Given the specific utility function and discount rate, f3 does not
gain from the deviation.

7See, e.g., Mertens (2002).
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is a stable matching, it follows that f prefers µ( f ) to wt. That is, along the path, f is
never matched with a worker better than µ( f ). Since this is the case for any possible
path, f does not benefit from the deviation.
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Konishi, H., and M. Sapozhnikov (2005): “Decentralized Matching Markets with
Endogeneous Salaries,” Discussion paper, Boston College.

Mertens, J.-F. (2002): “Stochastic games,” in Handbook of Game Theory with Eco-
nomic Applications, ed. by R. Aumann, and S. Hart, vol. 3, chap. 47, pp. 1809–
1832. North-Holland, Amsterdam.

Niederle, M., and L. Yariv (2007): “Matching Through Decentralized Markets,”
Discussion paper, Stanford University.

Pais, J. (2005): “Incentives in Random Matching Markets,” Ph.D. thesis, Universitat
Autónoma de Barcelona.

Ray, D., and R. Vohra (1999): “A Theory of Endogenous Coalition Structures,”
Games and Economic Behavior, 26, 286–336.

Roth, A. E. (1984): “The evolution of the labor market for medical interns and
residents: A case study in game theory,” Journal of Political Economy, 92, 991–
1016.

(1991): “A natural experiment in the organization of entry-level labor mar-
kets: Regional markets for new physicians and surgeons in the United Kingdom,”
American Economic Review, 81, 415–440.

Roth, A. E., and E. Peranson (1999): “The redesign of the matching market for
American physicians: Some engineering aspects of economic design,” American
Economic Review, 89, 748–780.

Roth, A. E., and M. A. O. Sotomayor (1990): Two-Sided Matching: A Study in
Game-Theoretic Modelling and Analysis. Cambridge University Press.

Roth, A. E., and J. H. Vande Vate (1990): “Random paths to stability in two-sided
matching,” Econometrica, 58, 1475–80.

27


	1 Introduction
	2 Static Matching Problem
	3 Dynamic Matching Game
	3.1 Periods and Payoffs
	3.2 Active Agents
	3.3 Period-Game
	3.4 Histories and Strategies
	3.5 Stationary Strategies

	4 When No One Commits
	5 When Both Sides Commit
	6 When Only Firms Commit
	7 Conclusion
	A Appendix: An Equilibrium Refinement for Two-Sided Commitment: Consistency
	B Appendix: Proofs
	B.1 Proof of Proposition 1
	B.2 Proof of Proposition 2
	B.3 Proof of Propositions 3 and 4
	B.4 Proof of Proposition 5 for Patient Workers
	B.5 Proof of the Result in Footnote 2

	References

