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Abstract: The paper investigates the case where N agents solve a complex search problem by
communicating to each other their relative successes in solving the task. The problem consists
in identifying a set of unknown points distributed in an n–dimensional space. The interaction
rule causes the agents to organize themselves so that, asymptotically, each agent converges to
a different point. The emphasis of this paper is on analyzing the collective dynamics resulting
from nonlinear interactions and, in particular, to prove convergence of the search process.

1. INTRODUCTION

Research in the area of complex systems has increased
substantially over the past years. The term is used in
many different disciplines to denote the collective dynamic
behavior of a large group of individuals (agents) each
following his or her own (local) rules. A recurrent theme
is the emergence of higher–order features that result from
the interaction of such individuals. The interaction leads
to a dynamics that is substantially different and cannot
be guessed from the behavior of a single agent. Phase
transitions and their determinants are studied and used
to explain sudden disruptions in complex interconnected
systems such as stock markets, traffic, social and political
systems, see [1] for an overview and e.g. [2].

An important strand of literature has been created around
the notion of flocking where agents interact in order to
achieve a common group objective. Examples of such a
behavior can be found in various forms of animal grouping
(bird formation flying, fish schools, swarms of bees), see [3],
[4]. Flocking dynamics has essentially three characteristics
[5]: cohesion, i.e. stay nearby flockmates, collision avoid-
ance and alignment, i.e. attempt to match the velocity
vector of flockmates. Different aspects of these elementary
rules have been studied theoretically, in particular the
emergence of a common alignment [6]. A simple interac-
tion rule states that if every agent adjusts its orientation
according to the average of its nearest neighbors then all
agents converge to a common orientation. Conditions on
the emergence of such a consensus even in the presence of
a switching network topology have been derived in [7].

In statistical mechanics, the Ising model provides a frame-
work for the study of collective phenomena that can be
attributed to local imitation of neighboring agents. A large
variety of socio-economic processes that involve collective
aggregate decision making has been analyzed using this
model, for example the price dynamics of assets traded
in the financial market [8] or the dynamics of opinions
[9]. In the minority game, agents compete for minority
membership, a somehow paradoxical situation in which a
global equilibrium is impossible. Every agent is given a
binary choice of actions (say go or stay, see the original

problem proposed in [10]) where the payoff is positive only
if the action corresponds to the choice of the minority.
If all agents believe the others will go, nobody will go,
thus invalidating the belief. The game has been used as
a prototypical model of financial markets in which profit
depends on the fact that an agents buys when the majority
sells and vice versa [11].

The problem considered in this paper is also of a compet-
itive nature. In our case, agents compete for N pieces of
information represented as points in n– dimensional space.
The information is revealed one piece at a time where the
sequence is random and infinite (i.e. all N points appear
infinitely often). The problem arises naturally in the iden-
tification of time–varying systems and was originally posed
by Narendra, Feiler in 2003 [13], [14]: The elements of a
vector θ ∈ R

n represent the unknown parameters of a
dynamical system. θ can assume one of a finite number
N of constant values θi, i ∈ Ω = {1, 2, . . . , N} at random
instants of time t. For example, the time-variation may
be governed by an ergodic Markov–chain and there exists
an interval of finite length within which every i ∈ Ω is
assumed at least once. N estimation models are set up with
the objective of identifying the N values. The identification

procedure consists in approaching the models θ̂ towards
the unknown parameters θ such that, ultimately, the two
sets coincide.

The work following the above problem statement was pri-
marily focused on deriving conditions for the stability of an
adaptive controller based on multiple identification models
[15], [16], [17]. In this paper, we study the convergence
properties of the identification procedure itself. To this
end, we replace the identification models by simple search

agents θ̂i that freely move in parameter space with the
objective of finding the unknown positions θi representing
some useful information. Once a piece of information is
found it cannot be exploited by any other agent. Also, the
agents have bounded capacity and can absorb only one
piece of information. Thus an agent has not necessarily
an interest of “being there first” but of finding a different
piece of information than all the other agents. Here we
allow for a global equilibrium by assuming that there are
N agents and N pieces of information to be found. We are
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interesting in the collective dynamics leading towards that
equilibrium.

In section II we present the search algorithm and state the
convergence problem in mathematical terms. Section III
contains a detailed analysis of the algorithm, in particular
its properties as a dynamical system as well as the proof
of convergence. In Section IV we conclude with simulation
results.

2. SEARCH USING MULTIPLE AGENTS

Let us refer to the set S = {θ1, θ2, . . . , θN} ⊂ R
n as

information set and A = {θ̂1, θ̂2, . . . , θ̂N} ⊂ R
n as the

agent set. For an agent θ̂ to find a piece of information θ

means that θ̂(t) → θ as t → ∞.

2.1 Problem Statement

Using the above variables, the problem can be stated
succinctly as follows: Determine an algorithm such that

for every θ ∈ S there is a θ̂ ∈ A such that ‖θ̂(t) − θ‖ → 0
as t → ∞. In other words, for every piece of information
there exists one agent that asymptotically finds it.

Remark: The implicit assumption made here is that N is
known and, hence, the appropriate number of agents can
be determined. The assumption can be relaxed to read
M ≥ N where M is the number of models.

There are two situations where the problem is (almost)
trivial:

(i) The index j ∈ Ω of the information revealed at
instant of time t is known for every t > 0. In such
a case a simple rule may be used to determine which
agent looks for which information (e.g. the one that
carries the same index). Only a single agent would be
active at every instant (knowing that the information
corresponding to its index is being revealed).

(ii) Suppose the agent and information sets are known to
be aligned, i.e. for each θ ∈ S there exists a unique

closest (when compared to the other agents) θ̂ ∈ A.
Again, only a single agent moves at every instant of
time (the one that is closest).

The difficulty of the search problem considered in this
paper is that both the revelation of information over time
as well as the location of information in space is random.
We refer to such a situation as an uncertain environment.

2.2 The algorithm

The algorithm was first proposed in [13], motivated by the
work of Haruno et al. [12] and based on the idea that all
agent search simultaneously while communicating to each
other their successes in finding a given piece of information
θ ∈ S. We define the error vector

θ̃i(t, t) = θ̂i(t) − θ(t) (1)

Notice that the first time argument θ̃i(t, ·) refers to the
evolution of the search process while the second argument
θ̃i(·, t) refers to the revelation of information θ(t) over time.
The two processes may evolve on different time-scales. To
make the search problem meaningful we assume that new

information appears at a slower rate than the time needed
to update an agent’s “knowledge”. Also, the fact that the
total information is finite and that the same information
appears over and over again makes the search problem
meaningful. The error dynamics for agent i’s search is
given by

θ̃i(t + 1, t) =
(

1 − ηi[θ̃(t, t)]
)

θ̃i(t, t) (2)

The central idea of the algorithm is contained in the term
ηi which determines the step–size by which agent i is being
updated.

ηi[θ̃(t, t)] =
‖θ̃i(t, t)‖

−2

∑N
k=1 ‖θ̃k(t, t)‖−2

(3)

Equation (3) defines a communication protocol among the
agents as follows. The step by which an agent “‘moves”
towards a given point, say θj depends both on its distance

‖θ̃i(t, t)‖ and the distances of all the other agents. If an
agent is already close to θj relative to the other agents, it
is rewarded by a large step–size. The same agent obtains
a smaller step–size if also the other agents are close, i.e.
when the denominator in (3) is large. Notice also, that
at every instant t all agents are active regardless of their
relative positions. In other words, the protocol does not
follow a “winner takes it all”– policy but assigns a non–
zero step–size to every agent as long as the information
has not been absorbed by any agent. This rule prevents
the agents from getting locked, in particular if there is one
agent closer to more than one θj ∈ S than all the others.
The winner–rule would make it impossible for that agent
to decide which piece of information to take. We observe
that

ηi[θ̃] → 1 if θ̃i → 0

ηi[θ̃] → 0 if θ̃j 6=i → 0
(4)

The protocol (3) ensures that no two models converge to
the same element.

A final remark regards the nature of the dynamical system
associated with the algorithm defined by (2), (3). The pres-
ence of the (stochastic) process governing the revelation
of information makes the system non–autonomous. This
means that at an equilibrium point we have

θ̃∗i (t + 1, t) = θ̃∗i (t, t) for all t > 0 (5)

2.3 The equilibrium set

From equations (2) and (5) it is clear that for θ̃∗i (t, t) to be

an equilibrium point the product ηi[θ̃
∗
i (t, t)] θ̃∗i (t, t) ≡ 0 for

all t > 0. It is also clear, that neither one of the factors can
be zero for all t > 0 since convergence to θj ∈ S implies not
to converge to another element θk 6=j ∈ S that is distinct
from θj . At the equilibrium, there will be another agent at
θk. But this implies that if indeed convergence takes place,

Lemma 1. Convergence takes place simultaneously over
all elements in S.

Proof: Suppose all but one piece of information in S,
say θk, has been absorbed by (at least) one agent. Then
ηi[θ(tk, tk)] > 0 for all i ∈ Ω where tk are the instants of
time for which θ(tk) ≡ θk ∈ S. This means that equation
5 can only be satisfied for all t > 0 if there is an agent for
every element in S. �
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The equilibrium set is defined as

I = {θ̃i(t, t) | θ̃f(i)(t, t) = 0 if θ(t) ≡ θf(i), i ∈ Ω} (6)

where f(·) : Ω → Ω is a rearrangement of the agent indices
such that every agent has the same index as the point
to which it converges. Note that there are N ! possible
rearrangements of the agent indices. It is not clear which
agent converges to which element of the set S.

Remark: If the number of agents M exceeds that of the
pieces of information N there will be M − N agents
converging at positions not contained in the set S.

θ1

θ2

θ3

θ4

θ5

θ̂1

θ̂2

θ̂3

θ̂4
θ̂5 M1

M5

∑5
i=2 αidi

Fig. 1. Proof of theorem 1

3. ANALYSIS

The following notation is used:

di(θ) = ‖θ̂i − θ‖ = ‖θ̃i‖ (7)

denotes the distance of an agent to the point θ. The explicit
dependence on time t is omitted wherever appropriate to
simplify notation. We use the superscript + to denote the
value of a variable after the algorithm has been applied
once. The length of an update step is denoted as

si(θ) = di − d+
i = ηi ‖θ̃i‖ (8)

Without loss of generality, the index i = 1 is used to denote
a particular element of the sets S or A as opposed to the
other elements of the set i = 2, . . . N . As stated above, the
index set is denoted as Ω = {1, 2, . . . , N}.

3.1 Convergence to a Convex Hull

In order to motivate the problem, we assumed that the
agents A are initialized far from the points S. Hence, none
of the agents is distinguished with respect to any point
and we expect all agents to behave similarly. Let H(S) be
the convex hull of the information set S.

Lemma 2. Given i ∈ Ω with θ̂i /∈ H(S), then θ̂i con-

verges monotonically to H(S), i.e. dist(θ̂i(t), H(S)) :=
diH(S)(t) → 0 monotonically as t → ∞.

Proof: From the algorithm we see that every agent reduces
its distance to an element contained in H(S) at every
instant t > 0. The lemma follows from the definition of
the distance of an agent θ̂i to the set H(S)

diH(S)(k) := min
ξ∈H(S)

‖θ̂i(k) − ξ‖

�

Hence, without loss of generality, all agents can be initial-
ized inside the convex hull.

3.2 Ordering of the steps

The amount by which the agents reduce their distances
to the prevailing point θ ∈ S is ordered according to
their relative distances from that parameter. Using the
definition of ηi from equation (3) we obtain

si(θ) = ηidi =
d2
1 . . . d2

[i−1] di d2
[i+1] . . . d

2
N

∑N
k=1

∏

l 6=k d2
l

(9)

Let the indices i ∈ Ω be assigned such that

d1 < d2 < · · · < dN (10)

The following lemma regarding the ordering of the steps
holds:

Lemma 3.

di < di+1 ⇒ ηidi > ηi+1di+1 ∀ i ∈ Ω (11)

Proof: From equation (9) we have:

si =
1

dS
d2
1 . . . d2

[i−1] di d2
[i+1] . . . d

2
N

si+1 =
1

dS
d2
1 . . . d2

i d[i+1] d
2
[i+2] . . . d

2
N

(12)

where dS =
∑N

k=1

∏

l 6=k d2
l . We obtain

si

si+1
=

di+1

di
> 1 since di < di+1

3.3 Agent dispersion

The dispersion between two agents is simply the Euclidean

distance ‖θ̂1 − θ̂‖ in R
n. Here θ̂1 refers to agent 1 and θ̂

to any other agent. We now relate this distance to a point
θ ∈ S and define

ρ(θ) =
∣

∣‖θ̂1 − θ‖ − ‖θ̂ − θ‖
∣

∣ (13)

Using (7) we write

ρ(θ) = |d1(θ) − d(θ)| (14)

ρ(θ) is a relative dispersion as seen from the perspective
of θ. From the triangle inequality we obtain that

ρ(θ) ≤ ‖θ̂1 − M‖ (15)

We separate θ̂1 from the rest of the group and let A′

denote that rest A′ = {θ̂2, . . . , θ̂N}. The distance of the
agents from θ is given by d2, . . . , dN respectively. A convex
combination reads

dA′ =
N

∑

i=2

αidi where
N

∑

i=2

αi = 1, αi > 0 ∀ i. (16)

From the geometry it is clear that any ball of radius dA′

has a non–zero intersection with the convex hull of A′.
In other words, there exists a point M ∈ H(A′) which
is at a distance dA′ from θ. M may be interpreted as an
average position of the agents in A′. If αi = 0 for some
i ∈ {2, . . . , N} then M may be a boundary point of H(A′).
The generic situation, however, is that M is inside H(A′).
This is displayed in figure 1.

Lemma 4. For any θ there exists a point M ∈ H(A′) such
that

ρ(θ)+ > ρ(θ) (17)
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Fig. 2. Convergence of the search process. Left: all agents are initialized far from the points. Middle: Agents are initialized
in a neighborhood of the saddle point θ∗. Right: Detailed view of the first iterations of the algorihtm started at θ∗

Proof: For equation (17) to hold, the following must be
satisfied

sM − s1 > 0 if d1 > dM

s1 − sM > 0 if dM > d1
(18)

The conditions are formulated in terms of the first agent
i = 1 but are the same for any i ∈ Ω. Notice that

sM =
∑N

i=2 si. Obviously sM 6= ηMdM since M is not
a real agent to which the algorithm can be applied. Let us
first consider d1 > dM . We define

α∗
i > 0 if d1 > di

α∗
i = 0 if d1 ≤ di

(19)

and such that
∑N

i=2 α∗
i = 1. From the above arguments

we know that there exists an M in H(A′) such that

dM =
∑N

i=2 α∗
i di.

sM =
N

∑

i=2

α∗
i ηidi >

N
∑

i=2

α∗
i η1d1 = s1 (20)

since by lemma 3

ηidi > η1d1 whenever d1 > di (21)

The same idea can be applied to the second inequality in
(18). �

We are now ready to state our main result.

Theorem 1. For every θ ∈ S there exists a θ̂ ∈ A such that

lim
t→∞

θ̂(t) = θ a.s. (22)

under the dynamics defined by the algorithm in equations
(2) and (3).

Remark: θ̂(t) is a stochastic variable whose evolution is
defined by the algorithm which, in turn, is driven by the
stochastic force θ(t) 1 . Hence, the best we can obtain is
convergence with probability 1.

Lemma 4 states that for any θ ∈ S, say θ1, there exists
an M ∈ H(A′) such that ρt+1(θ1) > ρt(θ1) where t > 0
are instants of time. The central question is whether this
inequality can be made invalid in any of the subsequent
iterations of the algorithm 2 . When considering the dy-

1 If we solve equation (2) for θ̂i(t+1) using equation (1) the driving
force appears in the term ηi[θ̃(t, t)].
2 It is clear that this is impossible if θ(t) ≡ θ1 for all t > 0. If, on
the other hand, θ(t) switches to a new value a new “geometry” is in
place and lemma 4 holds with respect to a new point θi6=1.

namics of the agents it is useful to introduce the notion of
a cycle.

Definition 1. Let T > 0 be such that θ(t + T ) = θ(t) and
θ(t + ti) = θi for some ti ∈ [0 T ] and every i ∈ Ω. T is
called a cycle.

While it cannot be excluded that an agent returns to its

original position after a cycle θ̂1(t + T ) = θ̂1(t) the same

is not true for the distance between θ̂1 and a point M in
the convex set H(A′).

Lemma 5. For every θ ∈ S, say θ1 there exists a subse-
quence {ts}s≥0 of {t}t≥0 such that

• ts → ∞ as s → ∞.
• θ(ts) = θ1 for all s ≥ 0.
• and the following holds:

ρts+1
(θ1) > ρts

(θ1). (23)

(Qualitative) Proof. If we track the motion of θ̂1, we know
from lemma 4 that d1(θ) − dM (θ) increases whenever
d1(θ) > dM (θ) and vice versa. This holds at every step t,
where ts ≤ t ≤ ts+1 and independent of θ. It follows that
the diameter (defined as the smallest Euclidean distance

among two elements) of the set θ̂1 ∪ A′ increases. For if
we suppose in contradiction that it decreases, any increase
must be “undone” by a (net) step towards an opposite
point. But during such a motion, the reverse relation
d1(θ) < dM (θ) holds and |d1(θ)−dM (θ)| increases further.
But this means in particular that at the end of a cycle M
can be chosen in such a way that inequality (23) holds. 2

Proof of the Theorem 1. We first investigate the con-
vergence from the perspective of θ1. To this end, define
a sequence {Mts

}s≥0 according to lemma 5. The corre-
sponding sequence {ρts

}ts≥0 is monotonically increasing.

Since both Mts
and θ̂1 are contained in the bounded

region H(S), ρts
is bounded above by the largest diagonal

D1 = maxi∈Ω/{1} ‖θi − θ1‖ in the set S. This means that
ρts

→ D1 as s → ∞ which is equivalent to

lim
s→∞

θ̂i(ts) = θ1 for some i ∈ Ω (24)

The same argument holds with respect to every other point
θi ∈ S. �

Remark: We do not know which agent converges to θ1 even

though ρts
is defined in terms of θ̂1. What we rely on in the
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proof is the monotonic increase (over a subsequence) of the

dispersion among the agents, i.e. the distance between θ̂1

and a point M in H(A′). M may correspond to an element
of A′ in which case it is a candidate for the convergence
to θ1.

4. DISCUSSION

Figure 2 displays the results of a simulation involving
N = 9 agents. In the first experiment, the agents are
initialized close to each other but far from the points. The
monotonic convergence stated in lemma 2 appears very
distinctly. Once the agents have entered a convex hull of
S the dynamics of the agents is much more convoluted.
This is also observed in the second experiment, where the
agents are initialized inside the convex hull. A qualitative
feature observed in many simulations is that the agents
seem to gather at a point inside H(S) before fanning
out and converging to the different points contained in
S. At this point it is not evident which agent converges
to which point. Also, the way the convergence takes
place is virtually invisible to the naked eye. In order to
structure the observations that can be made in simulations
we introduce a simplification which helps us locate the
“gathering point” of all the agents.

First, we assume that the time–variation is periodic.
Second, instead of updating the agents at every instant
of time, their location is fixed. The adjustment vectors
which result at every instant are summed up and used
to update the location of the model only after the cycle is
complete. Last, all agents are initialized at the same point.
In this case no agent has a relative advantage, and the
communication (of relative successes) becomes obsolete.
The step-size equation (3) reads:

ηi(t) =
1

N
(25)

In this special set–up, the only equilibrium point is at

θ∗ =
1

N

N
∑

i=1

θi (26)

and it is easily seen that θ∗ is stable and globally at-
tractive. The point helps us distinguish to phases in the
convergence process: In the initial stage, the models merely
“position” themselves (and approach a neighborhood of
θ∗) without noticeably increasing their relative positions
(agent dispersion). In the second stage, the agents diverge
from θ∗ while approaching the points of the set S. θ∗ has
a remarkable influence on the evolution of agents even
though it is not an equilibrium point for the original
dynamics.

This suggests the existence of a hyperbolic invariant set,
e.g. a limit cycle that is reached when all agents start
from identical positions. The stable manifold of this set
is followed in the first stage of the convergence process
while the unstable manifold dominates the dynamics in
the second stage. The interesting point to note here is that
the hyperbolic structure is the result of the competition
introduced by the communication protocol defined in
equation (3).

REFERENCES

[1] Tesfatsion, L.: Agent-based computational eco-
nomics: modeling economies as complex adaptive sys-
tems. Information Sciences, Volume 149, Issue 4,
February 2003.

[2] Mauboussin, M.J.: Revisiting market efficiency: the
stock market as a complex adaptive system. Journal
of Applied Corp. Finance, Volume 4, April 2005.

[3] Shaw, E.: Fish in schools. Natural History, vol. 84,
no.8, 1975.

[4] Toner, J.; Tu, Y.: Flocks, herds, and schools: A
quantitative theory of flocking. Physical Review E,
vol. 58, no. 4, Oct. 1998.

[5] Reynolds, C.W.: Flocks, herds, and schools: a dis-
tributed behavioral model. Computer Graphics, vol.
21, no. 4, July 1987.

[6] Olfati–Saber, R.: Flocking for Multi-Agent Dy-
namic Systems: Algorithms and Theory. IEEE Trans-
actions on Automatic Control, vol. 51, no. 3, March
2006.

[7] Jadbabaie, A.; Lin, J.; Morse, A.S.: Coordination
of groups of mobile autonomous agents using near-
est neighbor rules, IEEE Transactions on Automatic
Control, vol. 48, no. 6, 2003.

[8] Sornette, D.; Zhou, W.X.: Importance of Positive
Feedbacks and Over–Confidence in a Self–Fulfilling
Ising Model of Financial Markets, Journal of Eco-
nomic Behavior and Organization,

[9] Sznajd–Weron, K.; Sznajd, J.: Opinion Evolution
in Closed Community, International Journal of Mod-
ern Physics C, vol. 11, no. 6, 2000.

[10] Arthur, W.B.: Inductive Reasoning and Bounded
Rationality, American Economic Assoc. Papers and
Proc. 84, 1994.

[11] Challet, D.; Marsili, M.; Zhang, Y.C.: Minor-
ity Games: Interacting Agents in Financial Markets,
Oxford University Press, Inc. New York, USA, 2005.

[12] Haruno, M.; Wolpert, D.M. and Kawato M.:
MOSAIC Model for Sensorimotor Learning and Con-
trol. Neural Computation, 13: 2201–2220, 2001.

[13] Narendra, K.S.; Driollet, O.A.; Feiler, M.J.;
Koshy, G.:Adaptive Control Using Multiple Models,
Switching and Tuning. International Journal of Adap-
tive Control and Signal Processing, vol. 17, pp.87-102,
2003.

[14] Feiler, M.J.; Narendra, K.S.: Adaptive Control
of Rapidly Time-Varying Systems. In: Proceedings of
the 12th Yale Workshop on Adaptive and Learning
Systems, p. 33-42, Yale University, New Haven, CT,
USA, 2003.

[15] Feiler, M.J.; Narendra, K.S.: Simultaneous Iden-
tification and Control of Linear Time–Varying Plants
using Multiple Models. Technical Report No. 0401,
Center for Systems Science, Yale University, New
Haven, CT, USA, March 2004.

[16] Feiler, M.J; Narendra, K.S.:Simultaneous Iden-
tification and Control of Time–Varying Systems In:
Proceedings of the 45th IEEE Conference on Decision
and Control, 2006.

[17] Feiler, M.J; Narendra, K.S.:Identification and
Control Using Multiple Models In: Proceedings of
the 14th Yale Workshop on Adaptive and Learning
Systems, p. 33-42, Yale University, USA, 2008.

NECSYS'09
Venice, Italy, September 24-26, 2009

292


