
A Revealing Introduction to Hidden Markov Models

Mark Stamp

January 18, 2004

1 A simple example

Suppose we want to determine the average annual temperature at a particular location on
earth over a series of years. To make it interesting, suppose the years we are concerned with
lie in the distant past, before thermometers were invented. Since we can’t go back in time,
we instead look for indirect evidence of the temperature.

To simplify the problem, we only consider two annual temperatures, “hot” and “cold”.
Suppose that modern evidence indicates that the probability of a hot year followed by another
hot year is 0.7 and the probability that a cold year is followed by another cold year is 0.6.
We’ll assume that these probabilities held in the distant past as well. The information so
far can be summarized as

H C

H
C

[
0.7 0.3
0.4 0.6

] (1)

where H is “hot” and C is “cold”.
Also suppose that current research indicates a correlation between the size of tree growth

rings and temperature. For simplicity, we only consider three different tree ring sizes, small,
medium and large, or S, M and L. Conceivably, the probabilistic relationship between
temperature and tree ring sizes could be given by

S M L

H
C

[
0.1 0.4 0.5
0.7 0.2 0.1

]
.

(2)

For this system, the state is the average annual temperature—either H or C. The tran-
sition from one state to the next is a Markov process (of order one), since the next state
depends only on the current state and the fixed probabilities in (1). However, the actual
states are “hidden” since we can’t directly observe the temperature in the past.

Although we can’t observe the state (temperature) we can observe the size of tree rings.
From (2), tree rings provide us with probabilistic information regarding the temperature.
Since the states are hidden, this type of system is known as a Hidden Markov Model (HMM).

1

Our goal is to make effective and efficient use of the observable information in order to gain
insight into various aspects of the Markov process.

The state transition matrix

A =

[
0.7 0.3
0.4 0.6

]
(3)

comes from (1) and the observation matrix

B =

[
0.1 0.4 0.5
0.7 0.2 0.1

]
. (4)

is from (2). Perhaps there is additional evidence that the initial state distribution, denoted
by π, is

π =
[

0.6 0.4
]
. (5)

The matrices, π, A and B are row stochastic, meaning that each element is a probability
and the elements of each row sum to 1.

Now consider a particular four-year period of interest where we observe the series of tree
rings S, M, S, L. Letting 0 represent S, 1 represent M and 2 represent L, this observation
sequence is

O = (0, 1, 0, 2). (6)

We might want to determine the most likely state sequence of the Markov process given
the observations (6). This is not quite as clear-cut as it seems, since there are different
possible interpretations of “most likely”. On the one hand, we could reasonably define
most likely as the state sequence with the highest probability from among all possible state
sequences of length four. Dynamic programming (DP) efficiently finds this particular most
likely solution. On the other hand, we might reasonably define most likely as the state
sequence that maximizes the expected number of correct states. HMMs find this most likely
sequence.

The DP solution and the HMM solution are not necessarily the same. For example, the
DP solution must have valid state transitions, while this is not necessarily the case for the
HMMs. And even if all state transitions are valid, the HMM solution can still differ from
the DP solution (as we illustrate in an example below).

Next, we present one of the most challenging aspects of HMMs—the notation. Then
we discuss the three fundamental problems related to HMMs and give algorithms for their
efficient solutions. We also consider some critical computational issue that must be addressed
when writing any HMM computer program. We conclude with a substantial example that
does not require any specialized knowledge, yet nicely illustrates the strength of the HMM
approach. Rabiner [1] is the best source for further introductory information on HMMs.

2

2 Notation

Let
T = the length of the observation sequence
N = the number of states in the model
M = the number of observation symbols
Q = {q0, q1, . . . , qN−1} = the states of the Markov process
V = {0, 1, . . . ,M − 1} = set of possible observations
A = the state transition probabilities
B = the observation probability matrix
π = the initial state distribution
O = (O0,O1, . . . ,OT−1) = observation sequence.

The observations are always denoted by {0, 1, . . . ,M − 1}, since this simplifies the notation
with no loss in generality. Then Oi ∈ V for i = 0, 1, . . . , T − 1.

A generic hidden Markov model is illustrated in Figure 1, where the Xi are the hidden
states and all other notation is as given above. The Markov process—which is hidden behind
the dashed line—is determined by the initial state X0 and the A matrix. We are only able
to observe the Oi, which are related to the actual states of the Markov process by the
matrices B and A.

Markov process: X0 X1 X2 · · · XT−1
-A -A -A -A

?

B

?

B

?

B

?

B

Observations: O0 O1 O2 · · · OT−1

Figure 1: Hidden Markov Model

For the temperature example of the previous section—with the observations sequence
given in (6)—we have T = 4, N = 2, M = 3, Q = {H, C}, V = {0, 1, 2} (where we let 0, 1, 2
represent “small”, “medium” and “large” tree rings). In this case, the matrices A, B and π
are given by (3), (4) and (5), respectively.

The matrix A = {aij} is N ×N with

aij = P (state qj at t + 1 | state qi at t)

and A is row stochastic. Note that the probabilities aij are independent of t. The matrix
B = {bj(k)} is an N ×M with

bj(k) = P (observation k at t | state qj at t).

3

As with A, the matrix B is row stochastic and the probabilities bj(k) are independent of t.
The unusual notation bj(k) is standard in the HMM world.

An HMM is defined by A, B and π (and, implicitly, by the dimensions N and M). The
HMM is denoted by λ = (A, B, π).

Consider a state generic sequence of length four

X = (x0, x1, x2, x3)

with corresponding observations

O = (O0,O1,O2,O3).

Then πx0 is the probability of starting in state x0. Also, bx0(O0) is the probability of initially
observing O0 and ax0,x1 is the probability of transiting from state x0 to state x1. Continuing,
we see that the probability of the state sequence X is given by

P (X) = πx0bx0(O0)ax0,x1bx1(O1)ax1,x2bx2(O2)ax2,x3bx3(O3). (7)

Consider the temperature example in Section 1 with observation sequence O = (0, 1, 0, 2),
as given in (6). Using (7) we can compute, say,

P (HHCC) = 0.6(0.1)(0.7)(0.4)(0.3)(0.7)(0.6)(0.1) = 0.000212.

Similarly, we can compute the probability of each of the possible state sequences of length
four, assuming the fixed observation sequence (6). We have listed these results in Table 1,
where the probabilities in the last column are normalized so that they sum to 1.

To find the optimal state sequence in the dynamic programming (DP) sense, we simply
choose the sequence with the highest probability, namely, CCCH. To find the optimal
sequence in the HMM sense, we choose the most probable symbol at each position. To this
end we sum the probabilities in Table 1 that have an H in the first position. Doing so, we find
the (normalized) probability of H in the first position is 0.18817 and hence the probability
of C in the first position is 0.81183. The HMM therefore chooses the first element of the
optimal sequence to be C. We repeat this for each element of the sequence, obtaining the
probabilities in Table 2.

From Table 2 we find that the optimal sequence—in the HMM sense—is CHCH. Note
that in this example, the optimal DP sequence differs from the optimal HMM sequence, even
though all state transitions are valid.

3 The three problem

3.1 Problem 1

Given the model λ = (A, B, π) and a sequence of observations O, find P (O |λ). Here, we
want to determine the likelihood of the observed sequence O, given the model.

4

normalized
state probability probability

HHHH .000412 .042743
HHHC .000035 .003664
HHCH .000706 .073274
HHCC .000212 .021982
HCHH .000050 .005234
HCHC .000004 .000449
HCCH .000302 .031403
HCCC .000091 .009421
CHHH .001098 .113982
CHHC .000094 .009770
CHCH .001882 .195398
CHCC .000564 .058619
CCHH .000470 .048849
CCHC .000040 .004187
CCCH .002822 .293096
CCCC .000847 .087929

Table 1: State sequence probabilities

element
0 1 2 3

P (H) 0.188170 0.519432 0.228878 0.803979
P (C) 0.811830 0.480568 0.771122 0.196021

Table 2: HMM probabilities

3.2 Problem 2

Given λ = (A, B, π) and an observation sequence O, find an optimal state sequence for the
underlying Markov process. In other words, we want to uncover the hidden part of the
Hidden Markov Model. This type of problem is discussed in Section 1.

3.3 Problem 3

Given an observation sequence O and the dimensions N and M , find the model λ = (A, B, π)
that maximizes the probability of O. This can be viewed as training the model to best fit
the observed data. Alternatively, we can view this as a (discrete) hill climb on the parameter
space represented by A, B and π.

5

3.4 Discussion

Consider speech recognition—which happens to be one of the best-known applications of
HMMs. We can use the solution to Problem 3 to train an HMM, say, λ0 to recognize the
spoken word “no” and train another HMM, say, λ1 to recognize the spoken word “yes”.
Then given an unknown spoken word, we can use the solution to Problem 1 to score this
word against λ0 and also λ1 to determine whether it is more likely “no”, “yes” or neither. In
this case, we don’t need to solve Problem 2, but it is possible that such a solution—which
uncovers the hidden states—might provide additional insight into the underlying speech
model.

4 The three solutions

4.1 Solution to Problem 1

Let λ = (A, B, π) be a given model and letO = (O0,O1, . . . ,OT−1) be a series of observations.
We want to find P (O |λ).

Let X = (x0, x1, . . . , xT−1) be a state sequence. Then by the definition of B we have

P (O |X, λ) = bx0(O0)bx1(O1) · · · bxT−1
(OT−1)

and by the definition of π and A it follows that

P (X |λ) = πx0ax0,x1ax1,x2 · · · axT−2,xT−1
.

Since

P (O, X |λ) =
P (O ∩X ∩ λ)

P (λ)

and

P (O |X, λ)P (X |λ) =
P (O ∩X ∩ λ)

P (X ∩ λ)
· P (X ∩ λ)

P (λ)
=

P (O ∩X ∩ λ)

P (λ)

we have
P (O, X |λ) = P (O |X, λ)P (X |λ).

By summing over all possible state sequences we obtain

P (O |λ) =
∑
X

P (O, X |λ)

=
∑
X

P (O |X, λ)P (X |λ)

=
∑
X

πx0bx0(O0)ax0,x1bx1(O1) · · · axT−2,xT−1
bxT−1

(OT−1).

However, this direct computation is generally infeasible, since it requires about 2TNT multi-
plications. The strength of the HMM approach derives largely from the fact that there exist
an efficient algorithm to achieve the same result.

6

To find P (O |λ), the so-called forward algorithm, or α-pass, is used. For t = 0, 1, . . . , T−1
and i = 0, 1, . . . , N − 1, define

αt(i) = P (O0,O1, . . . ,Ot, xt = qi |λ). (8)

Then αt(i) is the probability of the partial observation sequence up to time t, where the
underlying Markov process in state qi at time t.

The key result is that the αt(i) can be computed recursively as

1. Let α0(i) = πibi(O0), for i = 0, 1, . . . , N − 1

2. For t = 1, 2, . . . , T − 1 and i = 0, 1, . . . , N − 1, compute

αt(i) =

N−1∑
j=0

αt−1(j)aji

 bi(Ot)

3. Then from (8) it is clear that

P (O |λ) =
N−1∑
i=0

αT−1(i).

The α-pass computation requires N2T multiplications, as opposed to more than 2TNT for
the näıve approach.

4.2 Solution to Problem 2

Given the model λ = (A, B, π) and a sequence of observations O, our goal is to find the
most likely state sequence. As mentioned above, there are different possible interpretations
of “most likely”. For HMMs we maximize the expected number of correct states. In contrast,
a dynamic program finds the highest scoring overall path. As we have seen, these solutions
are not necessarily the same.

First, we define the backward algorithm, or β-pass. This is analogous to the α-pass
discussed above, except that it starts at the end and works back toward the beginning.

For t = 0, 1, . . . , T − 1 and i = 0, 1, . . . , N − 1, define

βt(i) = P (Ot+1,Ot+2, . . . ,OT−1 |xt = qi, λ).

Then the βt(i) can be computed recursively as

1. Let βT−1(i) = 1, for i = 0, 1, . . . , N − 1.

2. For t = T − 2, T − 1, . . . , 0 and i = 0, 1, . . . , N − 1 compute

βt(i) =
N−1∑
j=0

aijbj(Ot+1)βt+1(j).

7

For t = 0, 1, . . . , T − 2 and i = 0, 1, . . . , N − 1, define

γt(i) = P (xt = qi | O, λ).

Since αt(i) measures the relevant probability up to time t and βt(i) measures the relevant
probability after time t,

γt(i) =
αt(i)βt(i)

P (O |λ)
.

Recall that the denominator P (O |λ) is obtained by summing αT−1(i) over i. From the
definition of γt(i) it follows that the most likely state at time t is the state qi for which γt(i)
is maximum—where the maximum is taken over the index i.

4.3 Solution to Problem 3

Here we want to adjust the model parameters to best fit the observations. The sizes of the
matrices (N and M) are fixed but the elements of A, B and π are free, subject only to the
row stochastic condition. The fact that we can re-estimate the model itself is one of the
more amazing aspects of HMMs.

For t = 0, 1, . . . , T − 2 and i, j ∈ {0, 1, . . . , N − 1}, define “di-gammas” as

γt(i, j) = P (xt = qi, xt+1 = qj | O, λ).

Then γt(i, j) is the probability of being in state qi at time t and transiting to state qj at
time t + 1. The di-gammas can be written in terms of α, β, A and B as

γt(i, j) =
αt(i)aijbj(Ot+1)βt+1(j)

P (O |λ)
.

The γt(i) and γt(i, j) (or di-gamma) are related by

γt(i) =
N−1∑
j=0

γt(i, j).

Given the γ and di-gamma we verify below that the model λ = (A, B, π) can be re-
estimated as

1. For i = 0, 1, . . . , N − 1, let
πi = γ0(i) (9)

2. For i = 0, 1, . . . , N − 1 and j = 0, 1, . . . , N − 1, compute

aij =
T−2∑
t=0

γt(i, j)

/
T−2∑
t=0

γt(i) . (10)

8

3. For j = 0, 1, . . . , N − 1 and k = 0, 1, . . . ,M − 1, compute

bj(k) =
∑

t∈{0,1,...,T−2}
Ot=k

γt(j)

/
T−2∑
t=0

γt(j) . (11)

The numerator of the re-estimated aij can be seen to give the expected number of tran-
sitions from state qi to state qj, while the denominator is the expected number of transitions
from qi to any state. Then the ratio is the probability of transiting from state qi to state qj,
which is the desired value of aij.

The numerator of the re-estimated bj(k) is the expected number of times the model is
in state qj with observation k, while the denominator is the expected number of times the
model is in state qj. The ratio is the probability of observing symbol k, given that the model
is in state qj, which is the desired value of bj(k).

Re-estimation is an iterative process. First, we initialize λ = (A, B, π) with a best
guess or, if no reasonable guess is available, we choose random values such that πi ≈ 1/N
and aij ≈ 1/N and bj(k) ≈ 1/M . It’s critical that A, B and π be randomized, since exactly
uniform values result in a local maximum from which the model cannot climb. As always, π,
A and B must be row stochastic.

The process can be summarized as

1. Initialize, λ = (A, B, π).

2. Compute αt(i), βt(i), γt(i, j) and γt(i).

3. Re-estimate the model λ = (A, B, π).

4. If P (O |λ) increases, goto 2.

Of course, it might be desirable to stop if P (O |λ) does not increase by at least some
predetermined threshold and/or to set a maximum number of iterations.

5 Dynamic programming

Before completing our discussion of the elementary aspects of HMMs, we make a brief detour
to show the relationship between dynamic programming (DP) and HMMs. In fact, a DP
can be viewed as an α-pass where “sum” is replaced by “max”. More precisely, for π, A
and B as above, the dynamic programming algorithm can be stated as

1. Let δ0(i) = πibi(O0), for i = 0, 1, . . . , N − 1.

2. For t = 1, 2, . . . , T − 1 and i = 0, 1, . . . , N − 1, compute

δt(i) = max
j∈{0,1,...,N−1}

[δt−1(j)ajibi(Ot)]

9

At each successive t, the DP determines the probability of the best path ending at each of
the states i = 0, 1, . . . , N − 1. Consequently, the probability of the best overall path is

max
j∈{0,1,...,N−1}

[δT−1(j)]. (12)

Be sure to note that (12) only gives the optimal probability, not the optimal path itself.
By keeping track of each preceding state, the DP procedure can be used to recover the
optimal path by tracing back from the highest-scoring final state.

For example, consider the example of Section 1. The initial probabilites are

P (H) = π0b0(0) = 0.6(0.1) = 0.06 and P (T) = π1b1(0) = 0.4(0.7) = 0.28.

The probabilities of each path of length two are

P (HH) = 0.06(0.7)(0.4) = 0.0168

P (HC) = 0.06(0.3)(0.2) = 0.0036

P (CH) = 0.28(0.4)(0.4) = 0.0448

P (CC) = 0.28(0.6)(0.2) = 0.0336

and hence the best (most probable) path of length two ending with H is CH while the
best path of length two ending with C is CC. Continuing, we construct the the diagram
in Figure 2 one “level” at a time, where each arrow points to the preceding element in the
optimal path up to that particular state. Note that at each stage, the dynamic programming
algorithm only needs to maintain the highest-scoring paths at each possible state—not a list
of all possible paths. This is the key to the efficiency of the DP algorithm.

H
.06

C
.28

H
.0448

�
�

�
��=

C
.0336

�

H
.003136

�

C
.014112

�

H
.002822

�
�

�
��=

C
.000847

�

Figure 2: Dynamic programming

In Figure 2, the maximum final probability is 0.002822 which occurs at the final state H.
We can use the arrows to trace back from H to find the optimal path CCCH.

Underflow is a concern with a dynamic programming problem of this form, since we
compute products of probabilities. Fortunately, underflow is easily avoided by simply taking
logarithms. The underflow-resistant DP algorithm is

1. Let δ̂0(i) = log[πi(O0)], for i = 0, 1, . . . , N − 1.

2. For t = 1, 2, . . . , T − 1 and i = 0, 1, . . . , N − 1, compute

δ̂t(i) = max
j∈{0,1,...,N−1}

{
δ̂t−1(j) + log[aji] + log[bi(Ot)]

}
.

10

In this case, the optimal score is

max
j∈{0,1,...,N−1}

[δ̂T−1(j)].

Of course, additional bookkeeping is still required in order find the optimal path.

6 HMM Scaling

The three HMM solutions in Section 4 all require computations involving products of prob-
abilities. It is easy to see, for example, that αt(i) tends to 0 exponentially as T increases.
Therefore, any attempt to implement the formulae as given above will inevitably result in
underflow. The solution to this underflow problem is to scale the numbers. However, care
must be taken to insure that, for example, the re-estimation formulae remain valid.

First, consider the computation of αt(i). The basic recurrence is

αt(i) =
N−1∑
j=0

αt−1(j)ajibi(Ot).

It seems sensible to normalize each αt(i) by dividing by the sum (over j) of αt(j). However,
we must verify that the re-estimation formulae hold.

For t = 0, let α̃0(i) = α0(i) for i = 0, 1, . . . , N − 1. Then let c0 = 1/
∑N−1

j=0 α̃0(j) and,
finally, α̂0(i) = c0α̃0(i) for i = 0, 1, . . . , N − 1. Then for each t = 1, 2, . . . , T − 1 do the
following.

1. For i = 0, 1, . . . , N − 1, compute

α̃t(i) =
N−1∑
j=0

α̂t−1(j)ajibi(Ot).

2. Let

ct =
1

N−1∑
j=0

α̃t(j)

.

3. For i = 0, 1, . . . , N − 1, compute

α̂t(i) = ctα̃t(i).

Clearly, α̂0(i) = c0α0(i). Suppose that

α̂t(i) = c0c1 · · · ctαt(i). (13)

11

Then

α̂t+1(i) = ct+1α̃t+1(i)

= ct+1

N−1∑
j=0

α̂t(j)ajibi(Ot+1)

= c0c1 · · · ctct+1

N−1∑
j=0

αt(j)ajibi(Ot+1)

= c0c1 · · · ct+1αt+1(i)

and hence (13) holds, by induction, for all t.
From (13) and the definitions of α̃ and α̂ it follows that

α̂t(i) =
αt(i)

N−1∑
j=0

αt(j)

(14)

and hence α̂t(i) are the desired scaled values of αt(i) for all t.
As a consequence of (14),

N−1∑
j=0

α̂T−1(j) = 1.

Also, from (13) we have

N−1∑
j=0

α̂T−1(j) = c0c1 · · · cT−1

N−1∑
j=0

αT−1(j)

= c0c1 · · · cT−1P (O |λ).

Combining these results gives

P (O |λ) =
1

T−1∏
j=0

cj

.

To avoid underflow, we instead compute

log[P (O |λ)] = −
T−1∑
j=0

log cj. (15)

The same scale factor is used for βt(i) as was used for αt(i), namely ct, so that β̂t(i) =
ctβt(i). We then compute γt(i, j) and γt(i) using the formulae of the previous section
with α̂t(i) and β̂t(i) in place of αt(i) and βt(i), respectively. These values are then used
to re-estimate π, A and B.

By writing the original re-estimation formulae (9) and (10) and (11) directly in terms
of αt(i) and βt(i), it is an easy exercise to show that the re-estimated π and A and B

12

are exact when α̂t(i) and β̂t(i) are used in place of αt(i) and βt(i). Furthermore, P (O |λ)
isn’t required in the re-estimation formulae, since in each case it cancels in the numerator
and denominator. Therefore, (15) can be used to verify that P (O |λ) is increasing at each
iteration. Fortunately, we have no need for the actual value of P (O |λ), the calculation of
which would inevitably result in underflow.

7 Putting it all together

Here we give complete pseudo-code for solving Problem 3, including scaling. This pseudo-
code also provides everything needed to solve Problems 1 and 2.

The values N and M are fixed and the T observations

O = (O0,O1, . . . ,OT−1)

are assumed known.

1. Initialization:

Select initial values for the matrices A, B and π, where π is 1×N , while A = {aij}
is N ×N and B = {bj(k)} is N ×M , and all three matrices are row-stochastic. If
known, use reasonable approximations for the matrix values, otherwise let πi ≈ 1/N
and aij ≈ 1/N and bj(k) ≈ 1/M . Be sure that each row sums to 1 and the elements
of each matrix are not uniform.

Let

maxIters = maximum number of re-estimation iterations
iters = 0
oldLogProb = −∞.

2. The α-pass

// compute α0(i)
c0 = 0
for i = 0 to N − 1

α0(i) = π(i)bi(O0)
c0 = c0 + α0(i)

next i

// scale the α0(i)
c0 = 1/c0

13

for i = 0 to N − 1
α0(i) = c0α0(i)

next i

// compute αt(i)
for t = 1 to T − 1

ct = 0
for i = 0 to N − 1

αt(i) = 0
for j = 0 to N − 1

αt(i) = αt(i) + αt−1(j)aji

next j
αt(i) = αt(i)bi(Ot)
ct = ct + αt(i)

next i

// scale αt(i)
ct = 1/ct

for i = 0 to N − 1
αt(i) = ctαt(i)

next i
next t

3. The β-pass

// Let βT−1(i) = 1 scaled by cT−1

for i = 0 to N − 1
βT−1(i) = cT−1

next i

// β-pass
for t = T − 2 to 0 by − 1

for i = 0 to N − 1
βt(i) = 0
for j = 0 to N − 1

βt(i) = βt(i) + aijbj(Ot+1)βT+1(j)
next j
// scale βt(i) with same scale factor as αt(i)
βt(i) = ctβt(i)

next i

14

next t

4. Compute γt(i, j) and γt(i)

for t = 0 to T − 2
denom = 0
for i = 0 to N − 1

for j = 0 to N − 1
denom = denom + αt(i)aijbj(Ot+1)βt+1(j)

next j
next i
for i = 0 to N − 1

γt(i) = 0
for j = 0 to N − 1

γt(i, j) = (αt(i)aijbj(Ot+1)βt+1(j))/denom
γt(i) = γt(i) + γt(i, j)

next j
next i

next t

5. Re-estimate A, B and π

// re-estimate π
for i = 0 to N − 1

πi = γ0(i)
next i

// re-estimate A
for i = 0 to N − 1

for j = 0 to N − 1
numer = 0
denom = 0
for t = 0 to T − 2

numer = numer + γt(i, j)
denom = denom + γt(i)

next t
aij = numer/denom

next j
next i

15

// re-estimate B
for i = 0 to N − 1

for j = 0 to M − 1
numer = 0
denom = 0
for t = 0 to T − 2

if(Ot == j) then
numer = numer + γt(i)

end if
denom = denom + γt(i)

next t
bi(j) = numer/denom

next j
next i

6. Compute log[P (O |λ)]

logProb = 0
for i = 0 to T − 1

logProb = logProb + log(ci)
next i
logProb = −logProb

7. To iterate or not to iterate, that is the question. . .

iters = iters + 1
if (iters < maxIters and logProb > oldLogProb) then

oldLogProb = logProb

goto 2
else

output λ = (π, A, B)
end if

8 A not-so-simple example

In this section we present a classic application of Hidden Markov Models due to Cave and
Neuwirth [2]. This application nicely illustrates the strength of HMMs and has the additional
advantage that it requires no background in any specialized field such as speech processing.

16

Suppose Marvin the Martian obtains a large body of English text, such as the “Brown
Corpus” [3], which totals about 1,000,000 words. Marvin, who has a working knowledge of
HMMs, but no knowledge of English, would like to determine some basic properties of this
mysterious writing system. A reasonable question he might ask is whether the characters can
be partitioned into sets so that the characters in each set are “different” in some statistically
significant way.

Marvin might consider attempting the following. First, remove all punctuation, numbers,
etc., and convert all letters to lower case. This leaves 26 distinct letters and word space, for
a total of 27 symbols. He could then test the hypothesis that there is an underlying Markov
process (of order one) with two states. For each of these two hidden states, he assume that
the 27 symbols are observed according to fixed probability distributions.

This defines an HMM with N = 2 and M = 27, where the state transition probabilities
of the A matrix and the observation probabilities—the B matrix—are unknown, while the
the observations are the series of characters found in the text. To find the most probable A
and B matrices, Marvin must solve Problem 3 of Section 7.

We programmed this experiment, using the first T = 50, 000 observations (letters—
converted to lower case—and word spaces) from the “Brown Corpus” [3]. We initialized
each element of π and A randomly to approximately 1/2. The precise values used were

π = [0.51316 0.48684]

and

A =

[
0.47468 0.52532
0.51656 0.48344

]
.

Each element of B was initialized to approximately 1/27. The precise values in the initial B
matrix (actually, the transpose of B) appear in the second and third columns of Figure 3.

After the initial iteration, we have

log[P (O |, λ)] = −165097.29

and after 100 iterations,
log[P (O |λ)] = −137305.28.

This shows that the model has been improved significantly.
After 100 iterations, the model λ = (A, B, π) has converged to

π =
[

0.00000 1.00000
]

and

A =

[
0.25596 0.74404
0.71571 0.28429

]
with the transpose of B appearing in the last two columns of Figure 3.

The most interesting part of this result is the B matrix. Without having made any
assumption about the two hidden states, the B matrix tells us that one hidden state contains

17

Initial Final
a 0.03735 0.03909 0.13845 0.00075
b 0.03408 0.03537 0.00000 0.02311
c 0.03455 0.03537 0.00062 0.05614
d 0.03828 0.03909 0.00000 0.06937
e 0.03782 0.03583 0.21404 0.00000
f 0.03922 0.03630 0.00000 0.03559
g 0.03688 0.04048 0.00081 0.02724
h 0.03408 0.03537 0.00066 0.07278
i 0.03875 0.03816 0.12275 0.00000
j 0.04062 0.03909 0.00000 0.00365
k 0.03735 0.03490 0.00182 0.00703
l 0.03968 0.03723 0.00049 0.07231

m 0.03548 0.03537 0.00000 0.03889
n 0.03735 0.03909 0.00000 0.11461
o 0.04062 0.03397 0.13156 0.00000
p 0.03595 0.03397 0.00040 0.03674
q 0.03641 0.03816 0.00000 0.00153
r 0.03408 0.03676 0.00000 0.10225
s 0.04062 0.04048 0.00000 0.11042
t 0.03548 0.03443 0.01102 0.14392
u 0.03922 0.03537 0.04508 0.00000
v 0.04062 0.03955 0.00000 0.01621
w 0.03455 0.03816 0.00000 0.02303
x 0.03595 0.03723 0.00000 0.00447
y 0.03408 0.03769 0.00019 0.02587
z 0.03408 0.03955 0.00000 0.00110

space 0.03688 0.03397 0.33211 0.01298

Figure 3: Initial and final B transpose

the vowels while the other hidden state contains the consonants. Curiously, word-space is
more like a vowel, while y is not even sometimes a vowel. Of course, anyone familiar with
English would not be too surprised that there is a clear distinction between vowels and
consonants. But the HMM result show us that this distinction is a statistically significant
feature inherent in the language. And, thanks to HMMs, this could easily be deduced by
Marvin the Martian, who has no other knowledge of the language.

Cave and Neuwirth [2] obtain further interesting results by allowing more than two hidden
states. In fact, they are able to obtain and sensibly interpret the results for models with up
to 12 hidden states.

18

9 Exercises

1. Write the re-estimation formulae (9), (10) and (11) directly in terms of α and β.

2. In the re-estimation formulae obtained in Exercise 1, substitute α̂ and β̂ for α and β,
respectively, and show that the resulting re-estimation formulae are exact.

3. Instead of using ct to scale the βt(i), scale each βt(i) by

dt =
1

N−1∑
j=0

β̃t(j)

where the definition of β̃ is similar to that of α̃.

a. Using the scaling factors ct and dt show that the re-estimation formulae obtained
in Exercise 1 are exact with α̂ and β̂ in place of α and β.

b. Write log[P (O |λ)] in terms of ct and dt.

4. Consider an HMM where for each t the state transition matrix is time dependent.
Then for each t, there is an N ×N row-stochastic At = {at

ij} that is used in place of A
in the HMM computations. For such an HMM,

a. Give pseudo-code to solve Problem 1.

b. Give pseudo-code to solve Problem 2.

5. Consider an HMM of order two, that is, an HMM where the underlying Markov process
is of order two. Then the the state at time t depends on the states at time t−1 and t−2
and a fixed set of probabilities. For an HMM of order two,

a. Give pseudo-code to solve Problem 1.

b. Give pseudo-code to solve Problem 2.

c. Give pseudo-code to solve Problem 3.

6. Write an HMM program to solve the English language problem discussed in Section 8
with

a. Three hidden states. Explain your results.

b. Four hidden states. Explain your results.

7. Write an HMM program to solve the problem discussed in Section 8, replacing English
text with

a. French.

19

b. Russian.

c.∗ Chinese.

8. Perform an HMM analysis similar to that discussed in Section 8, replacing English
with “Hamptonese”; see

http://www.cs.sjsu.edu/faculty/stamp/Hampton/hampton.html

for information on Hamptonese.

References

[1] L. R. Rabiner, A tutorial on hidden Markov models and selected applications
in speech recognition, Proceedings of the IEEE, Vol. 77, No. 2, February 1989,
http://www.cs.ucsb.edu/~cs281b/papers/HMMs%20-%20Rabiner.pdf

[2] R. L. Cave and L. P. Neuwirth, Hidden Markov models for English, in J. D. Ferguson,
editor, Hidden Markov Models for Speech, IDA-CRD, Princeton, NJ, October 1980.

[3] The Brown Corpus of Standard American English, available for download at
http://www.cs.toronto.edu/~gpenn/csc401/a1res.html\verb

20

