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Abstract—Our purpose is to create a camera simulator and a
multiple target tracking system for motion capture applications.
Starting from literature and state of the art techniques, we
focused upon the Markov Chain Monte Carlo (MCMC) method
to obtain a MAP estimation of marker’s tracks. In particular,
this method is based on the well known Metropolis-Hastings
algorithm. This method led to very good results (even with
false alarms and missing measurements), although it required
long computation times. Searching for innovative solutions, we
implemented also an algorithm to resolve the Stable Marriage
Problem, and we adapted it to the perform data association. This
implementation is very fast and results accurate, as drawbacks
false alarms and missing measurements are not taken into con-
sideration. For both approaches with provide ideas for possible
improvements to get shorter computation times (MCMCDA) or
to take into account disturbance factors (SMP).

1 INTRODUCTION

1.1 Goals
1.1.1 Multi-Target Tracking
Multi-target tracking is a well known problem
in literature. Given a varying number of targets
kt and measurements nt, the purpose of multi-
target tracking is to associate measurements
with the targets which have generated them.
There are many possible disturbance factors,
such as false alarms, corrupted or missing re-
ports, non-constant sampling time, etc.
There are a lot of fields in engineering where
multiple-target tracking is widely used, such
as motion capture, surveillance systems, com-
puter vision and sensor network. Our inter-
est is focused on motion capture area. In our
motion capture application we have to track
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a variable number of markers that are indis-
cernible, so the only information we have about
them is their position at some sampling time.
Given that, our principal problem become the
data association: we must distinguish mark-
ers resting only upon their dynamics; whereas
other applications like computer vision can rely
upon some descriptor of tracked objects like
color, shape, ecc. that makes data association
problem more reasonable. Motion capture is
not the only scenario where data association is
the principal problem: for example, in a radar
tracking of unidentified vehicles (surveillance)
we don’t have any data other than their posi-
tion. A few number of algorithms were devel-
oped for this purpose; the most widely used
are JPDA 1 for a fixed number of target and the
MHT 2 for a variable number of targets. These
algorithm are used since the Eighties and are
generally slow. A new faster method is Markov
Chain Monte Carlo Data Association [5]. This one
outperforms MHT and JPDA in efficiency and
accuracy under many conditions. Since a lot
of applications in these fields require to be
real-time we have implemented the MCMCDA
algorithm and we have tested it on some syn-
thetic data. We have also implemented a data
association algorithm based on the SMP 3; this
is notably faster than the previous one but as a
drawback, it works only with fixed number of
targets and without false alarms or undetected
measurements (unless we introduce some im-
provements that we will discuss later).

1. Joint Probabilistic Data Association
2. Multiple Hypothesis Testing
3. Stable Marriage Problem
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Camera Simulator
In motion capture scenarios a camera simulator
should be useful to test various algorithms and
to generate synthetic data. In literature there
are a bunch of camera models, but only the pin-
hole camera model is widely used. We came
up with an effective camera simulator which
has been used also by other groups which
participates in same project.

1.2 Results
We managed to implement a MCMCDA algo-
rithm to solve the data association problem.
This implementation has turned out quite ef-
fective but very slow whereupon not applicable
to a real-time application with many targets.
We have also adapted the Stable Marriage to
Data Association problem and implemented an
algorithm that is very effective under some
conditions and may be applied in real-time
applications.

2 LITERATURE AND STATE OF THE ART

Multiple-target tracking (MTT) is an essential
component of surveillance-related systems. Its
application areas include missile defense, air
traffic control, and — in our case — motion
capture techniques. A general formulation of
the problem assumes an unknown and variable
number of targets that moves with continuity
in a given region. In the single-sensor version,
the states of these targets are sampled by the
sensor and the noisy measurements are pro-
vided to the tracking system. The detection
probability is less than one then the targets
could be undetected at some sampling time.
In addition, there are false reports of possible
targets or clutter measurements that arise inde-
pendently from targets of interest. A primary
task of an MTT system is data association, i.e.
partitioning the measurements into disjoint sets
each generated from a single source (target or
clutter). Secondary goal the states estimation
based on measurements originating from in-
teresting targets. The data association problem
could be formulated in several ways. In the
single scan data association, the raw measure-
ments are processed one scan at a time and the
target states get updated accordingly. Alterna-
tively several sets of measurements could be
collected and processed together in batch mode
— this is the multi scan data association.
Several methods now exist to handle the
data association problem. These may roughly
grouped into two categories: Bayesian and non-
Bayesian. Among the Bayesian methods, there
is the well known Joint Probabilistic Data Asso-
ciation Filter (JPDA) [2], which is a single scan
filter where the existent targets’ states get up-
dated on the basis of the latest set of measure-
ments (scan). Data association is handled by
summing over the probabilities of all feasible
partitions, where the targets can’t share a mea-
surement and each target could be the source
of at most one measurement per scan. Another
well known approach is the multiple hypothe-
sis tracker (MHT) [3], in which each hypothesis
make a target-to-measurement match and, little
by little observations come up, a new set of
hypothesis is formulated increasing the num-
ber of the previous ones. The hypothesis with
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the highest posterior is returned as a solution.
MHT is capable of initiating and terminating
tracks. However, the number of hypothesis
involved in computation grows exponentially
over the time. Thus, in order to overcome this
computational complexity, a certain number of
pruning and clustering methods must be used
at expense of optimality.
The non-Bayesian approaches are character-
ized by hard measurement-to-track association,
such that some cost function is minimized.
Then the problem may be reformulated as an
integer linear programming problem or, to be
more precise, as a multidimensional assign-
ment problem, which is NP-hard. Therefore,
for the multi scan data association, one should
invoke some approximations schemes such as
Lagrangian relaxation techniques that relax
some constraints and solve the relaxed problem
trough linear programming methods [4].
Another option to solve the multi scan data
association problem is by using stochastic
search methods. In [5] the problem was solved
by applying the Markov Chain Monte Carlo
(MCMC) method to obtain the partition with
maximum posterior. Using the Metropolis-
Hastings algorithm, the authors proposed a set
of moves to modify the measurements par-
tition, such that sampling from the posterior
distribution was possible after few thousands
of moves. They showed a remarkable perfor-
mance of the algorithm in comparison to the
MHT method in terms of accuracy of the solu-
tion and running time.

2.1 Joint Probabilistic Data Association

The Joint Probabilistic Data Association is an
extension of the PDA method, which dealt
with a single target in clutter, to the situation
where there is a known number of targets in
clutter. When there are several targets in the
same neighborhood, measurements from one
target can fall in the validation region of a
neighboring target (see Fig. 2.1). This can hap-
pen over several sampling times and acts as
“persistent interference”. Since the PDA algo-
rithm models all the incorrect measurements
as “random interference”, with independent
uniform spatial distributions, its performance
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Fig. 2.1. Two targets with a common measure-
ment.

can degrade significantly when the existence of
a neighboring target gives rise to interference
that is not correctly modeled.
Similarly to the PDA algorithm, the joint proba-
bilistic data association (JPDA) algorithm com-
putes the probabilities of association of only the
latest set of measurements Yk to the various
targets — this is a non-backscan approach.
Each target has a dynamic and a measurement
model. The models for the various targets do
not have to be the same. The state estimation is
done for each target as in PDA, i.e. a Kalman
filtering and a measurement validation, but the
measurement-to-target association probabilities
are computed in a different way — jointly
across the targets.
The key to the JPDA algorithm is the eval-
uation of the conditional probabilities of the
following joint association events pertaining to
the current time4 k:

θ =

mk⋂
j=1

θjtj ,

where

θjt = {measurementjoriginated from targett},
j = 1, . . . ,mk; t = 0, 1, . . . , T

4. In order to reduce notational complexity, the time index
k will be omitted from θ,θ, ω,Ω, etc. whenever it can be done
without causing confusion.
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and tj is the index of the target to which
measurement j is associated in the event under
consideration.
The derivation of the probabilities of joint
events is done using Bayes’ rule as follows. The
conditional probability of the joint association
event θ(k) at time k (with the time argument
now indicated explicitly) is

P [θ(k)|Y k] = P [θ(k)|Y (k), Y k−1]

=
1

c
P [Y (k)|θ(k), Y k−1]P [θ(k)|Y k−1]

=
1

c
P [Y (k)|θ(k), Y k−1]P [θ(k)]

where c is a normalizing constant. Note that
the conditioning on mk is implicit in the vector
θ(k) and that the irrelevant prior conditioning
term has been omitted in the last line of the
equation. The PDF on the right-hand side is

P [Y (k)|θ(k), Y k−1] =

mk∏
j=1

P [yj(k)|θjtj(k), Y k−1].

The conditional PDF of a measurement given
its origin is assumed to be

P [yj(k)|θjtj(k), Y k−1] =

=

{
Ntj(yj(k)), if τ{θ(k)} = 1

V −1, if τ{θ(k)} = 0,

where a measurement associated with target tj
has the Gaussian PDF

Ntj(yj(k)) = Ntj(yj(k); ŷtj(k|k − 1), Stj(k))

and ŷtj denotes the predicted measurement for
target tj , with associated innovation covariance
Stj . Measurements not associated with any tar-
get are assumed uniformly distributed in the
surveillance region of volume V . In addition
the marginal association probabilities are ob-
tained from the joint probabilities by summing
over all the joint events in which the marginal
event of interest occurs.

2.2 Track-Splitting Filter
In this procedure, following initialization, the
track is “split” into separate hypothesis tracks
at time k = 1, one for every measurement
at that falls in the validation region around

the location ŷ(1|0) where the measurement is
expected, the track is split. Thus for each mea-
surement a separate updated state and covari-
ance are computed via the Kalman filter equa-
tions and propagated forward to yield another
validation region at k = 2. For each new
validation region at k = 2, the procedure is then
repeated.
Since the number of branches into which the
track is split can grow exponentially, the likeli-
hood function of each split track is computed
and the unlikely ones are discarded. Denote the
lth sequence of measurements up to time k as

Y k,l = {yi1,l(1), . . . , yik,l(k)}

where yi(j) is the ith measurement at time j.
The likelihood function of this sequence being
a track, i.e., of the event that its components
originated from the same target, denoted

θk,l := {Y k,lis a correct track}

is the joint probability density function

Λ(θk,l) = P [Y k,l|θk,l] = P [yi1,l(1), . . . , yik,l(k)|θk,l].

The track initialization information (initial es-
timate) is subsumed. The joint PDF can be
expressed as

Λ(θk,l) =
k∏
j=1

P [yij,l(j)|Y j−1, θk,l].

Under the linear Gaussian assumptions,

P [y(j)|Y j−1, θk,l] = N(y(j); ŷ(j|j − 1), S(j))

= N(e(j); 0, S(j)),

where the last form follows from the definition
of the innovations e(j) and the particular form
of the Gaussian density. The subscripts on the
measurements y have been omitted to avoid
making e and S very complicated. From the
above equations it follows

Λ(θk,l) =
k∏
j=1

|2πS(j)|−
1
2 exp{−1

2
eT (j)S−1(j)e(j)}

= ck exp{−1

2
eT (j)S−1(j)e(j)}.

Note that this likelihood function assumes im-
plicitly that the target detection probability is
unity.
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The modified log-likelihood function, without
explicitly indicating the index l, is

λ(k) = −2 log

[
Λ(θk,l)

ck

]
=

k∑
j=1

eT (j)S−1(j)e(j),

which can be also computed recursively as
follows:

λ(k) = λ(k − 1) + eT (k)S−1(k)e(k).

The last term above has a chi-square density
with ny degrees of freedom and, since the
innovations are independent, the log-likelihood
function at time k is chi-square distributed
with kny degrees of freedom. Note that it is
a measure of the “goodness of fit” of the mea-
surements.
The statistical test for accepting a track is that
the log-likelihood function satisfies

λ(k) ≤ δ,

where the threshold δ follows from chi-square
with kny degrees of freedom,

P [χ2
kny

> δ] = α

In the above, α is the probability that a true
track will be rejected and it is taken, typically,
as 1%.

2.3 Multi Hypothesis Tracker
The Multi Hypothesis Tracker (MHT) is a
method for calculating the probabilities of var-
ious data association hypothesis.
In addition to the above data association ca-
pabilities, the algorithm include the desirable
characteristic of multiple-scan correlation, clus-
tering and recursiveness. Multiple-scan correla-
tion is the capability to use later measurements
to aid in prior correlations (associations) of
measurements with targets. This feature is usu-
ally found in batch-processing or track-splitting
algorithms. Clustering is the process of divid-
ing the whole set of targets and measurements
into independent groups (or clusters). Instead
of solving a big problem, a number of smaller
problems are solved in parallel. Finally, it is
desirable for an algorithm to be recursive so
that all the previous data do not have to be
reprocessed whenever a new data is received.

Receive New Data Set

Perform Target Time
         Update

Initialization
(A priori targets) REDUCE

Form new clusters
identifying which targets
and measurements are
associated with each
cluster.

CLUSTER

Form new set of hypo-
theses, calculate their
probability and per-
form a target measure-
ment update for each 
hypothesis of each
cluster

   HYPGEN

Simplify hypothesis matrix
of each cluster. Transfer
tentative targets with unity
probability to confirmed
targets category. Create
new cluster for confirmed
targets no longer in hypo-
thesis matrix.

Reduce number of 
hypotheses by
elimination or
combination

MASH

Return for 
next data set

Stop

Fig. 2.2. Flow diagram of multiple-target
tracking algorithm.

The MHT take into account of some “sensor
trouble” by using the detection and false alarm
statistics, the expected density of unknown tar-
gets, and the accuracy of the target estimates.
A flow diagram of the tracking algorithm is
shown in Fig. 2.3. Most of the processing is
done within the four subroutines shown in
the figure. The CLUSTER subroutine associates
measurements with previous clusters. If two or
more previously independent clusters are asso-
ciated because of a measurement, then the two
clusters are combined into a “super cluster”. A
new cluster is formed for any measurement not
associated with a prior cluster. As part of ini-
tialization program, previously known targets
form their own individual clusters.
The HYPGEN subroutine forms new data-
association hypothesis for the set of measure-
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ments associated with each cluster. The prob-
ability is calculated and target estimates are
updated for each hypothesis of each cluster.
Both the CLUSTER and HYPGEN subroutines use
the REDUCE subroutine for eliminating unlikely
hypothesis or combining hypothesis with sim-
ilar target estimates. Once the set of hypoth-
esis is simplified by this procedure, uniquely
associated measurements are eliminated from
the hypothesis matrix by the MASH subroutine.
Tentative targets become confirmed targets if
they were the unique origin of the eliminated
measurement.

2.4 Linear Assignment Problem

Assignment problems deal with the question
how to assign n items (e.g. jobs) to n machines
(or workers) in the best possible way. They
consist of two components: the assignment as
underlying combinatorial structure and an ob-
jective function modeling the “best way”.
Mathematically an assignment is nothing else
than a bijective mapping of a finite set into
itself, i.e. a permutation. Assignments can be
modeled and visualized in different ways: in
a permutation matrix or as an adjacency ma-
trix of a bipartite graph G = (V,W ), where
the vertex sets V and W have n vertices, i.e.
|V | = |W | = n.
The set of all assignments of n has n! elements.
We can describe this set by the following equa-
tions called assignment constraints

n∑
i=1

xij = 1 ∀j = 1, . . . , n

n∑
j=1

xij = 1 ∀i = 1, . . . , n

xij ∈ {0, 1} ∀i, j = 1, . . . , n.

Let A be the coefficient matrix of the system
of equations. Matrix A is totally unimodular, i.e.
every square submatrix of A has a determinant
of value +1, −1 or 0.
Multi-dimensional (sometimes referred as
multi-index) assignment problems (MAP) are
natural extensions of the linear assignment
problem. They have been considered for
the first time by Pierskalla [1]. The most

prominent representatives of this class are
axial and planar 3-dimensional assignment
problems. The general formulation of the MAP
is

min
n∑

i1=1

· · ·
n∑

id=1

ci1...idxi1...id

s.t.
n∑

i2=1

· · ·
n∑

id=1

xi1...id = 1, i1 = 1, . . . , n

n∑
i1=1

n∑
i3=1

· · ·
n∑

id=1

xi1...id = 1, i2 = 1, . . . , n

...
n∑

i1=1

· · ·
n∑

id−1=1

xi1...id = 1, id = 1, . . . , n

xi1...id ∈ {0, 1} for 1 ≤ i1, i2, . . . , id ≤ n,

with nd coefficient ci1...id .
In terms of graphs a multidimensional assign-
ment problem can be described as follows: let a
complete d-partite graph G = (V1, V2, . . . , Vd;E)
with vertex sets Vi, |Vi| = n, i = 1, 2, . . . , d, and
edge set E be given. A subset X of V =

⋃d
i Vi

is a clique, if it meets every set Vi in exactly
one vertex. A d-dimensional assignment is a
partition of V into n pairwise disjoint cliques.
If c is a real valued cost function defined on
the set of cliques of G = (V1, V2, . . . , Vd;E), the
d-dimensional assignment problem asks for a
d-dimensional assignment of minimum cost.
Multidimensional assignment problems in
their general form have recently found some
applications as a means to solve data asso-
ciation problems. More specifically, the cen-
tral problem in any multi-target tracking and
multi-sensor surveillance is the data association
problem of partitioning the observations into
tracks and false alarms in real time. General
classes of these problems can be formulated as
multidimensional assignment problems.

2.5 MCMCDA
This is the principal method we followed in our
work. The algorithm is based on [5] where the
authors propose an effective way to solve the
MTT problem. The idea is to use a Monte Carlo
method to “work out” the formidable Bayesian
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estimation matter. To achieve this purpose they
used a Metropolis-Hastings algorithm to ap-
proximate the optimal solution. More precisely
a Markov chain is used for sampling instead of
enumerating over all the possible association.
The Monte Carlo Markov Chain Data Associ-
ation (MCMCDA) algorithm presented in this
report is the on-line multiple scan version that
includes detection failure, false alarms, and
track initiation and termination. In addition,
this scheme of filtering is particularly suitable
for situation where the number of targets is
unknown and changes over the time.
The solution space Ω contains association histo-
ries over multiple steps, as well as considering
all possible numbers of targets at each step.
The procedure features efficient mechanisms to
search over this large solution space in addition
to birth and death moves to add or remove
tracks.
For further detail see section 4.

2.6 Stable Marriage Problem
Imagine you are a matchmaker, with one hun-
dred female clients, and one hundred male
clients. Each of the women has given you a
complete list of the hundred men, ordered by
her preference: her first choice, second choice,
and so on. Each of the men has given you a list
of the women, ranked similarly. It is your job
to arrange one hundred happy marriages.
In this problem, we have a set of n men and n
women. Each person has their own preference
list of the persons they want to marry. Our
job is to determine an assignment where each
man is married to one and only one woman
(monogamous and heterosexual).
Each man has a list of women ordered by his
preference and each woman has a similarly
ranked list. Every man is on every woman’s
list and every woman is on every man’s list.
The goal is to have a set of stable marriages
between the men and the women.
When given two married pairs, (|, �) and
(ƒ, ~), if man | prefers another woman ~
more than his current wife � and woman ~
prefers | more than her current husband ƒ,
then (|, �) is called a dissatisfied pair. The
marriage is said to be a stable marriage if there
are no dissatisfied pairs.

Now, our problem is to “marry” targets with
measurements in a stable (and satisfied) way. In
this report we discuss this method with more
detail in section 5.
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Fig. 3.1. Pin-hole schematics

3 CAMERA SIMULATOR

3.1 Ideal Camera Model
In order to build a camera simulator we have
to define a suitable mathematical model for a
generic camera. All camera’s aim is to represent
3D points of real world in a 2D surface (the
image plane): in order to do this a projection is
performed.
The most widely used camera model is the pin-
hole camera, which is presented schematically
in the figure 3.1. In the pin-hole model we
suppose that every ray of light that impress the
ccd (or film) and form the camera image has
passed through a point called optical center.
In a real camera, the fact that all the ray of
light pass through the same point is clearly
an approximation; nevertheless for small lens
this is a very good approximation that can be
improved caring of some kind of distortions.
From the knowledge of the focal length and the
coordinates X = [Xc;Yc;Zc]

T of the world point
(relative to a reference frame centered at the
optical center with z-axis being the optical axis)
we can calculate his projection coordinates (x =
[x, y]T ) on the image plane.
In a real camera, the image should be upside-
down with respect to the object (Figure 3.2) so,
for simplicity, we consider the image plane as
if it would be located before the optical center.
By the property of similar triangles we have
that

x =
fXc

Zc
; y =

fYc
Zc

, where the position of point (Xc, Yc, ZC) is
referred to the camera’s coordinate system. To
express the world’s point in to camera’s coor-
dinate system we must know the position and
orientation of the camera (estrinsic parameters)
and perform a rototranslation (figure 3.3).

Pin-hole

Sensor

Object

Optical
Axis
F

F

Fig. 3.2. Real pin-hole camera upside-down
effect

Fig. 3.3. Rototranslation from world to camera
frame

Named R the rotation matrix and T the trans-
lation vector of the camera-centered coordinate
with respect to the world coordinates we have: Xc

Yc

Zc

 = R ·

 X

Y

Z

+ T

Since all the cameras used today are digital
(i.e. the image is represented by a matrix of
finite dimensional pixel), it becomes handy
to express the position of the projected point
using the pixel as measure unit as shown in
figure 3.4. Moreover, in a digital image, the
origin of the coordinate system is on the top-
left corner: (x, y) coordinates are related with
(u, v) coordinate by the following equation:
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Fig. 3.4. Image reference set translation. Adjust
the position of the optical center projection to
refer to the image reference set that has the
origin in it’s upper left corner.

u = u0 + KufXc

Zc

v = v0 + KvfYc
Zc

Where Ku, Kv are the pixel width and height,
and u0 v0 are the offset of the principal point5

respect the (u, v) coordinate system (Ku, Kv, u0,
v0 are called intrinsic parameters).
If we express the points position in homo-
geneous coordinates all these equations for n
different points can be rearranged in matrix
products:

 su1 su2 · · · sun

sv1 sv2 · · · svn

s s · · · s

 = K · F ·RT · P3dpts =

=

 ku 0 u0

0 kv v0

0 0 1


 f 0 0 0

0 f 0 0

0 0 1 0

 ·

·


r11 r12 r13 Tx

r21 r22 r23 Ty

r31 r32 r33 Tz

0 0 0 1



x1 x2 · · · xn

y1 y2 · · · yn

z1 z2 · · · zn

1 1 · · · 1


5. Principal point: the projection of the optical center on the

image plane.

F
F
F

Fig. 3.5. Skew Distortion

Where s is a scale factor. The matrix obtained
by the product of first two matrix in the pre-
vious equation is called intrinsic parameters
matrix.

3.2 Distortions
If we want a complete description of the cam-
era we are going to simulate, it could be useful
to take into account some kind of distortion.
The simpler distortion we can implement is
the skew factor (figure 3.5): introducing the
parameter sw in the intrinsic parameters matrix
replacing K matrix with K ′:

K ′ =

 ku sw u0

0 kv v0

0 0 1


Another kind of aberration that typically affects
cameras is the radial distortion (Figure3.6). This
one is not linear so we can’t model it within
the previous matrix equations. The simplest
effective model for such a distortion is:

x = xd(1 + a1r
2 + a2r

4)

y = yd(1 + a1r
2 + a2r

4)

Depending on the sign of a1 we have two
opposite kind of distortion: barrel or pincush-
ion. Barrel distortion 6 (illustrated in figure 3.6)
typically will have a positive term for a1 where
as pincushion distortion 7 will have a negative

6. In barrel distortion, image magnification decreases with
distance from the optical axis. The apparent effect is that of an
image which has been mapped around a sphere (or barrel).

7. In pincushion distortion, image magnification increases
with the distance from the optical axis. The visible effect is that
lines that do not go through the center of the image are bowed
inwards, towards the center of the image, like a pincushion.
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F
F

F
Barrel

Pincushion
Fig. 3.6. Two type of radial distortions: barrel
and pincushion

value. This kind of distortion should be taken
into account in the case of pan-tilt-zoom cam-
eras, because appears most visibly when the
widest angle (shortest focal length) is selected
either with a fixed or a zoom lens.
In addition to radial distortions and skew, there
are other types of lens distortion which affect
the quality and geometry of an image and are
not radially symmetric. This type of distortion
(tangential) is not taken into account, since it is
usually small compared with that due to radial
lens distortion at the typical image resolutions
of digital cameras.

3.3 Visibility and Visualization
With the previous described model all points
are projected on the image plane, but not all
are really visible because:
• the projection can be outside the image

plane since it has limited dimensions,
• the point is behind image plane
• the point is too far from the camera

The simulator checks, while calculating the
position of 3D points respect the camera frame,
the distance of any point from the camera and
marks as not visible all the points that are
behind or too far from it. Similarly, after the
projections on an infinite image plane, it marks
as not visible all the points that lie outside a
finite area of it.
To understand a plot of a complex structure
of points could be useful to see the points of

different colors and a line structure that links
the points. To do this the simulator provides a
script to plot the projected points that requires
in input a connection matrix that points out
which point and which connections we must
plot and specify also their colors.

3.4 Possible Improvements
In the actual version just geometric points and
their connections can be plotted. A useful im-
provement could be to consider limited polyg-
onal surface, starting with very simple one
(triangles and rectangles). The problem in this
case is that this surfaces can cover the points
behind them and the simulator must mark
them as not visible. The simplest algorithm is
to project the objects in decreasing order of
distance, and mark as not visible old objects as
they are covered by the newer. This procedure
(Painter’s algorithm) is going to fail when there
are cyclically overlapping polygons so that is
impossible to determine which is the nearest
one.
In real applications the most used algorithm is
Z-Buffering (algorithm 1; used for example in
OpenGL and DirectX)

Algorithm 1 Z-depth algorithm
1: for polygon P in the polygon list do
2: for pixel(x, y) that intersects P do
3: Calculate z-depth of P at (x, y)
4: if z-depth < z-buffer[x, y] then
5: z-buffer(x, y)=z-depth
6: mark previous (x, y) point as not

visible
7: end if
8: end for
9: end for

10: return

The size of this algorithm depends mostly on
the resolution of the image because it must
calculate the depth of every single pixel and
is typically implemented in hardware. There is
also a distributed approach called W-Buffering.
In our case, since we are interested only on
the visibility of geometric points (which rep-
resent the markers) we could apply this al-
gorithm to the subset of pixel of the camera
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Point

Polygon

Area hidden by
the polygon

Front
Section

Hidden Point

Fig. 3.7. Hidden areas and points. The poly-
gons are not visible on the image plane, but they
are used to create some surfaces that hide the
points whose projection rays cross their inside.

where a point has been projected. This result
in a considerably reduction of complexity, with
the drawback that we aren’t able to represent
correctly the polygon, which can therefor act
only as “invisible curtains” that hide the points
(figure 3.7).

_
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4 MCMCDA

Follow the trajectory of a single particle in
clear space is an extreme simple problem. There
is no error variance, and no other track to
consider. On the opposite side, tracking and
labelling multiple objects is generally a NP-
Hard problem (as for JPDA).
There are some algorithms that solve this prob-
lem with a simplified approximated implemen-
tation. This reduces the problem to a poly-
nomial computational order. Among various
methods, at the state of the art the best one
is known as Markov Chain Monte Carlo Data
Association [7].

4.1 Model Formulation

We suppose that there is an hidden Markov
chain M suitable for modelling track labelling.
Observation time is a sliding window of T ∈
Z+ instants, in a region R with volume V .
If the current instant is called H , the sliding
window is the set {H − T, . . . , H}. Let K be the
unknown number of existing or existed target
at the present instant H . At each time, a target
disappears with probability pz and remains
alive with probability 1− pz (a Bernoulli distri-
bution). Otherwise, the number of new arising
object at each time is patterned after a Poisson
distribution with parameter λbV , where λb is
the birth rate.
The (noisy) Markov chain of the trajectory of
each object is, including observing the mea-
surements: _


xqt+1 = F k (xqt ) + wqt

yjt =

{
Hj
(
xkt
)

+ vjt
ut

(4.1)

where the jth observation is from target xkt and
ut ∼ Unif (R) stands for a random process
for false alarms. The multi-target tracking and
labelling problem is to reconstruct the exact
target associations and their trajectories, from

measurements. It can be modelled as _
τk = τ[H−T,...,H]k

= Alg
(
y[H−T,...,H]

)
τka ∩ τkb = ∅ ∀a 6= b ∈ {0, . . . , K}

ω = {τ0, τ1, . . . , τK}

(4.2)

where ω is the proposed partition of trajecto-
ries, taken from Ω, the space of all possible
collections of partitions of any target paths.
Obviously, Alg(Y ) symbolizes the selected al-
gorithm in order to compute the most likely
tracks from the measurements.
τ0 is a special array containing all measure-
ments labelled as false alarms, invalid data.
The set of all measurements at a certain frame
t is _

Yt =
{
yjt | j = 1, . . . , nt

}
(4.3)

where nt is the number of observations taken
at that istant. The set of all measurements up
to the current frame is _

Yt = {Yt | t = 1, . . . , H} (4.4)

even though implementations cited in this pa-
per use only a subset, taken from a window of
frames: _

YW = {Yt | t = H − T, . . . , H} (4.5)

Finally, given the observations, for a certain
distribution ω there is an a posteriori probability
P [ω|Y ].

4.2 Online Multi-Scan Markov Chain Monte
Carlo Data Association algorithm
Markov Chain Monte Carlo (aka MCMC), as
in its Metropolis–Hastings implementation, is
a method to generate repeatedly indirect se-
quences of random samples from an unknown
probability distribution, in order to approxi-
mate it. Obviously, as assumption is that there
are no deterministic ways for extract the exact
results.
The standing idea under the MCMCDA al-
gorithm is that, at a given time t, previous
detected tracks τ t−1i and measurements up to
Y t
j are part of an hidden (asymptotic) Markov

Chain, the cited unknown distribution for the
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method. States of this chain are the true targets
xtk (as well as their trajectory), but all we know
are the (noisy) observations Y t

j . The problem
is to associate each measurement to the right
target, and to recognize the false alarms.
MCMCDA is based upon JPDA. In a best case,
number of target is known and fixed. There-
fore, there is no need to look after all the
history of previous detected tracks τ t−1i and
past measurements. The single-scan version si
made for that, it is reduced to a simple filtering
scheme.
Generally, number of targets is unknown and
may change over time. So, it is possible that
previous associations may not be correct in
light of new evidence: e.g. a track τi might
be an union of two tracks, otherwise unused
measurements Y t−h

j can produce a trajectory
for a new target (appeared at same point in
the past).
Unfortunately, the computational complexity of
the multi-scan MCMCDA algorithm increases
with the time and the number of measurements
considered [5]. Otherwise, old associations and
observations are less influential then newer
[5]. Therefore, it is logical to assume a sliding
window of time [tcurr− twin + 1, . . . , tcurr], where
tcurr is the present instant and twin the size
of the window. Only subsets of Y and ω are
used, therefore generally this version of the
algorithm returns a suboptimal solution, but
in a reasonable time. This implementation is
called online multi-scan MCMCDA.
The essence of the algorithm is proposing a
random move (chosen following the proposal
distribution ω′) for a track from past associ-
ations and up to current measurements ω.
Possible moves are: birth, death, split, merge,
extension, reduction, update and switch. If
the move is feasible, it is randomly consid-
ered as acceptable. Given a number u ∼
Unif [0, 1], the acceptance pseudo-probability
Acceptance(ω, ω′) must be greater than u. Typi-
cally, Acceptance(ω, ω′) may assume values next
to 0 or is equal to 1. Finally, the new track dis-
tribution is accepted if its posterior conditional
probability is greater then the initial’s one.
This procedure is iterated Nmc times, that
stands for the number of iterations in order to
reach the asymptotic distribution of the hidden

Markov chain. The pseudocode of the algo-
rithm is illustrated in code block 2.

Algorithm 2 MCMCDA algorithm
1: input: Y , noisy 3D points (up to current

frame)
2: input: ω, labelling & tracking history of all
τi (up to previous frame)

3: ω̂ := ω
4:

5: for n = 1, . . . , Nmc do
6: ω′ = Proposal Distribution(ω̂, Y )
7: u ∼ Unif [0, 1]
8: if u < Acceptance(ω, ω′) then
9: ω := ω′

10: end if
11:

12: if P [ω|Y ] > P [ω̂|Y ] then
13: ω̂ := ω
14: end if
15: end for
16:

17: output: ω̂

Proposal Distribution
In order to constructing a Markov Chain with
the desired properties, a random move m
is chosen for the Proposal Distribution(ω̂, Y ),
according to a probability distribution ξK,H(m).
If no other condition is given, ξK,H(m) is
modeled as (discrete) uniformly distributed.
At the first frame and iteration, when no τk is
present, the only possible move is the birth of
a track. After the first iteration (H = 1) there
are only two eventualities: either a track can
be deleted either another can originate.
When there is only a single target, no merging
or switching between tracks is possible.
If the chosen move is feasible, it is considered
as acceptable for a new partition ω′, otherwise
the initial ω̂ remains unchanged. Possible
moves are: birth, death, split, merge, extension,
reduction, track update and track switch. The
moves are graphically illustrated in figure 4.1

In [5] and [7] the Proposal Distribution(·, Y ) has
as input ω, not ω̂. This is an error: the proposed
ω′ would be computed upon a move that might
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pass the acceptance check, but maybe based
on trajectories less probable then ω̂ (as ω̂ is
the most probable partition). Every iteration,
a wronger partition might be extracted and
approved for the next cycle. Imposing ω̂ as
input to the function, only better partitions can
be extracted and approved.
As showed in simulation results section, this fix
improves the efficiency of the algorithm from
≈ 15% of target correctly detected and tracked
up to ≈ 99.9% of them.

Feasible Moves

1) Birth Move. We choose randomly an instant
in the sliding window, t1 ∼ Unif {1, . . . , T − 1}.
Then we choose at random a second instant
slightly afterwards, H − t1 + d1, choosing d1
from discrete distribution d1 ∼ Unif

{
1, . . . , d̄

}
.

A birth move is feasible if there are “free”
(not already associated to a certain τk) data
at H − t1 that are, in turn, linkable to other
free data at H − t1 + d1. A link is possible if a
path between data at different times can exist,
given a maximum velocity-per-frame v̄8.
If the move is feasible, a new track can
originate, and the number of all tracks
increase: K1 := K+1. Selecting randomly from
linkable data at each time H − t1, H − t1 + d1,
H − t1 + d1 + d2, etc, the track is recursively
extended. Adding measurements is a process
that may terminate at a certain frame, with
probability pz. The proposed partition is
ω′ = ω ∪ {τK1}9

2) Death Move. Selected a not-already-deleted
track kd from Unif {1, . . . , K}, it will be erased
from ω. The partition will be reassigned as
ω′ = ω\{τkd}.
3) Split Move. We select an alive
track ks from Unif {1, . . . , K} with at
least 4 instants contained, so |τks| ≥ 4.
Then, we randomly choose a time tr ∼
Unif

{
t2, . . . , t|τks |−2

}
. A new track originates as

τks2 =
{
τks2 (tr+1), . . . , τks2 (t|τks |−2)

}
, and the old

one becomes τks1 =
{
τks1 (t1), . . . , τks1 (tr)

}
. The

global number of tracks increases, K1 = K + 1,

8. In [?] the set of all linkable data is modelled as mathemat-
ical structure, called the neighborhood tree of measurements.

9. As implicit assumption, ω′ = ω ∪ {τK1} includes the
proposing of τ ′0 = τ0\{τK1}. Equally for other moves.

and the K th
1 is τks2 obviously. The proposed

partition will be ω′ =
(
ω\{τks}

)
∪{τks1}∪{τks2}.

4) Merge Move. For a merge move we must
select (uniformly at random) a couple of 2
tracks (τks1 , τks2 ), the first must end before the
latter and they must be linkable, as defined
above. Then, they will be combined in a single
track τks = τks1 ∪ τks2 . The proposed partition
will be ω′ =

(
ω\({τks1}, {τks2})

)
∪ {τks}.

5) Extension Move. Selected an alive
track ke from Unif {1, . . . , K}, we assign
free linkable measurements after the last
instant of the track t|τke | as in the birth
move. The proposed partition will be
ω′ = ω ∪

(
{τks} ∪ {τks(t|τke |+1), . . . , τks(t|τke |′)}

)
.

6) Reduction Move. Select an alive track
krd from Unif {1, . . . , K} and an instant
tr ∼ Unif

{
t2, . . . , t|τkrd |−1

}
. The track will

be shortened to τkrd′ = {τkrd(t1), . . . , τkrd(tr)}.
Measurements after tr are freed. The proposed
partition becomes ω′ =

(
ω\{τkrd}

)
∪ {τkrd′}.

7) Track Update Move. Selected an alive
track ku from Unif {1, . . . , K}, it will be
shortened as in the reduction move, from the
beginning up to the chosen instant tr. Then,
we reassign free linkable measurements after
that time. The proposed partition becomes
ω′ =

(
ω\{τku}

)
∪ {τku′}.

8) Track Switch Move. For switching tracks,
at first we must (uniformly at random) select
a pair of already associated measurements of
two distinct tracks in different instants. We
name this pair

(
τks1 (tp), τks2 (tq)

)
. The pair must

satisfy the linking bond: τks1 (tp) should be able
to reach τks2 (tq) and its following associations
in a time proportional to v̄ and τks2 (tq) should
be able to reach the following associations to
τks1 (tp). This is the essence of the switching.
Chosen the pair, associations after tp and tq are
(respectively) exchanged. Switched tracks will
become _

τk1′ =
{
τk1(t1), . . . , τk1(tp), τk2(tq+1), . . . , τk2(t|τk2 |)

}
τk2′ =

{
τk2(t1), . . . , τk2(tq), τk1(tp+1), . . . , τk1(t|τk1 |)

}
Therefore, the proposed partition will become
ω′ =

(
ω\({τk1}, {τk2})

)
∪ {τk1′} ∪ {τk2′}.
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Fig. 4.1. Graphical illustration of feasible moves for a proposal partition.
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Acceptance Probability
We now describe the implementation of the ac-
ceptance probability mentioned in the previous
sections. The acceptance probability is:

A(ω, ω′) = min

(
1,
π(ω′)q(ω′, ω)

π(ω)q(ω, ω′)

)
(4.6)

That is, if we have a feasible solution ω and we
propose a new solution ω′ (chosen at random
following the proposal distribution q(ω, ω′)),
we accept the move and switch to new solution
with probability A(ω, ω′). In our case the dis-
tribution π(ω) is represented by the posterior
P (ω|Y1:t) This distribution take into account all
the aspect of a feasible solution ω:

P (ω|T1:T ) =
1

Z0

∏
τεω\{τ0}

|τ |∏
i=2

N(τ(ti); ŷti(τ), Bti)×

×
T∏
t=1

pztz (1− pz)mt−1zt · P dt
d (1− Pd)utλatb λ

ft
f

where mt denote the number of target at time
t, at the new targets, zt the terminated ones,
dt the number of detections, ut the number of
undetected targets, ft the false alarms and nt
the total number of measurements (including
false alarms). The value dt is simply the length
of the measurements vector; to determine zt we
have to count how many tracks that at time
t−1 where associated to a measurements don’t
have any associations at time t; to determine
at we must count how many new tracks have
been created (i.e how many measurements are
associated with tracks that have been created
at time t). Therefore we have:

mt = mt−1 + at − zt
ut = mt − dt
ft = nt − dt

Moreover, we have to evaluate the Gaussian
N(ŷti(τ), Bti) at point τ(ti) for each track τ and
for each instant ti. This means that, fixed a
feasible solution ω, we have to create a Kalman
filter for each track starting from the instant
where the track begins until the current in-
stant and evaluate the Gaussian at each step.

This is computationally the heavier section of
the whole algorithm because it must run the
Kalman filter on the entire story for each track
of each proposed feasible solution ω. Since in
equation 4.6 appears only the ratio π(ω′)

π(ω)
we

don’t have to compute the normalization con-
stant Z0.
To calculate the value of the proposal distri-
bution, q(·, ·), we must take into account the
distribution ξK,H(·) evaluating it at the point
m which represents the kind of move we have
proposed.

Possible Improvements
In order to optimizing the MCMCDA algo-
rithm for applying it to marker tracking for
motion capture, some enhancements can be
used.

Shaping ξK,H(m)

Motion capture hardware sets are typically
optimized to minimize the probability of
track’s disappearing, pz. For most scenes
recorded, number of actors (and therefore
markers) normally remains constant for the
entire length of the scene (supposing off-screen
view as cut from scene shot). So, birth moves
after the first frame are not very probable,
like death ones. Besides, an extension move is
much more likely than the others. To generate
a balanced Markov chain, moves such as
reduction, track update and track switch
have to be almost probable as extension ones.
Split and merge ones will be considered less
probable.
For example, the distribution for choosing
moves after the first frame can be reshaped as
_

ξK,H(m) =



0.033 m = 1 P [birth] = 1/30

0.066 m = 2 P [death] = 1/30

0.133 m = 3 P [split] = 2/30

0.2 m = 4 P [merge] = 2/30

0.5 m = 5 P [ext.] = 9/30

0.666 m = 6 P [red.] = 5/30

0.833 m = 7 P [t. switch] = 5/30

1 m = 8 P [t. update] = 5/30

(4.7)
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At the first frame ξK,1(m) remains as supposed
in a general situation.

Two-by-Two Track Distance Bond Pruning
In motion capture applications, markers are
fixed to actor’s body, that is a structure with
joints. Hence, there are available shape bonds
and many measurement are related with each
others. An efficient way to capitalize on them
is introducing a preliminary check on relative
distances. At each frame we compute the dis-
tance of each different pair of measurements.
This pre-check can be easily parallelized. We
suppose to use an wide sliding window. Sup-
pose that, when reached the steady state (and
therefore a full sliding window is available)
we have extracted some tracks with MCMCDA
algorithm. If a pair of tracks maintain the same
distance from each other during each frame
of the sliding window (even rotating), they
are considered both as correctly detected target
trajectories. The check is made two by two for
all tracks. If the distance bond is confirmed
for 3 tracks, two by two, their prediction have
even less error. With four tracks bonded, a
point in 3D space is settled. Only for the
current frame H , they will be pruned from
Metropolis–Hastings method iterations, label-
ing them as “sure”. They can be extended,
but not deleted, split, reduced, switched or
updated. Tracks that never pass the test can
be considered as free trajectories, trajectories with
missing measurements or false alarms.
This shape bond speeds up the achievement of
the stationary distribution of the Markov chain,
as some tracks (states of the chain) have already
reached their final state.
A random sequence Un converges almost
surely if P

[
limn→∞ Un = U

]
= 1. Supposing

the distance between two tracks at time t in
the sliding window as a random variable dt =
distance(τ1, τ2), a sequence Dt can be modeled
as

Dt = P
[
dt = d ∀t ∈ [H − T + 1, T ]

]
=

=
T∏
t=2

P
[
dt = d|dt−1 = d

] (4.8)

but, knowing that dt = d at each frame on a
large enough sliding window [H − T + 1, T ],

we can approximate P
[

limn→∞Dn = 1
]

=
P
[

limn→T Dn = 1
]

= 1 that converges with
probability 1. Convergence almost surely im-
plies convergence in probability and in dis-
tribution, so the MCMCDA algorithm might
exclude these tracks from computation.

Volume or Distance Clusters Splitting up
A further refinement to the MCMCDA method
might be dividing measurements into groups,
assigning to each one a CPU.
As total volume of tracking is known, the
original algorithm can be parallelized. Splitting
up in smaller portion of space, we can consider
as input only a restriction of ω and Y , such as
ωv and Yv. An instance of MCMCDA runs for
each portion of space.
This approach has some limitations. If a region
is far from the scene, its parallelized CPU might
be unused. Otherwise, some regions have an
high density of markers, so their associated
CPU are put under much more stress than the
others.
A more efficient approach is dividing measure-
ments (and consequently their related track τk)
into clusters, based on relative distances be-
tween 3D data. Set a maximum distance Dmax, a
cluster rises as set of all near measurements in
a certain region of space. An instance of MCM-
CDA runs for each cluster. As said above, com-
puting distances can be easily parallelized. This
enhancement is also scalable. Furthermore, any
cluster brings to a strongly connected graph, or
can be modeled as a small world network with
greatest achievable local clustering coefficient
(one). This can be capitalized by distributed
algorithm.
This approach has some limitations as well. A
cluster may be composed by not many mea-
surements, otherwise some other might have a
high number of data (such as the “cluster of
an hand”). Clusters might also not remain the
same during time.
Finally, regrouping tracks (finding the right
continuation) of divided measurements re-
mains a common problem for splitting up
methods.
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Fig. 4.2. Example of two-by-two track distance bond pruning. Tracks τa and τb respect the bond.
Tracks τa and τc are never at the same distance, and τb and τc don’t maintain a constant distance
for all frames in the sliding window. Besides, τc has a missing measurement. Only τc is not labeled
as “sure” in the MCMCDA algorithm.

(a) Proposal Distribution(ω, Y ) (b) Proposal Distribution(ω̂, Y )

Fig. 4.3. Simulation results of a rotating and translating cube (depicted in figure 4.4a), computed
with the original algorithm (a) and with the fixed version (b), with Nmc = 30, no false alarms and no
missing data. Brown tracks are labelled as τk with k > 8, others are referred to points from 1 to 8
of the cube.

Simulations and results

As shown in 4.3, only ω̂ (as input) is able to get
the algorithm to the stationary distribution of
the Markov chain, even with few iterations on
perfect data.
In Figure 4.3 some simulations computed on
the fixed version and improved distribution
ξK,H(m) are illustrated, with optimized MAT-

LAB©code run on a pc with 4 Gb of RAM
and Intel Core 2 Duo processor.. As Nmc is
increasing in order, efficiency of the method
can be increased. Also time elapsed raises. If
disturbance raises, more iterations have to be
done. Missing data don’t influence on trajecto-
ries only at higher number of cycles-per-frame.
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(a) Original rotating and translating cube (b) Nmc = 30

(c) Nmc = 80 (d) Nmc = 1000

Fig. 4.3. Original moving object and tracking simulation results computed by MCMCDA algorithm,
with 10% false alarms and 10% missing data in 100 frames, increasing Nmc. Other parameters:
v̄ = 0.15 cm/frame, d̄ = 2. Brown tracks represent trajectories labeled above 8th target, therefore
incorrectly associated.

_ _
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Simulation results

Nmc = 30
wrong associations ∼ 36%

generated tracks 12
missing labelled marker ∼ 10%

runtime 40.70 minutes

Nmc = 80
wrong associations ∼ 12%

generated tracks 9
missing labelled marker ∼ 6%

runtime 102.30 minutes

Nmc = 1000
wrong associations ∼ 0.1%

generated tracks 8
missing labelled marker ∼ 0.1%

runtime 364.75 minutes

5 STABLE MARRIAGE PROBLEM

In a data labeling problem we have to associate
measurements with entities which have gen-
erated them. We thought that the Stable Mar-
riage Problem could became helpful because it
provides a way to bind the elements of two
different sets in the best way, accordingly to
some index that has to be defined.

5.1 SMP Definition
Let M = {A,B,C, ...} be a set of males and
F = {a, b, c, ...} a set of females with the same
cardinality of M . Each male have a ranked
list of preference of each female, in descending
order. Each female has a similarly ranked list,
so that in every female list all man are present
and viceversa.
A marriage is a match between one element of
M and one of F (e.g. A− b). A pair X − y is a
dissatisfied one if in the solution S exists two
marriages, X− z and W − y such that X prefer
y more than is current partner z and woman y
prefers X more than her current partner W . A
set of marriages M is called stable if there are
no dissatisfied pair.

5.2 SMP Algorithm
A simple and deterministic algorithm to deter-
mine a stable marriage is shown in algorithm 3

Each man make a marriage proposal to the
woman he preferens, and then remove the
woman from his list (so that he is not going

A: a,b,c,d
B: b,a,c,d
C: a,d,c,b
D: d,c,a,b

a: A,B,C,D
b: D,C,B,A
c: A,B,C,D
d: C,D,A,B

Men's list Women's list

A: a,b,c,d
B: b,a,c,d
C: a,d,c,b
D: d,c,a,b

a: A,B,C,D
b: D,C,B,A
c: A,B,C,D
d: C,D,A,B

Stable set of marriages

Set of marriages with dissatisfied ones

Fig. 5.1. Example of two SMP solutions. The
first is a stable set of marriages, the second has
some dissatisfied pairs: A prefers a more then
is current mate and so do a, hence they should
be paired in a correct SMP solution.

to make a new proposal to the same woman).
Each woman decide to accept the proposal if
she is unengaged or if she prefer the new
man rather then his actual mate. The algorithm
terminates when all males are engaged.

5.3 Algorithm Analysis
We have to prove that the algorithm terminates
with all men (and women) paired and that
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Algorithm 3 Proposal algorithm
1: while ∃ unpaired man X do
2: pick first woman w on X’s list
3: remove w from X’s list
4: if w is married then
5: if w prefer X to her mate Y then
6: set X − w as married
7: set Y as unpaired
8: else
9: X remains unpaired

10: end if
11: else
12: set X − w as married
13: end if
14: end while
15: return

the solution is a stable marriage. Every time
that a man make a proposal to a woman, this
one is removed from his list. A man whose
proposal has been refused will continue mak-
ing proposals to other women until the end
of his list, so that every woman receives at
least one proposal. The woman will always
accept her first proposal so no woman can be
left unmarried. In the worst case the proposal-
algorithm makes O(n2) proposal. To show that
it is a stable marriage, let’s assume we have a
dissatisfied pair, X − b, where in the marriage
they are paired as X − a and Y − b. Since
X prefers woman b over his current partner
a, then he must have proposed to b before a.
Woman b either rejected him or accepted him,
but dropped him for another better man than
X . Thus, b must prefer Y to X , contradicting
our assumption that b is dissatisfied, therefore
the solution it is a stable marriage set. It can
be shown that, although the worst case of the
algorithm is O(n2), the expected (average) case
is O(n lg n) and deviation is small from the
expected value (for the complete proof see [8]).

5.4 Optimality
We now define a criterion for optimality. A
marriage between a man A and a woman B is
feasible if there exists a stable pairing in which
A and B are married. A pairing is male-optimal
if every man is married with his highest ranked

feasible partner. We can prove that the proposal
algorithm 3 is a male-optimal one.
Suppose that the solution were not male-
optimal. Let be M one man that has just been
rejected by his optimal woman W . Since the
women always accept their first proposal, then
W must have been paired whidth a men Z
that she prefers more then M . M has been just
rejected and the proposal are made following
the preferences order, that means that W is in
the same or higher rank in the Z’s preferences
list. Moreover, since W is the optimal partner
for M , there exist a solution S where M is
paired with W 10. But in this solution S we
would have that W prefers Z to M and Z
prefers W to his mate in S. Thus solution S
is unstable and this is a contradiction because
we have proven that the proposal algorithm
provides stable marriages. The solution could
be female-optimal if we switch the roles of men
and women so that are the women the ones to
make the proposal to men.

5.5 Application to the Data Labeling

In the data labeling we have two sets (the
observations and the targets) we want to put
in correspondence. If we make the assumption
that:
• the number of marker is costant
• there aren’t false alarms
• all the marker are detected

then the number of the targets is equal to
the number of observations (measurements) at
every time. We can consider the targets set as
the males set and the observations set as the
females set. We need just to impose a rule to
express the preferences both for the males and
the females. Let be M = t1, t2, ...tn the set of
targets, and F = y1, y2, ...yn the set of new mea-
surements a time T. We calculate the prediction
(and variance) for time T for each tk based
on his past history ([T0, ..., T ]) with a Kalman
filter. Then, fixed tk, we evaluate the Gaussian
distribution N(t̂k,Σtk) on every yi: sorting these
values decreasing we obtain the males (targets)
preference list. For the female preferences, we

10. this solution would be achieved if M had made his
proposal before Z
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Fig. 5.2. Creating preferences list: males (top)
and females (bottom)

simply sort the males by descending order of
distance from the female item (figure 5.2).
Since we have proven that the SMP algorithm
is male-optimal, we rest assured that, for every
single frame, the solution is optimal for the
male criterion in the sense of optimality we
have previously defined.

5.6 Simulation Result
We ran some tests to investigate the behavior
of this algorithm under different conditions.
The first test we ran was with eight points
moving with variable speed and direction in a
3D space. The dynamical model of the system
we applied to the Kalman filter was a Discrete
White Noise Acceleration (DWNA) 11. Our MAT-
LAB©implementation of SMP took 1.1 seconds
to complete the associations over 100 instants;
The associations have been always correct. We
next run a test with 16 points arranged on
the vertexes of two cubes. One of them was

11. We choose DWNA because it’s a simple model that
we think could describe well the marker’s dynamic in a
wide range of real application in the motion capture scenario.
Clearly, to get the best results, the model of the Kalman filter
must be adapted to the application.

still, while the other pass through it while
translating and rotating. Also in this case the
associations were all correct although at some
time the vertexes of the two cubes were lying
upon each other. Other more complicated tests
show the goodness of this approach. We tried
with 8 points following a random walk. Note
that in this case would have required to change
the Kalman filter used to set the preferences
list, since DWNA is not a good model for
points that follow a random walk. The asso-
ciations were all correct even when the points
came close to each other. As a test designed
specifically to put in trouble our algorithm, we
set up 8 points that followed a “particular” ran-
dom walk, being attracted towards axis origin.
Even in this case the associations were very
accurate: on the total frames, 82% were correct,
11% frames had one swap between a pair of
marker 12 and the rest have more than two
wrong associations. See table 5.6 for details.∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

#wrong associations percentage
0 (all correct) ∼ 82%

2 ∼ 11%

3 ∼ 2.5%

4 ∼ 2.5%

5 ∼ 0.5%

6 ∼ 0.5%

7 ∼ 0.5%

8 ∼ 0.5%

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Possible Improvements
Variable Number of Targets, False Alarms and
Undetection
The assumptions made on number of targets,
false alarms and detection of targets are very
restrictive in a real application. It’s interesting
to analyze solutions that allow to relax these
assumptions.
If the number of marker can increase, we
simply start some more Kalman filters when
we find that the number of observation has
increased. Less simple is the opposite case:

12. Note that there can’t be only one marker mistaken, since
if it is wrong, it must have been taken the right place of another
one
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Fig. 5.3. Time evolution of 8 tracked markers
lying on the vertexes of a cube tranlating and
rotating

Fig. 5.4. Time evolution of 16 tracked markers
lying on the vertexes of a cube tranlating and
rotating

if the number of marker can decrease we
have to eliminate some tracks, that means to
choose which of the previous time target is less
likely to have a correspondent measurement at
present time. In this case we need to find a rule
to delete the less probable measure. One way
could be to to analize the females (measures)
preference list and keep only the first K 13

13. with K number of targets (males)

Fig. 5.5. Time evolution of 8 tracked markers at-
tracted towards origin while following a random
walk

measurements. A work-around that remits the
choose of which track to eliminate to the SMP
algorithm is to create n = Nwoman − Nman
factitious women such that they most certainly
are the lower ranked ones for every man 14.
Doing this, we can delete the men (tracks)
which are associated by the SMP algorithm to
the factitious women.
If we have false alarms or marker that can
be undetected, this approach isn’t applicable
because we have a different number of males
and females individual. There are some algo-
rithm that extend the SMP concept to these
cases; for example we could adopt the hospitals
(or residents) problem. This is variant of SMP
where the role of the female individuals is
played by the hospitals, that can accept more
then one proposal. Clearly, we must provide
some other rules to determine which one of the
individuals (measures) assigned to the same
hospital (target) is the most probable or a way
to merge the different measure into a single
one.

Past History
For each step our implementation takes into
account the whole history for the filtering, but
only the last measure to decide the associations

14. For example, we could place them very far away from
every target; or we can just fill the males list adding factitious
women on the end of the list until we reach the length of n
elements.
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between the two sets. A way to improve per-
formance could be to redefine the rules for the
preferences to take into account all the measure
of an interval.

6 CONCLUSIONS

Our work lead to a MATLAB©implementation
of MCMCDA that result too slow for a real-
time application. Even if implemented in a
more efficient programming language (like C
or C++ that are at least one order of magnitude
faster) the processing takes too much time. On
a quality level, our implementation lead some
good results, recognizing correctly the targets
in our simulations, that where limited to a few
(max 80) instants due to the complexity of the
algorithm. The sore point of algorithm is that
it has to run a Kalman filter on the whole
history (or on the whole sliding window) for
each proposed solution and it has to propose a
very high number of solutions to have a good
approximation of the MCMCDA. To propose a
solution applicable to real time application we
have adapted the stable marriage problem. Our
implementation of this algorithm has results
in a fast and effective method for some cases,
i.e. where we have constant number of targets
and no false alarms or undetected targets. This
method have wide leeways to improve quality
of associations 15 and, considering it’s variants,
can be extended to the case of a non constant
number of target and with the presence of false
alarms and undetected measurements.

15. changing the way individuals choose their preferences
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APPENDIX A
MARKOV CHAIN MONTE CARLO
METHOD

Markov Chain Monte Carlo method is a gen-
eral method, its aim is extract a probability dis-
tribution as stationary distribution of a ad-hoc
constructed Markov chain. Normally it is possi-
ble to construct a suitable chain for the purpose
of the algorithm. This stationary distribution
is considered as acquired after a great number
of iterations, e.g. 50000 for approximately 400
targets [5].
Its applications are, for example, longitudinal
studies (like computing the right association
between some targets and measurements), nu-
merically calculating multi-dimensional inte-
grals, radiocarbon dating, time trends for de-
sease incidence and mortality [6].
In order to minimize the number of iterations,
various random walk algorithms has been
used, e.g. Metropolis–Hastings, Gibbs sampling,
Slice sampling, Multiple-try Metropolis.
John Von Neumann and Stanislaw Ulam elabo-
rated the original idea after 1944, conceived by
Enrico Fermi in the 1930s.

APPENDIX B
METROPOLIS–HASTINGS ALGORITHM

The Metropolis–Hastings algorithm is an al-
gorithm (used for example by the MCMC
method) for obtaining a sequence of random
samples from a probability distribution for
which direct sampling is difficult. It acts like
a random walk at each step, using a proposal
density and a method for rejecting proposed
moves. The Gibbs sampling algorithm is a spe-
cial case of the Metropolis–Hastings algorithm
which is usually faster and easier to use but
is less generally applicable. The algorithm was
named after Nicholas Constantine Metropolis.
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