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Abstract—This paper takes the move from a real case
study and deals with the problem of task assignment in
camera networks. A mathematical model is proposed and
different approaches are compared. The attention is mainly
focused on algorithms that derive from Constraint Linear
Programming and Stable Marriage Problem (SMP). An op-
timality criterion over static scenarios is defined. Subse-
quently it is given prominence to problem dynamics, that
is a crucial issue. As a matter of fact, we would like to
attain a good trade-off between continuity and optimality
in matching tasks and agents. The former means that it is
advisable to restrain discontinuities in task execution. The
latter aims to give preference to high priority tasks. The pro-
posed generalization of the SMP algorithm highlights good
performances. It assures a sufficient degree of continuity,
it prevents deadlocks and it is tunable. Moreover, it can be
recast quite easily as a distributed algorithm.

Index Terms—Camera networks, task assignment.

1 INTRODUCTION

1.1 The video surveillance case study

T HIS work is a part of a project about
video surveillance: given a set of agents

distributed over a certain area and subject to
network constraints and agent limitations, this
project aims to solve the following problems:

1) dividing the interesting monitored area in
subzones according to the positions where
the cameras are placed and establishing
a connectivity graph (which cameras can
communicate), a topological graph (which
subzones are adjacent) and a visibility
graph (which subzones can be ”seen” by
every camera);

2) using information from the calibrated cam-
eras and the objects that are shot both by the
calibrated and the non-calibrated cameras in
order to determine the parameters about the
non-calibrated cameras;

3) coordinating agents for attaining an optimal
match between tasks that must be executed
(i.e. keeping the area monitored or detect-
ing and tracking events that occur in the
environment) and agents that can execute
them (according to their positions and their
graphs);

4) coordinating agents so that, when an event
occurs, this event is tracked and all the
interested area keeps being monitored with
efficiency.

Here, we will focus on the third point.

1.2 Objective and motivations
As we stated above, this work aims to develop an
efficient algorithm in order to coordinate a group
of cameras distributed over an area to monitor.
We are given a set of agents and a group of
requests of execution from tasks that periodically
arrives at the network. We have to find a good
assignment of the tasks to the agents, according
to the positions of the agents and the types of the
tasks, so that the number of the executed tasks
is maximized and their lifetimes are minimized.
At the present, a nearly brute-force method is
used for matching: the first agent that is free and
can execute a task starts to execute it; if a critical
situation takes place, a special agent (the so
called leader) solves the problem of assignment.
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1.3 A simple description of tasks and
agents
Cameras can be considered as agents with lim-
ited resources. Hardware structure of the cam-
eras is shown in figure (1).

Figure 1: Hardware structure of cameras

Each agent can communicate at least with
its (topological) neighbours and can execute a
subset of all possible tasks. In fact, the mon-
itored area can be divided into subzones, that
are obtained intersecting the visual ranges of
the cameras. With this convention, each camera
covers one ore more subzones and it is possible
to build a covering matrix V that represents
the visibility graph. When a task is generated,
it is also given an attribute that specifies its
location (or target agent, depending on the type)
of interest. A camera can execute only tasks that
concern one of the subzones it covers.

Two groups of tasks can be distinguished:
• asynchronous tasks: each of them period-

ically repeats the request of its execution,
until it is assigned to an agent (pulsated
broadcast);

• synchronous tasks: they represent the only
redundant piece of information of the net-
work: the (synchronous) heartbeat contains
information about the state of the network;
the snapshots are used as backup informa-
tion if necessary.

The assignment problem exists for asyn-
chronous tasks, so we will focus mainly on them.
In our simplified formalisation, they include:

1) patroling: it employs the hard-disk of the
cameras; if an anomalous event takes place
(i.e. an event detection occurs), it is auto-

matically tracked and a state packet (asyn-
chronous heartbeat) is generated and put in
the network;

2) automatic tracking: its request is pulsated
by a camera that has noticed an anomalous
event during its patroling operation;

3) manual tracking: it employs the serial port
of a camera; it has the highest priority and
is executable by only one agent;

4) streaming: agents are used as repository of
video information.

1.4 Task assignment problem: literature
survey
Applications of task assignment problem can
be found in many different disciplines. We
have focused mainly on works related to in-
formation technology and informatics, but some
of the most interesting hints were offered by
other fields, such as business administration and
project management.

We will now summarize the most important
ideas that previous works on task assignment
suggested to us. Anyway, it is important to point
out that we were not able to collect specific
research material on camera networks. Probably,
application of task assignment algorithms to
video-surveillance problems is still not a well-
established practice.

Depending on available resources, features
and skills of the agents, it is possible to turn to
a variety of solving techniques. In this section
we recall the most meaningful approaches with
regard to our specific aim.
• Brute-force approach. Although not op-

timal, it is frequently used in applications
because of its simplicity. A completely
brute-force approach would imply the enu-
meration of all possible solutions to the
matching problem, that is usually unfeasi-
ble. At the present, the camera networks
installed by the case study company 1, are
equipped with a nearly brute-force algo-
rithm. It is not necessary to enumerate all
possible combinations of task and agents:
the underlying idea is that, when a new

1. Videotec S.p.a. Via Friuli, 6 - 36015 Schio (VI) Italy
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task occurs, the first agent that gets free
starts executing it (if the task can be carried
out by that specific agent: as it has already
been pointed out, tasks are “localized”). In
addition, there migth be a special leader
agent that can solve dangerous situations in
which conflicts take place (i.e. when two
or more agents ask to be assigned to the
same task). In this cases, the leader de-
cides the winner in the competition, usually
by means of a random choice. Brute-force
approach does not give any guarantees on
the quality of assignment. However, it is
quick and robust to node failure (i.e. when
a camera loses the contact with the rest of
the net). Moreover, the presence of a leader
agent prevents deadlocks.

• Identification based approach. A com-
pletely different point of view is the one
offered by M. J. Feiler in his article [6].
This approach was firstly proposed in the
field of identification of dynamic systems.
Its aim is to match the elements of an agent
set A with elements belonging to an infor-
mation set S. The standing assumptions is
that agents can communicate their positions
with each other. A simple algorithm that
provides the estimates is:

Θ̃i(t+1, t) = (1−ηi
[

˜Θ(t, t))
]
)Θ̃(t, t) (1)

where

ηi

[
Θ̃(t, t)

]
=

||Θ̃i(t, t)||
−2∑N

k=1 ||Θ̃k(t, t)||
−2 (2)

The left-hand term of equation (1) is the
distance, existing at time t + 1, between
agent i and the piece of information Θ ∈ S
appeared at time t. The second equation (1)
implies that the distance decreases as much
as the esimate Θ̂ gets closer to the real
parameter Θ. The main result of the article
is the following. If the number of agents is
greater or equal to |S|, for all Θ ∈ S there
is a Θ̂ ∈ A such that

lim
t→∞

Θ̂(t) = Θ a.s.

It should be underlined that the contents
of this work are not immediately linked to

our specific setting. Nevertheless, reading
this article was meaningful, in the first
part of our work, in order to define some
characteristic features of our project. In
particular, we realized that the main prob-
lem about our agents was their lack of
homogeneousness. A camera can perform
only tasks regarding its specific visual zone,
or the whole net. This happens because
both tasks and agents are “localized”, i.e.
each of them can affect only a subset of
the comprehensive area. Actually, there are
some “global” tasks, such as the heartbeat
broadcasting. However, this kind of tasks
can be modelled as default net activities,
that do not interfere with the out-and-out
tasks, that are involved in our matching
problem. Another discrepancy between our
context and the work proposed by Feiler,
is that, in the latter, it is assumed that each
agent knows the position of everyone else in
the net exactly and without delays. This is
a strong hypothesis; moreover, it is difficult
to define a distance function in the case
of such non-homogeneous agents. Finally,
the number of agents in our case study
is usually less than the number of tasks.
In conclusion, despite of some proposed
and implemented ad-hoc improvements, the
approach of [6] does not seem to be suitable
to our model of camera networks, but gave
us help to undestand the particular features
of our project.

• Market-based approach The basic idea
of this approach is that it is possible to
obtain a match between agents and tasks
by means of auctions. In the simplest im-
plementation of it, agents play the role of
bidders. Depending on the specific con-
text, many different implementations are
available. For instance, these methods are
frequently used in coordinating mobile ve-
hicles in Search and Rescue missions. Some
interesting works in this field are [3], [2]
and [7]. Another article that provides an ex-
haustive description of marked-based meth-
ods and their applications to task assign-
ment (paying particular attention to mobile
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vehicles) is [5]. In contrast with other non-
cooperative methods, market-based meth-
ods require that agents can communicate
with each other, or at least with their neigh-
bours (i.e. the agents that are interested in
the same task and take part in the auction).
In [5] different auction heuristics are anal-
ysed. The authors deal with the problem of
defining adequate cost and utility functions
for bidders (agents) and targets (tasks), in
order to speed up the auctions. Moreover, it
is suggested the idea that, once a matching
is found, it can be subsequently improved
by swapping tasks between agents, during
execution, without reiterating the expensive
(in terms of synchronization and communi-
cation costs) auction procedure.

• Game theory based approach. A point of
view that is frequently adopted in math-
ematical project management is the one
that looks to game-theoretical algorithms.
A typical situation can be the assignment of
tasks to employees. An interesting scheme
is proposed in [1]. The key idea is to
take into consideration the preferences of
both managers and employees. The issue is
formulated in order to resume a weighted
multiple knapsack problem, in which tasks
play the role of items, whose cost is re-
quired time for execution; each employee
has an allotment of available time, that
can be viewed as a knapsack to fill. The
proposed strategy is the following:

1) Since this assignment problem is a sta-
ble marriage problem (in order to col-
lect information about SMP, we have
referred, for instance, to [9] and [4] ),
it can be handled by means of a Gale-
Shapley like algorithm [8].

2) Each task is given a weight (that corre-
sponds to the time it requires in order
to be executed), a preference list and a
pointer to the next non-rejected pref-
erence. Each agent is equipped with
a similar structure, that includes avail-
able time, a preference list, a pointer to
the next non-rejected preference and a
callback list.

3) The algorithm proceeds taking a task
from the set of unattached tasks and
recurring to the agent indicated by its
pointer to the next non-rejected prefer-
ence. If the agent is not busy or prefers
this task to the one that it is currently
performing, it accepts the task. If the
replaced task can no longer be exe-
cuted in the time left to the worker,
it becomes unattached and establishes
a callback. If the current task is not
accepted, it moves to the next non-
rejected preference. When an agent
has completed its task, it can recall
the highest of preferred tasks it has a
callback for. The algorithm is iterated,
until it ends when all tasks have been
executed or rejected by all agents.

We have developed this approach in order
to fit our case study problem. This is fairly
more complex, since, even though our as-
sumptions are very simple, it can be shown
that we have to face a NP-hard assignment
problem. This is due to the fact that charg-
ing non-homogeneous agents with localized
task implies the presence of incomplete lists
with ties (this issue will be developed in
section (3.3.1).

2 CONTENTS OF THE FOLLOWING
SECTIONS

Here we report what the following sections will
deal with.
In Section Two we describe task assignment
problem more in detail and specify our assump-
tions. We also draw a mathematical formalisa-
tion of the problem: we show that a possible
implementation is represented by a Constraint
Linear Programming approach, even though our
case study is quite difficult because our prob-
lem is dynamic. We introduce some indexes to
compare the different implemented approaches
and evaluate their performances. Then we make
a digression about the Stable Marriage Problem
and its variants, the topics that have mainly
inspired our work. Finally we go over the ap-
proaches we propose and we briefly describe
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them, highlighting their pros and cons, besides
their computational complexities.
Section Three contains simulations. Firstly, we
desribe the task simulator we have built in order
to test our algorithms. Then, simulation results
are analysed.
In Sections Four and Five, we conclude our
project with some comments on attained results,
comparisons among the proposed approaches
and some opportunities for future works.

3 MATCHING TASKS AND AGENTS
As we hinted in the previous sections, we
are given a group of cameras distributed over
an area to monitor. This area is divided into
subzones owing to the intersection of the visual
ranges of the cameras.

Each of them, that can be considered as an
agent with limited resources, is able to cover
a subset of all the possible subzones of the
monitored area. As a consequence, it is possible
to define a covering matrix V.
In our treatment, we suppose that every subzone
is covered by at least two cameras. The reason of
this assumption is that we would like to assure
continuity in monitoring each zone. In fact, if
a zone were covered by a single agent and this
agent were forced to perform streaming, since
this task is not compatible with video-recording,
surveillance would fail.
Our problem is to assign the tasks that occur to
the agents, obeying to the previously introduced
costraints, in order to attain a good match. The
quality of the resulting match has to be defined
in some ways: we will point out this issue in
section (3.3).
Each task is different from the others by some
characteristics, i.e. its type (as explained in sec-
tion (1.3)) and its location (or target agent). We
assume that when a task occurs, it is added to
a structure called pool and is removed from it
when it is completed or gets obsolete. Actually,
it is meaningful to define a dropping procedure
that contrasts obsolescence: when a task exceeds
a fixed lifetime, it is removed although not
completed, unless it is already associated to an
agent. This solution prevents the pool from an

excessive growth. Moreover, a task that has not
been executed after a certain fixed time, can be
reasonably considered unprofitable, so it should
be removed.
The pool is thought to be a global structure, so
all the agents are aware of the existing tasks
at every instant and their characteristics. The
agents can access to information about all the
tasks. However, as we stated above, they cannot
perform all of them, but only those ones that
concern one of the subzones they cover.
In our treatment, we disregard the aspects related
to communication problems: no delays or losses
of packets of information are possible and so
agents have an instantaneous knowledge of the
state of the net and the pool. For simplicity,
we have simulated a task generation method
that may be far from reality in some situations.
This happens because tasks are created without
correlation (i.e. a task of manual tracking on a
certain subzone can take place when an identical
task is already existing). However, this is not an
oversimplification, since it does not affect the
pith of the resolving procedure. In conclusion,
thanks to this abstraction, we have been able to
turn a complex problem about camera network
management into a simpler matter: the issue of
matching tasks to agents.

3.1 Mathematical formalisation
The next step to take is to draw a mathemat-
ical formalisation of the assignment problem
we are interested in. A natural implementation
is offered by a constraint linear programming
(CLP) approach, that aims to build a model that
resembles:

max cT (x)

Ax ≤ b

x ≥ 0

However, we have to face a dynamic problem.
The number of task is not fixed: new ones
can occur, increasing the length of the pool,
whereas others can be completely performed
or may be dropped, shortening it. This implies
consequences that are not usually taken into
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consideration in linear programming. More in
details, task dynamicity induces variations of the
polyhedron containing decision variables. We are
going to analyse this matter after describing the
CLP model.

To begin with, the variables of the optimiza-
tion problem have to be defined.

xij =

{
1 if agent i executes task j
0 otherwise

(3)

where i ∈ {1, . . . , N} and j ∈ {1, . . . , H}. The
network has N cameras and we are considering
a pool of length H .

Under our assumptions on the skills of agents
and the type of tasks, we can impose that assign-
ment has to obey to the inequalities:

H∑
j=1

xij ≤ 1 ∀i (4)

N∑
i=1

xij ≤ 1 ∀j (5)

The meaning of (4) is that each agent can
execute at most one task, whereas (5) implies
that each task is assigned at most to one agent.

Our first model was thought in order to de-
scribe the constraints imposed by the covering
matrix V. This is a N ×M matrix, where M
is the number of subzones (whereas N is the
number of agents, as we have already stated).
Its elements are defined as:

V (i, j) =

{
1 if agent i covers area j
0 otherwise

(6)

The covering matrix V is supposed to be known
exactly by the agents. Moreover, w.l.o.g. it is
possible to assume that each task is equipped
with a structure containing information about it.
In particular, it is possible to derive the area to
which the task j aims, by inspecting the structure
field task(j).loc. In order to model covering
costraints, other variables had to be introduced:

v̄ij =

{
0 if i can monitor task(j).loc

1 otherwise

The additional costraint on covering was im-
posed by the equations:

H∑
j=1

v̄ijxij = 0 ∀i (7)

Finally, the problem involves integer values,
such that:

xij ∈ {0, 1} ∀i, j (8)

It should be noticed that equations (7) make
the problem more complicated. For instance,
they prevent the constraint matrix A from being
TUM (totally unimodular), in general. By a
clever choice of the utility function, however,
it is possible to skip out equations (7). For
now, we postpone the question of defining an
adequate (linear) utility function f(x). There is
only one assumption we are interested in now. It
is that the function strongly penalizes “wrong”
assignments. By “wrong”, we mean that agents
are given tasks that are incident to zones they
can not monitor. The resulting model is given by
constraints (4), (5), (8), aiming to find max f(x).
A key observation is that now the constraints
matrix A is totally unimodular. Let N be the
number af agents and H the length of the pool
(number of existing tasks, both waiting or being
performed). The expansion of the constraints (4)
results in:

x11 + x12 + · · ·+ x1H ≤ 1

x21 + x22 + · · ·+ x2H ≤ 1
...

xN1 + xN2 + · · ·+ xNH ≤ 1

whereas constraints (5) bring:

x11 + x21 + · · ·+ xN1 ≤ 1

x12 + x22 + · · ·+ xN2 ≤ 1
...

x1H + x2H + · · ·+ xNH ≤ 1

As a consequence (and ordering
variables so that they appear as
x11, . . . , x1H , x21, . . . , x2H , . . . , xN1, . . . , xNH),
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it follows that the constraint matrix A has the
form:

A =



1 . . . 1 0 . . . 0 0 . . . 0
0 0 0 1 . . . 1 0 . . . 0
...

... · · · · · · · · · · · · ...
...

...
0 0 0 . . . . . . 0 1 1 1
1 . . . 0 1 . . . 0 1 . . . 0

0 1 . . . 0 1 . . . 0 1
...

...
... · · · · · · · · · · · · ...

...
...

0 . . . 1 0 . . . 1 0 . . . 1


Since all elements are equal to 1 or 0 and each
column contains exactly two non-null elements,
A is TUM. As a consequence, conditions (8)
are now redundant and the solving procedure is
strongly simplified.

It is now interesting to focus on what we
meant before when talking about dinamicity of
the case study assignment problem. This idea is
linked to the fact that, after a match has been
found, a new task can occur (increasing the pool)
whereas others may be dropped or completed
(so that they disappear from the pool). This
influences the dimension of the polyhedron con-
taining variables. In order to make the following
tractation more intuitive, we can observe that it
is possible to represent each combination of the
values of xij by a string of binary digits:

x11x12 . . . x1Hx21 . . . x2H . . . xN1 . . . xNH

Disregarding the constraints (4) and (5), it can be
easily seen that there are 2NH different strings,
where N is the number of agents and H is
the current dimension of the task pool. For
simplicity, Z is defined to be the set of all
possible strings. Feasible strings with respect to
the former constraints can be interpreted as a
subset X of Z. The cardinality of X can be
obtained by combinatorial calculus. It is given
by

|X| =
N∑
k=0

(
N

k

)
H!

(H − k)!
(9)

The kth addend corresponds to the number of
solutions in which k agents are busy.

A natural representation for the set Z is pos-
sible in a NH - dimensional space, where each

string can be seen as a vertex of the unit NH-
cube (i.e. the unit hypercube in RNH).

New task occurence
Firstly, we analyse what the occurence of a new
task implies. The main result is that Z becomes
(HN +N)-dimensional. Its cardinality is multi-
plied by 2N : an idea of how the polyhedron is
affected by the new occurrence is given in figure
(2).

Figure 2: Initial condition: two tasks and one
agent. The corresponding polyhedron containing
feasible solutions is the red triangle. The new
occurence implies that Z becomes a cube (be-
fore, it was the square given by the red vertices).
The new polyhedron is coloured in blue.

The number of feasible values can be com-
puted by means of equation (9), by replacing
H with H + 1. All feasible combinations corre-
sponding to H tasks in the pool, keep feasibility
when a new task occurs (they correspond to
new assignments in which the new task is not
chosen). However, it is quite difficult to say what
happens to the optimal solution. For simplicity,
we consider now that the utility function f(·)
rewards only assignment that are consistent with
the constraints imposed by the covering matrix
V. For instance, it could assign a positive value
that depends on the task type. Of course, it has to
penalise wrong assignment, as we have already
assumed. It should also be underlined that the
optimal solution could be not unique (there could
be permutations of agents and tasks in the same
zone, for instance).
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It is possible that the occurence of a new task
does not imply modification in the optimal solu-
tion (for instance, if all agents of the interested
area are already performing more convenient
tasks). However, the new occurence may cause
that all (or nearly all) agents decide to change
their tasks with a better one, now available. In
fact, when a new task occurs, very different
scenarios can tak place.

Let us consider a case in which a new oc-
curence completely mix up the optimal solution.

Example 1: We refer to an early, very simple
definition of the utility function f(x) that obeys
to our assumptions:

f(x) =
∑
i,j

cijxij (10)

The gain cij , associated to the choice of as-
signing task j to agent i (i.e. putting xij = 1),
is given by:

cij =

{
pr(j) if i can monitor j.loc
−∞ otherwise

(11)

Where j.loc is the area to which the task aims,
whereas the value of pr depends only on the type
of task j. It can be chosen as:

pr(j) =


0.25 if j.type is patroling
0.5 if j.type is streaming
0.75 if j.type is automatic tracking
1 if j.type is manual tracking

(12)
We analyse a simple network configuration,

characterized by the covering matrix

V =


1 1 0 0 0
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
0 0 0 1 1


We assume that vij = 1 if agent i can monitor
area j. As it can be easily seen in figure (3), a
new occurence can bring to a new matching that
is completely different from the previous one.

�
We have modeled patroling activity as a task

in order to achieve a better uniformity among

tasks2. With regard to the utility function (11),
it is possible to say that, if patroling tasks are
enough to keep all the agents busy, each optimal
solution is characterized by the fact that all
agents are busy.

Proposition 1: If patroling tasks are enough
to keep all agents busy, in each optimal solution
all agents are busy.

Proof: By absurd. Suppose that there is an
optimal solution s in which at least one agent a
is unloaded. Since patroling tasks are enough to
keep all agents busy, if a is unloaded it means
that other agents have been matched to all the
patroling tasks that could be executed by a. As
a consequence, there is another solution s′ such
that:
• all other agents are performing the same

kind of task they are assigned to in s.
• there is a permutation in the assignment

of patroling task, so that a can perform
patroling, too.

This permutation do exist since patroling tasks
never change (once they have been create in the
first execution) and they are sufficient to keep all
agents busy. But s′ is characterized by a profit
that is fs′(x) = fs(x)+1. So s is not an optimal
solution.

Actually, an agent that can not perform track-
ing or streaming should automatically change its
state to patroling, that should be considered a
default state.

The occurence of a new task cause a drastical
growth in the number of the possible matching
in which all agents are busy.As a matter of fact,
it becomes:

(H + 1)!

(H + 1−N)!
=

H + 1

H + 1−N
H!

(H −N)!

An enumerative procedure would imply to com-
pute the utility for the new potentially optimal
solutions (in which all agents are busy and the
new task is assigned). The number of new cases

2. Our approach creates an initial pool whose elements are
patroling tasks, one for each area that has to be monitored. A
sufficient condition to assure that patroling tasks are enough to
keep all agents busy is that the covering matrix V contains a
permutation of the columns of the identity matrix IN
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Figure 3: A new occurence can mix up the previous assignment

to be considered is:

(
H + 1

H + 1−N
− 1)

H!

(H −N)!
=

N

H + 1−N
H!

(H −N)!

Dropped or completed task
When the length of the pool is decrease by one,
the dimension of Z is reduced to (H − 1)N .
So, the number of possible strings in Z becomes
2(H−1)N (it is divided by 2N ). This can happen
in two cases.

1) A task is dropped. If a task is dropped,
it means that, during its whole life, other
tasks were more advantageous. As a conse-
quence, the vanishing of the dropped task
does not affect the optimality of the current
solution.

2) A task is completed. If a task is completed,
it means that an agent becomes unloaded.
If the agents are capable to start patroling
when no other tasks are available, of course
optimality is lost. This happens because,
under our assumptions, only streaming and
tracking - both manual and automatic -
tasks are subjected to dropping 3. So, the
agent that was previously busy was execut-
ing a task that was more convenient than
patroling.

3. Patroling tasks are supposed to have infinite service and
dropping time, since they represent the default state of the net

In conclusion, it is difficult to understand
how the change in the length of the pool af-
fects the optimum solution. As a consequence,
this formulation of the problem suggests two
straightforward choices. The first one is to com-
pletely repeat the assignment procedure. This
solution assures optimallity. The second one is
to implement a greedy heuristic. For instance, if
a new task occurs, the agents that can monitor
its area should evaluate it, allowing swaps if it is
convenient but not affecting the assignment that
has already been reached in other subzones. If a
task is completed, instead, the agent that has just
carried it out should evaluate all the unmatched
tasks it is able to perform. Of course, this kind of
heuristic can not guarantee the optimality of the
final solution. An example can show it clearly.

Example 2: The situation is the one illus-
trated in figure (4). The covering matrix is:

V =

[
1 1 0
0 1 1

]
The pool comprises the following tasks:

1) ’OP’ on agent 1;
2) ’STR’ in area A1;
3) ’TRK’ in area A2;
4) ’TRK’ in area A3;

The optimum solution is not unique; for istance,
it can be the assignment in which the following
pairs have been formed:

1) (a1,’OP’ on agent 1)
2) (a2,’TRK’ in area 2)

The other optimum solution is (a1,’OP’ on agent
1) and (a2,’TRK’ in area 3). Referring to the

9
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utility function described by (11), the optimum
solutions are characterized by f(X) = 1.75. We
consider the first one. What happens if the first
task (’OP’ on agent 1) is completed? Applying
the previously described greedy heuristic, the
assignment that involves agent 2 is never ques-
tioned. The best that agent 1 can do is to start
executing task ’STR’. The final value of f(x)
is 1.25. However, if the optimum assignment
procedure had been repeated for both the agents,
the solution would have been (a1, ’TRK’ in A2)
and (a2,’TRK’ in A3), with f(X) = 1.5.

3.2 Performance metrics and
constraints
Before introducing the analysis of the different
proposed algorithms, it is fundamental to de-
fine some measurement criterion for the reached
performances. The intrinsic complexity of the
studied application, and in particular the ne-
cessity of working with dynamic assignments,
imply heterogeneous and often contrasting goals.
On one side, in fact, we look for an optimal
assignment in the sense of priorities (i.e. it is
preferable to execute critical tasks, instead to run
the less important ones), on the other one we
pursue a certain continuity in task’s execution,
avoiding situations in which tasks are temporary
paused even if almost completed, or continu-
ously swapped between different agents before
the end of execution. Nevertheless we may want
to avoid unaccomplished tasks queue growing
too large, or infinite waiting time for tasks (also
if those are low-priority tasks). Those and other
aspects are formally presented in the following.

Qualitative constraints
• Robustness. Common requirement for ev-

ery algorithm is the convergence to a sta-
ble assignment. In this paper randomized
methods are also considered that may lead
to continuously swapping configurations. In
those cases iteration-breaking mechanisms
are implemented to guarantee a finite time
convergence.

• Queue stability. Another desirable goal is
keeping a length-bounded pool (according
with reasonable low generation rate of new

tasks). This is in general strongly dependent
on the particular instance of problem. To
ensure the overall stability of the task pool,
task dropping after a time-out period is
necessary. As a side effect of such a policy,
the oldest tasks, that are likely obsolete
and no more critical, are cleaned from the
queue.

Performance metrics
• Optimality. A measure of optimality (in the

sense of task’s type priority) is given by

P (t) =
t∑

τ=0

N∑
n=1

pn(τ) (13)

where pn is the intrinsic priority of task
executed by agent n at the (discrete) time
τ and N is the number of agents in the
system.

• IDLE avoidance. In a real implementation
of the surveillance system, there are not
agents doing properly nothing: if a cam-
era has nothing better to do it is always
free to patrol its covered areas. IDLE state
for an agent means to us that that agent
found no compatible high-priority it can
run and all the areas it covers are already
patrolled by others. Such a situation reveals
an unbalanced assignment configuration (as
stated by proposition 1). Let be the IDLE
occurrence rate

I(t) =
1

t

t∑
τ=0

N∑
n=1

Idlen(τ) (14)

where Idlen(τ) is 1 when the agent n is
IDLE at time τ , 0 otherwise.

• Complexity. Algorithm’s computational
complexity (expressed in term of O(·))
gives an estimation both of computational
load per agent (i.e. necessary iteration to
converge to a stable assignment) and scala-
bility of the system (depending on number
of agents N , areas M and instantaneous
size of the task pool H(t)).

• Assignment (dis-)continuity. This metric
concerns how much agents tend to complete

10



Progettazione di sistemi di controllo A.A. 2009/2010

Figure 4: Greedy heuristic vs optimum matching

by themselves tasks they already started to
execute. Let define

D(t) =
1

t

t∑
τ=0

N∑
n=1

dn(τ) (15)

with dn(τ) ∈ {0, 1}. Here dn(τ) is 1 if
agent n has changed its running task for an-
other one before completion, 0 otherwise 4.
D(t) (∈ [0, 1]) represents in this way a
“mean discontinuity rate” indication, that it
is preferable to minimize.

• Average waiting time. The time every
high-priority task spends waiting in queue
strongly depends on new tasks arrival rate,
but is symptomatic of system inefficiency,
too. Let be the average waiting time

W =
1

|HC |
∑
h∈HC

Tend(h)− Tocc(h)− Tserv(h)

(16)
where Tend(h), Tocc(h), Tserv(h) are respec-
tively time of completion, time of creation
and pure execution time of task h in the set
of completed tasks HC .

4. If an agent has been running a patrolling task, dn(τ) =
1 only if the new task type is still patrolling (obviously in a
different area).

• Dropping rate. A well tuned time-out
parameter allows to keep the queue size
bounded. Nevertheless setting this variable
on small values involves the risk of drop-
ping large numbers of tasks, more than
necessary. The dropping rate is defined as

F =
|Hdrop|
|H|

(17)

with Hdrop the set of dropped tasks and H
the set of all high-priority tasks.

Instance parameters
Another interesting goal is value instance size
both of the system (N,M,V) and the task occur-
rence. Since the behaviour of the assignment is
strongly dependent on the particular realization,
we may ask if, under certain hypothesis, it is
possible to conclude on intrinsic feasibility of
a good resulting assignment. In order to keep a
simple structure of the problem, let assume that
task arrival process is a Poisson process, i.e. task
generations are independent and memoryless. In
addition, the concerning areas of tasks, their
localizations, are supposed uniformly distributed
over all M areas. Let define for each kind of task
• T

(·)
occ as the average interarrival time. This

is the mean interval between the generation
of consecutive tasks of the same type.

11
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• T
(·)
serv as the average service time of a task,

in other words the mean time such a task
need to spend in execution before being
considered completed.

Considering the previously introduced typology
of task, there will be, in general, different values
of T

OP
occ, T

TRK
occ , T

STR
occ and T

OP
serv, T

TRK
serv , T

STR
serv .

Patrolling tasks are particular cases as these are
not properly said tasks, however. Nevertheless,
to maintain a certain consistence and homo-
geneousness, consider patrolling job as a set
of tasks (one for each area m ∈ {1 . . .M))
generated at the initial time (t = 0) and never
completable, hence T

PAT
serv =∞. The system size

is represented, quantitatively, by
• Number of total agents N .
• Number of total areas M .
• The covering matrix V as defined in equa-

tion (6) and more specifically, the mean
covered area per agent

vagent =
1

N

∑
∀(n,m)

vnm (18)

and the mean agent covering an area

varea =
1

M

∑
∀(n,m)

vnm. (19)

A suppletory condition is that each agent
is able to cover at least two different areas
and each area is covered at least by two
agents 5.

Next step is computing a load factor that takes
into account all of the variable listed above. Let
be

cop = T
OP
serv/T

OP
occ

ctrk = T
TRK
serv /T

TRK
occ (20)

cstr = T
STR
serv /T

STR
occ

the single load of different tasks. Since each
operator task is compatible with only one agent
and tracking and streaming tasks are feasible
by all agents covering relative area, we may
conclude that:

5. This to avoid overdetermined solutions.

• OP tasks are equally distributed on the N
agents;

• TRK and STR tasks are equally distributed
on the areas and executed by the agents
according to the topology.

So

C =
1

N
cOP +

vagent

M · varea
(ctrk + cstr) (21)

is taken as a global load factor. When C > 1
the incoming rate of new tasks is faster than the
completion rate, hence, even ignoring limitation
represented by the covering matrix V, the system
won’t be able to satisfy all tasks.

3.3 Proposed approach
3.3.1 The stable matching problem
Our work was mainly inspired by the stable
marriage problem [8].
It considers a set of n men and n women. Each
person has a list (ordered by his preference),
where all the persons of the opposite sex appear.
We have to find a set of stable marriages between
the men and the women.
A marriage is said to be stable if there are no
dissatisfied pairs, that is there is no pair of a man
and a woman who both prefer another partner to
their current one (according to their preference
lists).
The algorithm proposed in [9] is the following:
an unpaired man X considers the first woman on
his list and removes her from it. If the woman is
not engaged, she accepts his proposal, otherwise
she considers her preference list: if she prefers X
to her current partner, she breaks it with her mate
(who gets unpaired) and marries X , otherwise X
is still unpaired because the woman is happier
with her husband. These operations are repeated
while there are men unpaired (see also alorithm
1).
In this way, once a woman becomes attached,
she remains married, altough she can change
her partner (if she receives a better marriage
proposal). As a man eliminates one woman from
his list during every iteration, if the rounds
continue long enough, all men and women will
be married and it is assured the termination of
the algorithm. This marriage is shown to be

12
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stable: let us assume we have a dissatisfied pair,
i.e. a man X that prefers a woman b, to his
current wife a. This implies that X must have
proposed to b before a. Woman b either rejected
him or, at first, she accepted him but then refused
him for another better man. So, b must prefer
her current husband to X, contradicting the initial
assumption that b id dissatisfied: so the marriage
is stable.

Algorithm 1 Gale-Shapley Algorithm
1: while there is an unpaired man do
2: pick an unpaired man X
3: remove the first woman w from his list
4: if w is engaged then
5: if w prefers X

to her current partner Y then
6: set (X,w) as paired
7: set (Y,w) as unpaired
8: else
9: X is still unpaired

10: end if
11: else
12: set (X,w) as paired
13: end if
14: end while

This algorithm was modified by Brent
Lagesse that in [1] faces the problem of the
assignment of tasks to employees, taking
into consideration manager and employees
preference, employee time and employee skills.
A new more specific approach was proposed,
which utilises two-sided matching: each task
is given a weight, that is the estimated time
required to complete the task; each employee
has an allotment of time available to fill with
tasks. The algorithm is the one described in
section 1.4. This algorithm terminates when
all tasks have been assigned or they have been
rejected by all workers. Termination is assured
since the preference lists mean that are no
deadlock.
In video-surveillance case study, cameras
(agents) and tasks play the role of duties and
employees.
Nevertheless, a direct application of this
algorithm to our case study problem was not

possible, because it is more complex owing to
dinamicity and the characteristics of tasks and
agents. So we have studied some variants of the
stable marriage problem (referring to [4], in
particular):

• Stable marriage problem with incom-
plete lists (SMI). This is the case when the
involved preference lists can be incomplete:
the number of men and women does not
have to be the same and each person’s
preference list consists of a subset of the
members of the opposite sex in strict order.
Now, a matching M is a one-one correspon-
dance between a subset of men and a subset
of women, where each member of a pair is
acceptable to the other one, that is each one
appears in the preference list of the other
one.
M is said to be a stable marriage if there
is no acceptable pair (m,w), such that m
and w are either both unmatched in M or
prefer the other to his/her partner in M .
As in the classical case, there is always at
least one stable matching for an instance
of the stable marriage problem with incom-
plete lists, that can be found in a polinomial
time.

• Stable marriage problem with ties
(SMT). This extension of the stable match-
ing problem arises when lists contain ties.
In this case, a person, we say a man, prefers
each woman of a tie to all the women
belonging to every subsequent tie and is
indifferent among the women of a single
tie.
A matching M is (weakly) stable if there is
no pair of m and w, each of whom prefers
the other to his/her partner. For an instance
of this problem, a weakly stable matching
is bound to exist, and can be found in
polinomial time by breaking all ties in an
arbitrary way.

• Stable marriage problem with ties and
incomplete lists (SMTI). This variant
is obtained combining both extensions
described above.
In this context, a matching M is stable
if there is no pair of m and w, each of
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whom is either unmatched in M and finds
the other acceptable or strictly prefers the
other to his/her partner in M . A stable
matching can be found by breaking all the
ties, but the ways in which ties are broken
affect the solution. Finding a solution of
maximum cardinality is a NP-hard problem.

In the end we have chosen an algorithm that
draws on from these concepts and tries to avoid
some problems related to the NP-hard complex-
ity of the problem. It will be described in the
following section.

3.4 Proposed Algorithms

We have developed two algorithms, that are
based on the Stable Marriage Problem. In order
to evaluate their performances, we are going
to compare them with other task assignment
procedures. Some of them have been already
introduced, the others will be explained sub-
sequently. The algorithms that are going to be
studied are the following.
• Centralized assignment.
• Nearly Brute-force (Purely random assign-

ment).
• Greedy assignment.
• SMTI Revised.
• Randomized SMTI Revised.
They have been implemented and simulated

using Mathworks MATLABTM. Before we show
the results of these simulation, it is meaningful
to premise a brief description and some consid-
erations about them.

Centralized assignment

This algorithm follows directly from the formu-
lation of the problem given in subsection (3.1).
It aims at founding the best solution with regard
to the maximization of a utility function similar
to (11). Actually, it has been improved in order
to weigh the life span of tasks. The resulting
function is:

f(x) =
∑
i,j

cijxij

where

cij =

{
αpr(j) + (γ)

Tlftm(j)

Tdrop(j)
if j.loc ∈ i.v

−∞ otherwise
(22)

We say that j.loc ∈ i.v if agent i can monitor
the area affected by task j. The term pr(j) is
the priority associated to the type of the task,
Tlftm(j) is the duration of the life of task j
and Tdrop is the fixed time after that task j is
dropped. The choice of this kind of function has
been motivated by some considerations about
the features we would like to attain. The former
addend weighs the role of the intrinsic priority
of the task, whereas the latter one assigns higher
priority to tasks whose life span is close to drop
time (they might be dropped soon, if no agent
carry them out). It should be pointed out that α
and γ are positive or null, such that α+γ = 1 6.

Since the problem can be reduced in each
time interval in a CLP issue without integer
conditions, we can solve it simply by means of
the simplex algorithm, for instance 7.

Let us analyse the features of this algorithm.
• Pros: The assignment is optimum with re-

gard to the function (22).
It assures the absence of deadlock: it is
sufficient to make it obey to the Bland
law (which prevents cyclic degeneration of
simplex, by fixing the order of choice of the
variables to be taken as basis, when there
are doubtful situations).

• Cons: The worst case is characterized by
the complexity

(
n
k

)
where n is the num-

ber of variables and k is the number of
constraints (in particular, in the case study
problem we have n = NH and k = N+H .
In the worst case, it means that the number
of possible iterations is:

(NH)!

(N +H)!(NH − (N +H))!

Moreover, it cannot be implemented in a
distributed version.

6. Since we are interested in comparing the role of priority
and life span, α and γ are chosen to provide a convex linear
combination of them

7. We have chosen Simplex algorithm as a solving procedure
in our code implementation
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Figure 5: With Nearly Brute-force agents can be
IDLE. An example is given by the case in which
there are only patroling tasks, one per area, and
agent ai can patrol areas i and (i + 1) mod 4.
A possible result of random assignment in this
situation lets agent a3 unloaded.

Nearly Brute-force (Purely random assign-
ment)
This is the simplest assigment procedure that
can be implemented. Each agent ai, with i ∈
{1, . . . , N}, performs the sequence of operations
that is described by the flow chart in figure (6).

This algorithm is very similar to the procedure
that is presently put in practise (it resembles
the brute-force approach we have described in
section (1.4), under our assumptions on the pool
structure). Let us analyse the features of the
Nearly Brute-force algorithm.

Its computational complexity in the worst case
is O(NH), where N is the number of agents and
H is the pool length. This is due to the fact that
an agent can look through the whole length of
the pool before finding a task it can perform.
This can be easily understood referring to our
implementation. Patroling is considered a task
like the others and we initialize the pool insert-
ing a task of patroling for each subzone to be
monitored. Since these tasks cannot be brought
to a close (since they have infinite service time),
they never leave the pool. Other tasks queue up.
The structure of the resulting pool is shown in
figure (7).

The number of zones to be monitored is given
by M and the total number of existing tasks

Start

is ai
unloaded?

is ai
patroling?

ai randomly
picks an
available

unmatched
task

(different
from

patroling,
if it exists)

ai keeps
executing
the same

task

no

yes

yes

no

Figure 6: Nearly Brute-force

is given by H . If we suppose that an agents
randomly chooses tasks that are different from
patroling, if there are any, the worst case occurs
when an agent does not find any suitable tasks
of this type and has to glance through all the
tasks before considering the patroling ones (so
it takes into consideration at first (H−M) tasks,
then at most all M patroling tasks - actually, if
we suppose that an agent covers more than one
zone, it has to consider less than M tasks before
finding a patroling task that is suitable for it).
• Pros: It assures maximum continuity in

matching tasks and agents. An agent cannot
drop the task that it has chosen, apart from
the patroling tasks (that are to be considered
as an astraction of the default state of the
cameras).
This approach easily allows scaling, since
it does not request communications among
the agents (except for the synchronization
of global information regarding the pool,
eventually). Of course, the scaling cost de-
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Figure 7: Example of the pool structure

pends on the dimension of the pool.
Deadlocks could occur only if two or more
agent asked for the same task simultane-
ously. However, this situation can be easily
avoided. On the one hand, in the central-
ized implementation agents are considered
sequentially; on the other one, it is suffi-
cient to recur to a leader agent to solve
conflicts. For instance, this hierarchically
higher agent can settle differences by op-
erating a random choice.

• Cons: No optimality criterion directs the
assignment, that is completely random.
There could be IDLE agents (under the
assumption that patroling is a task like the
others and not the default state of each
agent). An example is exhibited in figure
(5).

Greedy assignment

This algorithm is quite similar to the previous
one, except for the fact that assignment is not
chosen randomly. Each agent evaluates all the
tasks, than it chooses the best one (of course, it
has to be a task that aims to a zone covered by
the agent). The profit associated to a task can be
established by means of the function (22). The
sequence of operations performed by each agent
are shown in flow chart (8)

The computational complexity of this algo-
rithm is always O(NH), since each agents need
to glance through the whole pool to evaluate the
tasks.
• Pros: This algorithm, as the previous one,

easily allows scaling, since the cost of com-
munication is low and each agent behaves
almost regerdless of other agents’ choices.
Conflicts can be solved, as we have already
stated, by means of a leader agent, so
deadlocks are prevented.

Start

ai look
through
the pool

for the best
unmatched
task tbest

is tbest
better than
tcurr?

ai drops
tcurr

and start
executing
tbest

ai keeps
executing
tcurr

yes

no

Figure 8: Greedy Assignment. The task that is
currently performed by ai is indicated by tcurr.

• Cons: Continuity is not assured. A task may
be dropped by an agent before it comes to
the end, since the agent may find a better
task to perform.
As in the previous case, there can be
IDLE agents, even if the optimal assign-
ment would match all the agents with a
task.

Our algorithm: SMTI Revised (a.k.a. The
Wedding Planner algorithm)

The algorithm we have implemented to solve our
task assignment problem is the following (see
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also algorithm 3).
Each task has a fixed preference list, that is
created once and for all at the moment of the
creation of the task; it contains all the agents that
can execute that task (according to the covering
matrix, as explained in the previous sections).
Each agent draws up a preference list, that
contains the tasks it can execute, ordered by a
criterion that keeps into account the lifetimes of
tasks and their priorities (see the algorithm 2 for
details); ties and incomplete lists are possible.
So an agent, chosen at random, builds temporary
lists, containing only tasks with the same scores
as defined in its entire list. The temporary lists
are scrolled, beginning from those containing
tasks with the highest scores (in descending
order).
Three situations are possible:

1) the current agent is executing a task of the
temporary list it is considering: in this case,
no change takes place and the algorithm
switches to the next agent;

2) some tasks belonging to the current tem-
porary list are unassigned: in this case, the
current agent takes the first of these tasks
(and if it was executing a task, this gets
unmatched) and the algorithm switches to
the next agent;

3) all the tasks belonging to the current tem-
porary list are assigned. A swap can occur
in two situations:
a) the current task in the temporary list

appears in a lower position in the list
of the current agent A than in the list
of the agent B that is executing it. In
fact, if A did not take this task, its list
would risk to be empty and so A to get
IDLE.

b) the current task in the temporary list
appears in the same position of both
agents’ lists and the current agent can
execute a lower number of tasks; that is
because we can think that an agent that
can perform few tasks will be subject to
a lower number of requests from them.

If a swap does not take place, the agent
goes on in considering the following tasks
in the temporary list, then the lower placed

items in its global preference list. If the end
is reached without a match, the algorithm
switches to the next agent

These operations are repeated until a stable
matching is attained.

Algorithm 2 Compute Score
1: function score = computeScore(task)
2: score← α ∗ (task priority)+

(1−α)∗(task lifetime)/(task drop time);
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Algorithm 3 SMTI Revised
1: function SMTI Revised
2: global X pool % structures containing agents and existing tasks respectively;
3: for each agent do
4: compute scores of tasks that are compatible with the current agent (using function com-

puteScore in algorithm 2);
5: build a list containing tasks that are compatible with the current agent, placed by a score

decreasing order;
6: end for
7: while (matching is unstable) do
8: A← vector containing all the agents placed with a random order;
9: for n ∈ A do

10: build temporary lists for X(n) containing only its compatible tasks with the same scores,
beginning from those with the highest scores;

11: loop
12: consider the current temporary list of X(n) (tempList);
13: if X(n) is executing a task that appears in tempList then
14: break: switches to another agent;
15: end if
16: if no assignment has just taken place then
17: if a task in tempList is unassigned then
18: t← first unassigned task in tempList;
19: set (X(n), t) as paired;
20: break: switches to another agent;
21: else
22: consider the following temporary list;
23: end if
24: end if
25: if no assignment has just taken place then
26: if all tasks in tempList are assigned then
27: ft← first task in tempList;
28: while no swap takes place do
29: t← current task tempList;
30: posTn = position of t in X(n).list;
31: posTcurr = position of t in the list of the agent is executing it;
32: if (posTn ≺ posTcurr) OR (posTn = posTcurr &&

X(n) can execute a lower number of tasks) then
33: set (X(n), t) as paired;
34: break: switches to another agent;
35: else
36: consider the following temporary list;
37: end if
38: end while
39: end if
40: end if
41: end loop
42: end for
43: end while
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The computational complexity of this algo-
rithm is O(N2), where N is the number of agents
that monitor the area of interest.
It is interesting to point out that, if we assume
that each agent has complete lists with no ties,
the worst case occurs when agents’ lists con-
tain tasks with exactly the opposite order than
tasks’lists.
Every time the function is invocated, each agent
builds temporary lists containing only tasks with
the same scores, beginning from those with
the highest scores: for our hypotheses, each of
them contains only one task. Actually, agents
do not build H temporary lists (where H is the
number of task in the pool at the current time),
because, as soon as an assignment takes place,
the algorithm switches to the next agent and the
temporary lists with lower scores are not created.
However, the first agent builds one temporary
list, the second one creates two temporary lists
and so on. The nth agent builds:

N + (N − 1) + · · ·+ 1 =

N∑
i=1

i =
N(N + 1)

2

Computational complexity in the worst case of
the proposed SMTI Revised algorithm can not
fall away, since lists are likely to be shorter.
However, optimality is not assured any more,
since the final solution may not be of maximum
cardinality.
• Pros This algorithm allows scalability,

since it requests communications only
between an agent and its neighbours.
No deadlock is possible: two agents can
prefer the same task, but the conflict is
solved by breaking the ties in the lists,
building temporary lists and defining a
swap policy.

• Cons Continuity is not assured: tasks can be
swapped in order to attain a stable match.
Agents can be IDLE, i.e. if an agent’s list
gets empty.
Finally, the achieved solution may be non-
optimum from the point of view of the

maximization of function (22), as shown in
the following examples.

Example 3: The swapping policy of SMTI
Revised may not be sufficient to achieve the best
assignment. For instance, the situation could be
the one shown in figure 9. The best matching
plans that task 1 is assigned to a1, task 2 to
a2 and task3 to a3. However if the algorithm
starts from agent a1, the final assignment is not
optimal. As a matter of fact, a swap between a1

and a2, that would lead to the best configuration,
is not possible, after a1 has been matched to task
2. This is because task 2 is in the same position
of a1 and a2’ preference lists and agents are all
equivalent in terms of the number of task they
can be matched to.

Example 4: Another example is given in fig-
ure 10, showing how the sequence in which
agents are taken into consideration and the
equivalence of the agents themselves can affect
the final solution. The left figure shows the worst
possible stable matching. This can be attained,
for instance, if the forth agent, a4 is the last that
is considered, when its favourite task has already
been assigned. A swap can not occur since the
contested task is the first of a list whose length
is two for both a3 and a4. Moreover, they have
the same number of feasible tasks (i.e. two). The
right figure shows the best possible matching.

Randomized SMTI Revised

This algorithm is similar to the previous one. The
only difference is when a swap can take place:

1) if the current agent can execute a lower
number of tasks than its opposing agent;

2) according to the outcome of a coin toss,
if the two agents can execute the same
number of tasks.

The main risk of this algorithm is that it
continues to repeat the same assignment proce-
dure for ever, generating a deadlock. This is the
reason we have introduced an upper limit to the
number of iterations that can be executed.
Our intentions were to solve the bad situations of
the previous algorithm, but we have found that
it does not imply big advantages.
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(a) Non optimal assignment with SMTI
Revised

(b) Optimal assignment with SMTI Revised

Figure 9: The swapping policy may not be sufficient to achieve the best assignment in SMTI
Revised

(a) Non optimal assignment with SMTI Revised (b) Optimal assignment with SMTI Revised

Figure 10: Another example in which SMTI Revised does not guarantee optimality
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4 SIMULATIONS
4.1 Task Simulator
We have built a task simulator in order to test
the algorithms we have projected.
Two parameters can be chosen:
• the number of agents that monitor the area

of interest
• the number of subzones the area is divided

in, by intersecting the visual ranges of cam-
eras, as explained in the previous sections.

It is defined a global structure called pool: it con-
tains all tasks generated, until they are completed
or dropped. We recall the definition of covering
matrix V given in equation (6):

Vij =

{
1 if agent i covers subzone j
0 otherwise

(23)

Tasks are generated in a simple way: we assume
they are Poisson processes, that are processes
whose interarrival times are i.i.d. random vari-
ables with exponential distribution. Each task
structure contains:
• ID
• Instant when it occurs for the first time
• type: patroling, automatic tracking, manual

tracking or streaming
• location or target agent (depending on the

type) of interest
• service time, that is the required total time

to complete its execution
• residual service time, that is the remaining

time before its execution is completed
• (normalized) priority, according to the type
• a list of compatible agents, according to the

covering matrix V
• the agent that is executing it at the current

time
• drop time: after this time, the task is re-

moved from the pool even though it has not
been completed, because it has got obsolete.

Each agent structure is defined by:
• ID
• the task it is executing at the current time
• the set of subzones it covers
• the scores of compatible tasks
• a preference list containing compatible

tasks, ordered by a desecending scores

• the position of pool where compatible tasks
are placed

• a counter of the number of iterations when
the agent is IDLE.

4.2 Results
In this section we analyse the simulation results,
in order to compare the previously described
algorithms. The Randomized SMTI Revised al-
gorithm will not be dealt, since it does not
exhibit significant advantages with regard to the
SMTI Revised. The simulations were performed
by means of Mathworks MATLABTMR2009a
(7.8.304). Unless differently specified, the at-
tained results are a mean over ten random re-
alizations of the pool, with the same instance
parameters:
• N = 8 (number of agents);
• M = 9 (number of monitored zones);
• Covering matrix:

V =



1 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
0 1 0 1 0 1 0 0 0
0 1 0 0 1 0 1 0 0
0 0 1 0 1 0 0 1 0
0 0 1 1 0 0 0 0 1
0 0 0 1 0 1 0 0 1
0 0 0 0 1 0 1 1 0


• TOP

occ = T TRK
occ = T STR

occ = 2 s.
• TOP

serv = T TRK
serv = T STR

serv = 3 s.
• Simulation time: T = 500 s.
• Load factor C ≈ 0.48.
The considered environment is described in

figure 11.
To begin with, we take into consideration the

performances in terms of dropped tasks. The
plot in figure 12 shows the importance of the
choice of the parameter Tdrop. As predictable, the
longer it is, the smaller is the dropping rate. The
maximum value it can assume is determined by
the practise implementation, as it describes the
maximum allowed duration of a task life. After
Tdrop, a task is to be considered obsolete, so it is
removed from the pool.

Still considering the dropping rate, it is inter-
esting to compare the behaviour of the different
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Figure 11: Simulation environment

types of tasks, depending on the values of pa-
rameters α and γ.

Figure 13a shows how the highest priority
tasks are preferred when α = 1. This occurs
because α weighs the intrinsic priority of the
tasks. On the one hand, since this is maximum
for tasks of manual tracking -the so called “OP”
tasks- PLI, SMTI Revised and Greedy (that
make use of the utility function described in
equation (22) show extremely low dropping rate
for this kind of tasks. On the other hand, lower
intrinsic priority tasks are penalized, as illus-
trated in figures 13b and 13c. Streaming tasks,
that have the smallest priority degree, show the
worst dropping rate for high values of α.

As regards the average waiting time of the
executed tasks, the overall effect of choosing
high values of α is to reduce it. This happens
because γ weighs the task life span, giving
preference to tasks that are close to be dropped.
As a consequence, the time spent in queue by
the executed tasks results longer, in average.
However, observing in detail the task behaviour,
it can be found that streaming tasks do not follow
the general trend (as shown in figure 14). In
order to achieve a better comprehension of these
results, it is useful to think about the role of α
and γ. Considering the array of active tasks (both
being executed or waiting), sorted by occurence
time, we can say that Tdrop defines the length

of this structure. The time interval I in which
the probability of selecting a task is higher, is
linked to γ. The smaller it is, the wider I is.
Viceversa, for higher values of γ, I shrinks to its
fixed extreme tcurrent − Tdrop. Dually, α plays the
same role with regard to priority: higher values
of α imply bigger probability of selecting only
the highest priority tasks (see figure 17 for a
graphic representation of the role of α and γ).

In spite of the fact that high values of α
generally cause the waiting time to decrease,
streaming tasks behave differently. This is be-
cause they have the lowest intrinsic priority,
so with α ≈ 1 agents tend to neglect them.
Obviously, longer Tdrop allows the queue to grow,
so waiting time are increased.

We have already stated that we are interested
in a good trade-off between continuity and opti-
mality. We now consider the first one, comparing
the proposed algorithms (figure 15).

By discontinuity we mean that a task is left
by an agent before it comes to complete exe-
cution. As predictable, the PLI algorithm does
not exhibit the desired continuity. This happens
because this approach is memoryless: it does not
take into account the previous matching in order
to update the assignment when a new task occurs
or is completed. Greedy and NBf show the best
results, since they are designed to be extremely
conservative in matching tasks and agents. The
best performances are exhibited by the Greedy
algorithm when α ≈ 0, because in such a case
agents evaluate tasks considering only their oc-
curence time. As a consequence the oldest tasks
are always at the top of the agents’lists. SMTI
Revised achieves good performances, thanks to
the fact that swaps are limited by restrictive
conditions.

Another meaningful aspect that has to be
inspected is the presence of undesired IDLE
agents (figure 16). Under our assumptions we
can exclude an instantaneous optimal solution in
which some agents are unloaded (as we have al-
ready stated in proposition 1). As matter of fact,
PLI never shows IDLE agents. SMTI Revised
achieves good performances since it willfully
tries to match each agent. In order to do it, in
comparing agents to be assigned to a task, it
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PLI SMTI revised Greedy Nearly Brute Force
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Figure 12: Drop rate

weighs the shortness of their list of unexplored
feasible tasks. As already described in example
of figure (5), Greedy and NBf do not guarantee
the IDLE avoidance.

As a general trend, when working with a
longer Tdrop, the pool contains more elements
and makes unlikely that an agent has no tasks
to do.

Referring to optimality, a remarkable aspect
is the average sum of the intrinsic priorities of
assigned tasks (shown in figure 18). The best
results are obtained by PLI and SMTI Revised:
there are not significant variations with different
values of α.
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PLI SMTI revised Greedy Nearly Brute Force
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Figure 13: Drop rate
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Figure 14: Average waiting time
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PLI SMTI revised Greedy Nearly Brute Force
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Figure 15: Discontinuity rate
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Figure 16: IDLE occurrence
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Figure 17: A graphic representation of the role played by α and γ in determining the most probable
task to be selected
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Figure 18: Assigned priorities
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5 CONCLUSIONS

The proposed SMTI Revised algorithm shows
good performances. In maximizing assigned pri-
orities, avoiding IDLE agents and reducing both
drop rate and average waiting time, it is similar
to the centralized assignment (PLI). Moreover, it
is better in terms of continuity. As precedently
discussed, SMTI Revised can be easily turned
into a distributed algorithm, even though the
consequent costs in terms of both communi-
cation and code implementation should be fur-
therly analysed. As regards the PLI algorithm, it
performs best over almost every index, but it is
hardly reliable over a real scenario like ours, due
to the bad scalability and the unacceptable dis-
continuity in task execution. In such a situation,
it can be wiser to turn to Greedy or Nearly Brute-
force algorithms. They are simpler to implement,
scalable and cheaper. In particular, Greedy algo-
rithm allows the designer to tune the value of
α, improving control on the assignment policy.
In addition, it shows acceptable performances,
except for IDLE agents avoidance.

6 FUTURE WORK

A point that has not been taken into account
is the problem of keeping the pool up to date
when algorithms are implemented in distributed
form. In this paper we have assumed that not
only the pool of tasks, but also all the vari-
ables which describe state of the system and
instantaneous associations between tasks and
agents, are always disposable and consistent for
each agent. In addition, cameras are considered
sequentially (even if in a random order) and
one for iteration in task selection algorithm.
Hence the generalization to a real system of
independent agents rises many problem in the
field of communications and consensus between
actors:
• Keeping the pool consistent is the most

critical point. A deep analysis of conse-
quences derived from different versions of
data stored in the cameras memory is re-
quired. Also, it is important to find out a
consensus mechanism for determining the

most trustworthy version and develop merg-
ing algorithms, if necessary.

• Another question is to ponder the effects
of completely asynchronous acting cameras
and to implement a management of task as-
signment collision. Consensus algorithms,
deterministic or randomized are likely the
best manner to proceed. Alternatively it
can be defined a leader agent (hierarchical
logic) that directly decides the best solution
when such a collision happens.

It may be interesting to implement the as-
signment policy following the market based ap-
proach. This would imply to define communi-
cation costs properly. Moreover, the swapping
mechanism should be furtherly explored. As a
matter of fact, it could avoid reiterating unnec-
essary auctions, that are expensive in terms of
synchronization and communication costs.

A completely different problem is an exten-
sion to PTZ cameras. It is possible to fraction
areas in sub-areas corresponding to discrete cam-
era angles of view and still apply the algorithms
considered in this paper (with minimal adjust-
ments). Continuous angles are not defined if the
present framework holds.
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