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Abstract. In this paper we address the problem of localizing, tracking
and navigating mobile nodes associated to operators acting in a fixed
wireless sensor network (WSN) using only RF information. We propose
two alternative and somehow complementary strategies: the first one is
based on an empirical map of the Radio Signal Strength (RSS) distribu-
tion generated by the WSN and on the stochastic model of the behavior
of the mobile nodes, while the second one is based on a maximum like-
lihood estimator and a radio channel model for the RSS. We compare
the two approaches and highlight pros and cons for each of them. Fi-
nally, after implementing them into two real-time tracking systems, we
analyze their performance on an experimental testbed in an industrial
indoor environment.

1 Introduction

Wireless sensor networks (WSNs), large networks of spatially distributed
electronic devices (nodes) capable of sensing, computation and wireless commu-
nication, are becoming very popular non only within the academic world as a
prototype of multiagent system but also in the industry. In fact, they can offer
access to an unprecedented quality and quantity of information that can revolu-
tionize our ability in controlling the environment. In particular, location-based
applications are among the first and most popular applications of WSNs since
they can be employed for tracking enemies in battlefield, locating moving objects
in buildings (e.g. warehouses, hospitals), and tracking people inside buildings.

The work in this paper is motivated by one of these applications, i.e. the
design of a real-time system that can support fireman rescue squads to locate
themselves and to navigate inside a building during emergency scenarios. To im-
prove coordinated searching strategies, there may be a need also to communicate
the fireman position to external monitoring centers supervising the operations.
To achieve these objectives, we propose to deploy a static wireless sensor net-
work whose nodes are placed in known positions. Each fireman is provided with
a pocket-PC, or similar device, with a mobile node that can communicate with
the static network. The position of firemen is estimated only by using the radio
signals (Received Signal Strength Indication, RSSI, and Link Quality Indicator,
LQI) provided by a standard IEEE 802.15.4 radio chip, without resorting to
any other special sensor or devices such as IR motion sensors, ultrasound, or
directional antennas.

The entire network of both fixed and mobile nodes, realizes a distributed
intelligence system, relying on the computational capabilities of the nodes. In
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this framework, though, the exact location of each fireman is performed by the
pocket-PC rather than by the static network since the former is provided with
more computational capabilities to elaborate complex algorithms and at the
same time it is scalable, since the static network simply keeps on transmitting
their own location! regardless of the number of firemen. Nevertheless, we also
propose simple localization algorithms that can be performed with the limited
computational capabilities of sensor nodes at the price of a lower performance,
but can be employed in case of failure of the Pocket-PCs. Each pocket-PC com-
putes it own position and displays it on a screen with a map of the environment
similarly to commercial GPS-based navigators. The position is also retransmit-
ted to the static network which routes it back to a gateway and then to the
firemen coordination center. Finally, the coordination center can plan a set of
way-points for each fireman that are retransmitted back to the pocket-PC for
navigation.

In addition, the navigation system must also comply with a number of con-
straints which are common to WSNs. In fact, it needs to be power efficient if
the nodes of the static network are battery-powered, robust to packet drop, real-
time, and finally it should maintain an acceptable localization accuracy even in
the event of some static nodes failure.

Before proceeding, to avoid confusion, some definitions are in order: we define
localization as the process of estimating the position of a node, tracking as the
process of estimating the trajectory of a moving node, possibly adopting a model
of object dynamics to reduce localization error, and navigation as the process to
provide a mobile node with a trajectory or way-points to be followed.

1.1 Previous Work

Any tracking and navigation system is based on some form of localization
of the object of interest. The are many different strategies to localize an object.
Within the context of WSNs, localization algorithms can be classified according
to the parameter used to get relative position information between nodes, as,
among others, the Angle of Arrival AoA (an estimate of the relative angles
between nodes), the Time of Arrival ToA (time taken by the radio signal to
propagate from one node to another), the Time Difference of Arrival TDoA
(time interval between the reception of a radio signal and an ultrasound emitted
by a beacon), the Received Signal Strength Indicator RSSI (an index of received
signal power).

Approaches based on the first three quantities require specific devices such
as array antennas for the AoA [1], ultrasound for TDoA [2], dedicated HW and
SW to maintain nodes synchronization [3], or motion detection sensors such as
magnetometers, IR motion sensor [4] and cameras [5]. Although successful imple-
mentations of systems based on these approaches exist, they are not widespread
because the specific localization hardware is too expensive or fragile in cluttered
and dynamic environments.

Differently, RSSI-localization systems are much more popular since most of
today’s radio chips for WSNs provide it at no extra hardware cost. In an ideal
medium with an ideal antenna, there should be an information preserving corre-
spondence between each RSSI value and the relative distance between two nodes;
however in an indoor environment multipath fading, reflections, diffraction, in-
terference, and the presence of dynamics highly affect this relation. Although
the localization accuracy is poorer than the one achieved with the non-RSSI
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localization systems, it is sufficient in many applications such as the one we
address. Most of the algorithms coping with the high variability of RSSI mea-
surements can be grouped into two distinct classes that we refer as RSSI map
matching-based localization and RSSI channel model-based localization.

RSSI-map-based localization. This class of algorithms is based on the
RSSI-maps generated by each static wireless node. In particular, this map takes
into account the location of the static nodes as well as the topology and mor-
phology of the environment including wall and static objects. The most popular
tracking systems in this class are the RADAR [6] and MoteTrack [7] tracking
systems.

The RSSI-map is obtained either through an analytical model of propaga-
tion of the radio signal (like wall attenuation factor model [8]) or by a series of
measurements. The analytical RSSI-map can be provided by standard tools like
ray-tracing [9], but it does not take into account small objects like tables and
shelves, or dynamics in the environment, thus possibly leading to poor perfor-
mance. The empirical RSSI-map, instead, better represents the real situation,
but requires an extensive set of experiments. Moreover, the RSSI-map can be
deterministic or stochastic, the former associating to each point (x,y, z) of the
environment a single RSSI value for each node, the latter resorting to a prob-
ability distribution of RSSI values. The stochastic RSSI-map is more realistic
than the determinist map as it takes into account possible dynamic variations
of the environment, at the price of a more complex model.

This RSSI-map is computed off-line for each static node and gives for each
point in the environment the corresponding RSSI value or its probabilistic dis-
tribution. Position estimate is then calculated on-line by searching for the value
nearest to the current measurement in terms of some defined metric. Searching
for the best match in the RSSI map can be computationally expensive if the
map is finely gridded. To overcome this problem, for example, RADAR adopts a
technique called Nearest Neighbor in Signal Space (NNSS) to identifies a subset
of possible positions so reducing the computation time required for the location
estimate. Similarly to RADAR, also MoteTrack adopts the same strategy based
on an RSSI-map, called reference signature, but it adds some additional features
which reduce estimation errors from about 3[m] for RADAR to 1-1.5[m] and
improve robustness and scalability.

Both RADAR and MoteTrack are based on a deterministic model for the
RSSI-map. Recently, Morelli et al. [10] [11] proposed a probabilistic approach
for modeling the RSSI-map by including not only mean RSSI values but also
variance information to take into account the variability of environment. In this
framework, the location of the tracked node is obtained by computing the most
likely location based on the received measurements using a Bayesian approach.
This strategy is more computationally expensive, but provides good performance
also in highly cluttered indoor environments.

RSS-channel model based localization. Differently from the previous
class of localization algorithms , the algorithms based an a RSS-channel model
first try to estimate the relative distance of the moving mode from the static
nodes and then they triangulate the moving node location using a geometric
approach. The advantage of this strategy is that it does not require any a-priori
detailed RSSI-map of the environment and that the localization algorithms are
computationally efficient. In particular, the distance-vs-RSSI model is based on
a fading-channel model with gaussian noise and the distance is derived using a
maximum likelihood estimator (MLE) [12]. Once the relative distances from each
anchor node is obtained, there are few geometric approaches that can be used to
estimate the location. The triangulation technique calculates the location of the



moving target by solving a linear set of equations which results from geometric
constraints, i.e. it gives the least square location estimate. This is the technique
adopted by the GPS-system [13] and it requires at least three ancor nodes to
estimate the location on a plane. Although it is computational attractive, it is
quite sensitive to errors on the relative distance estimates, as it is usually the
case in WSNs. Another very natural localization strategy, based on maximum
ratio combining of measurements [14], is to consider the position of any static
node as an estimate of the location of the moving agent. The location of the
target is then obtained by a convex weighted combination of the static nodes
positions where the weight associate to each static node is proportional to the
RSSI-strength or inversely proportional to the estimated distance. This approach
is even simpler than triangulation, but gives wrong answers if the target node
is close to the border of the WSN or outside, since the location is a convex
combination of static nodes location.

Dynamics-based tracking. The previous two classes of algorithms simply
provide en estimate of position of a target based on the measurements at some
time instant ¢. However, better estimates can in principle be obtained by us-
ing also the past measurements and a stochastic modelization of mobile node
dynamics like a Markovian homogeneous first-order process, which gives rise to
a random walk. Classical approaches for tracking are based on Kalman filters
[15] or more general Bayesian filters like particle filters [11] which act similarly
to low-pass filters on the instantaneous position estimates. This dynamics-based
tracking pairs particularly well with the stochastic RSSI-map based localization
since they are both probabilistic models.

1.2 Contribution

As discussed above, the localization error is not the only important factor
that needs to be considered when designing an appropriate tracking systems.
Other aspects are important such as number of nodes to achieve a desired lo-
calization error, the computational requirements necessary to run the proposed
algorithms in real-time, the installation and maintenance costs, the system life-
time, robustness to packetdrop and node failures, and scalability. Therefore, it
is necessary to study different architectures and compare them across all their
different features. Motivated by these considerations, we propose two different
tracking architectures, the first, named ARIANNA , which belongs to the RSSI-
map based localization systems, and the second TESEO , which belongs to
the RSSI-channel-model localization systems. In particular, ARIANNA uses a
stochastic model based on empirical RSSI measurements collected in the real en-
vironment similarly to the one proposed in [11], but also models packet dropout
and adopts a novel interpolation for the RSSI-map. Differently, TESEO does not
need any extensive set of experimental measurements but identifies the RSSI-
channel parameters based on local measurements of the static nodes, as pro-
posed in [12]. Moreover, it implements three different geometric localization al-
gorithms: the maximum ratio combining (MRC) [14], the least square estimator
(LSE) [13], and a novel maximum likelihood (ML) estimator based on gradient
descent. These different algorithms present a trade-off between computational
complexity and localization error and they are implemented simultaneously to
provide different level of robustness to system failures.

We implemented both architectures using commercial-off-the-shelf wireless
sensor nodes, hardware and software, and we performed real-time tracking ex-
periments in a rather hostile and large scale indoor environment which included
large walls, high electromagnetic interference and metallic structures. These ex-



periments provide a fair comparison between two fundamentally different ar-
chitectures which have different structural characteristic in terms of the factors
listed above. In particular, we show that ARIANNA is a suitable architecture if
HW cost is the most important aspect, but it requires extensive set of measure-
ments before installation and a rather powerful computation unit to track moving
objects. Differently, TESEO provided smaller localization error estimates, can be
installed very rapidly without time-consuming experimental measurements, and
requires fewer computational resources to implement the algorithms. However,
it requires much larger number of nodes as compared to ARIANNA .

In the following of the paper we describe in details ARIANNA and TESEO
architecture and algorithms including some simulations. Then we describe the
implementation and real time-time tracking performance of the two architectures
in an industrial indoor environment. Finally we provide some considerations on
the results and discuss about future opportunities of research.

2 ARIANNA Tracking System

This algorithm is based on the measured RSST over the Anchor Nodes (ANs)-
Mobile Node (MN) links, sensed by the MN; a suitable a priori map containing
the RSSI distribution over the interested area is built. The MN dynamics is
modeled as a Markovian homogeneous first-order process, so allowing Bayesian
filtering to estimate and track the MN’s position. The WSN we are referring to
is a centralized one, since we suppose that the MN is a smart sensor or it is
connected to a smarter processing unit (e.g. a Pocket PC). The problem we are
considering deals with a single MN, but this approach can be easily extended to
a generic case with more than one MN, as described in the Introduction.

2.1 RSSI-map stochastic modeling

The WSN is formed by L ANs and is located in a region X C RZ?. Every
beacon’s position is fixed and known, while at a discrete time ¢ € N the MN

position x; = [r1, .’L‘Q,t]l has to be estimated. In order to minimize the multi-
path and shadowing effects, we use a log-normal stochastic model for the RSSI

Yi(xt) = Yy(x¢) + vp,¢ [dBm], (1)

where 7;(x;) is deterministic and concerns about the attenuation due to static
obstacles and signal propagation, and v;; ~ N (07 Jf(xt)) indicates the random

effects of people and small objects moving through the environment; both g, (x:)
and o;(x;) are based on empirical data. This model has been validated by ray
tracing techniques [8]. Since the MN cannot measure RSSI values out of a specific
range [T, Ty], weak signals are often ignored by the MN; moreover, due to low
fidelity of radio channel and hardware bugs, RSSI measurements are sometimes
completely wrong: that’s why (1) is too scanty. The following random variable
is therefore introduced to account for the packet loss:

1 i y(xe) € [T, To)
Y(xt) = {0 if yi(xt) ¢ [T, Ts].

We assume that the arrival process is stationary and i.i.d., and it holds:

Plyi(xi) = 1] = M), Ai(xe) € [0,1] V¢, 1



hence 7;(x;) is a Bernoullian process with success probability A;(x;). A measure-
ment is then given by y, € RE, y; = [ ... gjL}t]/7 where

o= {30 K0 =1 g

and ID is an appropriate flag corresponding to the packet loss.
The MN dynamics is assumed to be a 2-D random walk

Xt = X¢—1 + Vi, ®3)

where v; denotes the driving process. The probabilistic model of the state evolu-
tion accords to p(x¢|x¢—1) = fv(x¢ —x¢—1), where f, is the v probability density
function (pdf).

2.2 Bayesian filtering
From (2), the probability of g, conditioned to state x; is given by

=T e ))?
i) = { M) Gy e T i) =1
1— N(xy) if v(x¢) = 0;

since we suppose the L measurements to be independent each other, the following
formula holds for the whole observation y;:

1 =T ()2

p(yelxe) oc [T (1= Ni(xe)) N(Xg) e PO (4)
L ey

where R represents the subset of received ANs and @ the subset of missed ANs
at time t. Applymg the MLE criterion, an estimate for the state x; could be
found as X; = argmaxy,c x p(yt|xt) but according to the Bayesian approach
the whole measurement series yi.; is employed to estimate the state position.
The a posteriori pdf therefore depends on a memory-less term and on a memory-
bearing one, following

p(th’l:t) OCp(Yt|Xt)p(xt‘y1:t71)~ (5)

The Chapman-Kolmogorov equation yields for the second term (a priori pdf)

p(%elya1) = / el )pKely 11 )ity £ 1 (6)
X

where p(x;) contains the available information about the MN initial position?.
The position estimate can then be obtained with the MMSE criterion: X; =

Ex|y1:]-

2 If the initial position is known precisely, an impulsive pdf can be used; otherwise an
uniform pdf is chosen.



Since resolving (6) analitically is impracticable, we use a particle filter [16] to
get an approximation of the a priori pdf; this is obtained as an equally weighted

sum of S Dirac pulses centered on a set of particles {xgs)}le:

5
p(xe|y1:6-1) Z (x¢ —Xt ); (7)

note that particle filtering allows an irregular sampling of the pdf, unlike the
detecting-tracking algorithms (D/TA). So the a posteriori pdf arises from (5)
and (7):

p(Xely1:e) Zwts (% —x§ ))7

where wt( ) p(yt|x )) and Z 1 (weight normalization). So, the

position estimate is given by the MMSE crlterlon

~ s) (s)
Xt = Elx¢|y1:4] = wt X, .

The particle filter adopted is a Sequential Importance Resampling Particle
Filter (SIR), and its implementation follows the pseudo-code indicated in [16].
At every discrete time ¢ the algorithm computes recursively a set of S parti-

cles and their weights w( ), 1 =1,...,5, so approximating the a posteriori pdf

p(x¢|y1:¢). To avoid degeneracy problems, i.e. a few particles with heavy weights,
a resampling step is done at every iteration: more equally weighted particles are
placed instead of a “heavy” single particle, so that every state probability does
not change?.

2.3 A priori maps

In (4) the quantities F;(x¢), oi(x¢), Ai(x¢) must be known for every pos-
sible state position x € X and for every AN [ = 1,..., L. Their values are
obtained through an offline gathering: the MN is placed in N different positions
{z("}N_| C X listening to the broadcasting ANs, and records the number and
the RSSI of packets received from every AN in a time slot. Then the sample
average provides 7;(z(™), the sample standard deviation gives 5;(z(™)) and the
success probability is deduced from

7)\MAX>] )
7(n)

where \,,;n and A\yrax stand for the minimum and the maximum allowed va-
lues for the success probability respectively and must be appropriately chosen
depending on the time slot of the gathering.

# received packets
# total packets

Xl(z(”)) = max [)\mm, min <

3 Other resampling approaches, such as non-systematic resampling (whenever a sig-
nificant degeneracy is observed) or log-resampling [17] have been tried out, but with
no satisfactory results.



2.4 Interpolation

A high precision for the estimate needs to define a fine grid of possible a
priori particle positions x("™; but in this way the whole offline gathering would
become too expensive. So we build a wider and comprehensive mesh for the
experimental data surveying and then we interpolate the data for fitting on the
finer grid (neither the finer grid must be necessarily regular):

.....

ke€lo,...,K]

For the sake of simplicity, let us now just consider the average RSSI 3;. From the
data gathering we get a set of values {7;(z(™)}_, that can be interpreted as an
irregular sampling of a sample sequence of a bidimensional stochastic stationary
zero-mean signal:

N
7(x"™) =" an(x")gi(z™) = (Yi,a(x"™)), 1=1,...,L, m=1,..., M,

n=1

where Y is the measurements vector from the [-th AN. We impose that the
stochastic signal has an isotropic correlation function 7(||x® — xW||) = r(d) =
e?/do where dy must be suitably chosen. The coefficients a,(x("™) are calcu-
lated applying the orthogonality principle that gives Wiener-Hopf simultaneous
equations [18]. Solving the system of equations we obtain

y(x™) =Y R 'r(x™)

r(lx =20 ]’
where (R);; = r(||z? — z0)|)) and r(x(™)) = : . The same

r([x(m — 2]
method is applied for o; and for A;.

Fig. 1 shows the interpolated map of the RSSI mean and variance, and the
packet transmission success probability corresponding to a single AN. Note how
it clearly shows that the node is located at the conjunction of two long corridors
forming a T, very similar to what a ray-tracing analytical tool would provide.

2.5 Simulations

We validate ARIANNA using a MATLAB simulation. The simulations are
based on a RSSI-map stochastic model obtained from measurements performed
in the indoor environment described in Section 4. The whole area has been
covered using 12 motes, whose arrangement has been designed using a ray tracing
software [19]. The entire gathering counts N = 115 measurements, each of them
during 100 s for 100 broadcasted packets amount. For the interpolation, we have
chosen a regular grid with A = 0.5 m, dyp = 20 m, Apin = 0.03, Aprax = 0.97
and we have assumed that missing the {—th AN (for all measurement long) in a
position z(*) corresponds to 7,(z") = —70 dBm, ¢7(z()) = 25 dBm?: the first
value is justified by a cutted off radio propagation model, while the second one
is inferred by the gathering data.
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Fig. 1: Interpolated data from AN #2. (a) mean RSSI [dBm)]. (b) Variance RSSI [dBm?].
(c) Packet success probability.

A MN trajectory is created using (3), t = 1,...,70, with various driving
processes v, [10]: a classic 2D Gaussian pdf, a Gaussian ring and a Beta ring. All
the driving process are expressed in polar coordinates. The measurements 7, (x¢)
are created using (1) where v;; ~ N(0,07(x¢)). The particle filter used S = 500
particles. Figure 2.5 shows the simulated tracking performance of ARTANNA
on the model of the real environment (left panel) and the corresponding error
estimate as a function of time (right panel).
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Fig.2: ARIANNA simulation performance in the whole environment. (a) Comparison
between real and estimated trajectories. (b) Estimation error (Euclidean distance) and
his mean. Black triangles represent ANs location.



3 TESEO Tracking System
3.1 Radio Channel Models for RSS

The adopted statistical model that relates distance from mobile-node with
received signal strength is

P(d) = P(do) — 10n, log (j()) + Xo (8)

where, P(d) is the received power (RSS) in [dBm], P(dp) is the received power
at a fixed distance from the emitter dy, expressed in [dBm], n, is the path-loss
exponent, typically n, > 2 because channel dissipates energy, x, is a gaussian
aleatory variable with zero mean and variance o [dBm?| used to model, and d
is the distance from the emitter (in [m]). Therefore P(d) is a gaussian variable

with mean P(d) = P(dp) — 10n,, log (%) and variance o2 (being P(d) expressed

as a linear affine transformation of a gaussian r.v.). An alternative formulation
of (8) is

P(d) = Prx + A — 10n,log(d) + xo

where Prx is the well-know transmission power and A is the attenuation factor.

3.2 Architecture and Algorithms

The TESEO architecture is specifically designed to support both centralized
and decentralized localization algorithms to cope with possible system failures.
In particular, the localization is performed using two distinct algorithms: the
main algorithm, based on an extension of the maximum likelihood (ML) estima-
tor proposed in [12] for autolocalization, uses when the pocket-PC/central-node
serial link works, while and the recovery algorithm, used in case the serial link
was interrupted, adopts the Least Square Estimator [13]. We also tested the
Maximum Ratio Combining Approach in simulations, but since it showed poor
performance as compared to the other two methods, it has not been implemented
in the real-time experimental system.

The main algorithm follows these steps

1. initialization: all the nodes wake-up, set communication channel and trans-
mission power, start sending radio signals;
2. broadcast: the mobile-node broadcasts to every fixed-node N, packets every

Throad [ms], while fixed-nodes wait for packets;

3. listen: starting from the first packet received, every fixed node j =2,..., N
stores the received packets if the received signal power P;; and LQI are
greater than the pre-calculated thresholds Py, LQIip;

4. cell making: every fixed-node j = 2,..., N computes the average P, ; of the
powers P; ; on the really arrived packets (some may be lost) given by (11),

and then calculates the M.L. distance estimate from the mobile-node d; ;

given by (12), based on Pl,j; so, a cell of N; nodes near the mobile-one is
formed, defined by the set

A, = {j > 1| Pi; > Py,dy; < Range and LQI, ; > LQIth},

where Range indicates the maximum distance from the mobile-node;



5. sending distance estimates: nodes included in A, send the mobile-node pack-
ets containing their ID j and distance estimate d; j;

6. position estimate: the mobile-node collects all the estimates czl’j and sends
them through serial link (USB) to the pocket-PC, which calculates the M.L.
position estimate %1 (kT,) given by (14); the mobile-node iterates from point
2.

If serial link is interrupted for some reason, a recovery algorithm is provided:
it is analogous to the principal one but the target position estimate is calculated
by the target node since we used an estimator which is simpler than the M.L.
from a computational point of view. Position estimate z; (kT,) is calculated using
the least squares (L.Q.) method given by (16) if |A5| > 2, otherwise by maximum
ratio combining (M.R.C.) method given by (17); finally z,(kT.) is sent to the
supervising system.

The Cell Making step of the main algorithm is a fundamental feature of the
algorithm. In fact, the exclusion of nodes which do not belong to the set Ag has
two benefits: reduces number of nodes used to estimate position, thus reducing
also computational burden, and more importantly, it discards wrong distance
estimates. In fact, distance estimates are reliable only when the RSS-channel
model given by Equation 8 is valid, and we have empirically observed that the
linear power model considered is a good approximation for radio channel only
if all constraints defining the set A, are satisfied. In particular, we noticed that
also the use of LQI, and not only RSSI signal P, ;, helped reducing estimation
errors.

In the next sections, all three location estimators mentioned above are illus-
trated.

M.L. distance estimator. The power (in [dBm]) transmitted by the j-th
sensor and received by the mobile-sensor, P, ;, has gaussian probability density
function (pdf)

_ 1 1 (p—P(d;)\"
f<p|x1,y1,z1>—mexp{—2 (U) } (©)

where dy; = 21 — ;]| = \/(x1 — x)? + (y1 — ¥9)* + (m1 — )%,
The M.L. distance estimator based on Equation (9) is given by [12]

P(dg)—Pq j

dALj =dy-10 (10)

which can be considerably improved using by substituting P; ; in the previous

d;(’)" ) , thus obtaining the

equation with its mean Pj; = P(dy) — 10n, log(
(pseudo-)M.L. estimator

Jl,j = dg . ].OIOg(dl’j/dO) = le'



The expected value ]517]- can be approximated by the sample mean using the

ergodic theorem?
1 Npck
Py j(Nper) N > Prj(i) — Prj for Nyer — o0 (11)
Per =1

where Np¢ is the number of measurements used to calculate the sample mean
andi =1,..., Ny is the temporal index for power sampling: so, the (pseudo-)M.L.

estimator is }
P(do)—P1,j (Npck)

Ayt Edy o107 o (12)

M.L. position estimator. Let p € R/4:! be the vector obtained by arrang-
ing the power values received by the cell-nodes in columns (| A;| is the cardinality
of set Ay); assuming the communication channels as indipendent, p joint prob-
ability density function is

1|lp—E[p]|?

B 1
f(p|X17Y17Z1)*meXP 3 e

Substituting equation (8) into (13), calculating its negative logarithm and then
its minimum, we have that M.L. position estimator is given by:

T 9 7Z x! 7Z . i
(#1,91,21) (x1,y1 l)JEAs 1,

A 2
dz.
21 = (21,791,%) 2 arg max In f(p|x1,y1,21) =arg min Z (ln dz,J) :
the minimum is numerically calculated by conjugate gradient algorithm [20].
The estimator actually implemented in the algorithm makes use of the M.L.
distance estimator given by (12), which utilizes power mean; so, M.L. position
estimator becomes

N
ds .
z1 = (¥1,h1, %) = arg  min E <ln d;]> . (14)

T 9 7z . y
(1,51 1)J€A5 1,4

L.S. position estimator [13]. In this case, to obtain position estimate z; (t)
we solve the overdetermined system

|z () — 2, [|* = d¥

11
: (15)
2 _ 2
||Z1(t) - ZiM || - dl,i]u
where indexes i1, ...,i5; indicate the anchor-nodes included in Ag which con-

tribute to position estimate. System (15) can be reduced to a linear system,

4 During a broadcast time lag Thr0ad, the real distance di,; is approximately costant
and the RSS measurements can be considered as random variables composing a
random i.i.d. process Py ;(iT¢), @ € Z, which respects the conditions for applying the
ergodic theorem.



having as unknown quantities x1(¢), y1(t), z1(t), by subtracting from the first
equation all the other ones, obtaining

Tiy —Tig Yiy —Yia Rip —Rig (t) 1 d’?g 7d121 737122 +$121 7yi22 +yi21 *21'22 +Zi21
t) d

v (
R e e TR it LM U R SV R S
2 Zl(t) M
this system can be solved by L.S. method, i.e.
71(t) = arg m(ln) |[Azy1(t) — b|> = (ATA) ATD (16)
Z1 t

where M.L. distance estimate d; ;, (given by (12)) is used instead of real distance
dy -

M.R.C. position estimator [14]. Position estimate is obtained by a con-
vex combination of fixed-nodes coordinates belonging to the cell, i.e.

)= wjz (17)
€A,

where w; are positive scalars satisfying the condition ) jea, wj = 1. The vari-

ables w; are chosen in order to give more weight to anchor-nodes coordinates
closer to mobile node; possible choices are

w; = —UJ%’J (18)
© Siea, (V)
w; = veld, (19)

Son (1E[E])
where statistical pOWQI‘b are calculated from samples using ergodic theorem, i.e.
E [&%J} ok ”“f d? j(k), where each k-th distance estimate (10) is calcu-

lated using only one packet. Weights (19) make use of the fact that estimates
statistical power increases with distance: as a matter of fact, it can be shown

that E [d2 | = e®d3

Npck

3.3 Simulations

We implemented a MATLAB simulator to test the previous localization al-
gorithms. We choose the following parameters based on experimental measure-
ments and simulations results: cell range = 6 [m], Pyp, = —80 [dBm] (RSS power
threshold), Nyeannaz = 40 (maximum number of packets for RSS mean calcu-
lation), n, = 2.12, A = —63.67, dy = 1 [m] and o = 7.57 [dBm|. We tested the

algorithms within an area of 11.5 x 12 [m?], with 10 fixed nodes distant 4 [m]
from each other on a regular triangular grid: the comparison between the three



methods is in Figure 3a, the norm-error ||z;]| trend is reported in Figure 3b.
M.L. estimator is clearly the best one, while M.R.C. is the worst one, and this
motivates the choice of L.S. estimator as recovery algorithm. We used as weights
for M.R.C. estimator the ones shown in (18), because there are no significant
improvements brought by using (19). Finally, it’s interesting to see the effect of
an ill-conditioned matrix in L.S. method: consider figure 3a, it is easy to see that
the first L.S. estimates have y coordinate set to 0. This is due to the fact that
the cell for the first trajectory steps is formed by the two nodes positioned on
the bottom left of the map which have the same y coordinate: this leads to a
null column in matrix A and so to an undetermined solution, which is set to 0
by the algorithm. In this case, M.R.C. estimator is a better solution, as it sets
the estimated y coordinate the same as the nodes one (clearly visible in Figure
3a), leading, generally, to a smaller estimate error.
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Fig.3: Comparison between methods. (a) True and estimated trajectories. (b) Estima-
tion error trends.

4 Implementation and experimental results

In our experiment the used sensors nodes Tmote Sky produced by Moteiv
Corporation [21]. The area of interest spanned 1150 m?® within an indoor en-
vironment which included reinforced concrete walls and pillars, about twenty
uninterrupted power supplies and high-voltage electric cables, and several metal
storage cages.

In both architectures, the wireless sensor nodes have been programmed with
a high-level language like C/C++, called NESC, and their algorithms are man-
aged by the open-source operating system TINYOS 2.0.1, designed for WSNs.
The ARIANNA tracking system has been implemented using Java and C cod-
ing for data acquisition and MATLAB for the localization algorithms and visual
rendering. In particular, the MN was connected to a laptop and exchanges data
with it on a serial link. ARIANNA also sent the current position estimate over



the WSN, so allowing remote monitoring of the MN. Differently, TESEO has
been implemented using only C/C++ and Java for data acquisition, localization
algorithms and visualization, thus providing faster localization estimates. The
mobile node was connected to a notebook and communicated with it through
a USB (serial) port. The user side on the laptop is a GUI programmed with
JAVA (J2SE 1.5.0.06). The user-friendly JAVA frame has been realized to pro-
vide a useful and smart interface, both for the monitoring and the configura-
tion of the system. All the work has been performed on UBUNTU FEISTY.
The entire track used to test the two algorithms was about 195m long and has

Fig. 4: Experimental tracking results of real-time implementation of ARIANNA local-
ization system (left) and TESEO localization system (right) in indoor environment.
True trajectory is shown in think solid line and reconstructed trajectory in thin line.

been covered in about 140s. Figure 4 shows experimental results obtained on
a smaller portion of the whole trajectory for better visualization. Walls, pillars
and doors are clearly recognizable in the map, but other large and small objects
were present. The actual environment where experiments were performed can
be better viewed in the videos corresponding to real-time tracking and visual-
ization of ARIANNA http://www.youtube.com/v/uXGqQui8yls and TESEO
http://www.youtube.com/v/3j_RscaluxU, respectively.

5 Conclusions and future work

In this work we proposed two different tracking system architectures based on
two different approaches to RF localization and tracking in WSNs: one, named
ARIANNA | is based on a stochastic RSSI-map model built from experimental
measurements, while the other, named TESEO , is based on the RSSI-channel
model and three different geometric localization algorithms. These two architec-
tures try to implement the best algorithms proposed in the literature so far, and
they also included some novel features. Each architecture, or more generally each



localization approach they represent, has pros and cons as illustrated in Table
5. In fact, TESEO provides about three times smaller estimation errors than
ARIANNA . Moreover, TESEQO requires lower computational resources since
algorithms are simpler, and it does not require time-consuming in-locus mea-
surements gathering at the time of installation. On the other hand, ARIANNA
, when compared to TESEO , requires only a sixth of the number of nodes to
cover the whole area. Clearly this comparison shows that it is hard to claim that
one architecture is better then the other.

installation | computational | mean — max .
. - node density
complexity | complexity error
TESEO Low Low-Medium | 0.7m-1.5m | 16m?/node
ARIANNA High High 2m-4m | 90m? /node

Besides the features mentioned in the table, many other factor should be
compared such as robustness to anchor node failures, robustness to environmen-
tal changes such as new disposition of the furniture of the presence of many
people, and scalability of the system when multiple moving nodes are present.
These are some of the aspects we are currently exploring. Other important as-
pects are the implementation of a whole navigation and coordination system
as mentioned in the introduction, and a more detailed comparison between the
two different architectures from a computational complexity point of view, by
implementing them on the same HW platform.
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