Learning network models from data: Practical methods and fundamental limits

Martin Wainwright

UC Berkeley Departments of Statistics, and EECS

Based on joint works with:

John Lafferty (CMU) Garvesh Raskutti (UC Berkeley) Pradeep Ravikumar (UT Austin) Prasad Santhanam (Univ. Hawaii) Bin Yu (UC Berkeley)

Introduction

- Markov random fields (undirected graphical models): central to many applications in science and engineering:
 - ▶ communication, coding, and information theory
 - control theory, networking
 - machine learning and statistics
 - statistical signal processing
 - ▶ combinatorial optimization, theoretical computer science
 - computational biology

Introduction

- Markov random fields (undirected graphical models): central to many applications in science and engineering:
 - ▶ communication, coding, and information theory
 - control theory, networking
 - machine learning and statistics
 - statistical signal processing
 - ▶ combinatorial optimization, theoretical computer science
 - computational biology
- some core computational problems
 - counting/integrating: computing marginal distributions and data likelihoods
 - optimization: computing most probable configurations (or top M-configurations)
 - ▶ model selection: fitting and selecting models on the basis of data

What are graphical models?

• Markov random field: random vector (X_1, \ldots, X_p) with distribution factoring according to a graph G = (V, E):

• factorization based on clique structure of graph:

$$\mathbb{P}(x_1, \dots, x_p; \theta) = \frac{1}{Z(\theta)} \exp\left\{\sum_{C \in \mathcal{C}} \theta_C(x_C)\right\}$$

Gaussian graphical models

Zero pattern of inverse covariance

• density of multivariate Gaussian $X \sim N(0, \Theta^{-1})$:

$$\mathbb{P}(x_1, \dots, x_p; \Theta) = \frac{\det(\Theta)}{(2\pi)^{p/2}} \exp\left(-\frac{1}{2}x^T \Theta x\right).$$

• graphical model structured specified by zero-pattern of *inverse covariance* matrix Θ

Gaussian graphical models

• density of multivariate Gaussian $X \sim N(0, \Theta^{-1})$:

$$\mathbb{P}(x_1,\ldots,x_p;\Theta) = \frac{\det(\Theta)}{(2\pi)^{p/2}} \exp\left(-\frac{1}{2}x^T \Theta x\right).$$

• graphical model structured specified by zero-pattern of inverse covariance matrix Θ

Gaussian graphical models

• density of multivariate Gaussian $X \sim N(0, \Theta^{-1})$:

$$\mathbb{P}(x_1,\ldots,x_p;\Theta) = \frac{\det(\Theta)}{(2\pi)^{p/2}} \exp\left(-\frac{1}{2}x^T\Theta x\right).$$

• graphical model structured specified by zero-pattern of *inverse covariance* matrix Θ

- random variable X_s at node s takes values in discrete space (e.g., $\mathcal{X} = \{-1, +1\})$
- hierarchies of probability distributions:

- \bullet random variable X_s at node s takes values in discrete space (e.g., $\mathcal{X} = \{-1, +1\})$
- hierarchies of probability distributions:
 - Independence model:

$$\mathbb{P}(x) = \frac{1}{Z(\theta)} \exp\big\{\sum_{s \in V} \theta_s x_s\big\}.$$

- random variable X_s at node s takes values in discrete space (e.g., $\mathcal{X} = \{-1, +1\})$
- hierarchies of probability distributions:
 - Independence model:

$$\mathbb{P}(x) = \frac{1}{Z(\theta)} \exp\big\{\sum_{s \in V} \theta_s x_s\big\}.$$

▶ Pairwise MRF (Ising model, 1923)

$$\mathbb{P}(x) = \frac{1}{Z(\theta)} \exp\big\{\sum_{s \in V} \theta_s x_s + \sum_{(s,t) \in E} \theta_{st} x_s x_t\big\}.$$

- random variable X_s at node s takes values in discrete space (e.g., $\mathcal{X} = \{-1, +1\})$
- hierarchies of probability distributions:
 - Independence model:

$$\mathbb{P}(x) = \frac{1}{Z(\theta)} \exp\big\{\sum_{s \in V} \theta_s x_s\big\}.$$

▶ Pairwise MRF (Ising model, 1923)

$$\mathbb{P}(x) = \frac{1}{Z(\theta)} \exp\big\{\sum_{s \in V} \theta_s x_s + \sum_{(s,t) \in E} \theta_{st} x_s x_t\big\}.$$

▶ Triplet MRF

$$\mathbb{P}(x) = \frac{1}{Z(\theta)} \exp\big\{\sum_{s \in V} \theta_s x_s + \sum_{(s,t) \in E_2} \theta_{st} x_s x_t + \sum_{(s,t,u) \in E_3} \theta_{stu} x_s x_t x_u\big\}.$$

• (hyper)graph structure enforces that $\theta_{uv} = 0$ for all $(uv) \notin E$

Samples from binary-valued pairwise MRFs

Samples from binary-valued pairwise MRFs

Samples from binary-valued pairwise MRFs

Strong coupling $\theta_{st}\approx 0.8$

• let G = (V, E) be an undirected graph on p = |V| vertices

• let G = (V, E) be an undirected graph on p = |V| vertices

• pairwise Markov random field: family of prob. distributions

$$\mathbb{P}(x_1, \dots, x_p; \theta) = \frac{1}{Z(\theta)} \exp\left\{\sum_{(s,t)\in E} \theta_{st} x_s x_t\right\}$$

• let G = (V, E) be an undirected graph on p = |V| vertices

• pairwise Markov random field: family of prob. distributions

$$\mathbb{P}(x_1, \dots, x_p; \theta) = \frac{1}{Z(\theta)} \exp\left\{\sum_{(s,t)\in E} \theta_{st} x_s x_t\right\}$$

• Problem of graph selection: given n independent and identically distributed (i.i.d.) samples of $X = (X_1, \ldots, X_p)$, identify the underlying graph structure

• let G = (V, E) be an undirected graph on p = |V| vertices

• pairwise Markov random field: family of prob. distributions

$$\mathbb{P}(x_1, \dots, x_p; \theta) = \frac{1}{Z(\theta)} \exp\left\{\sum_{(s,t)\in E} \theta_{st} x_s x_t\right\}$$

- Problem of graph selection: given n independent and identically distributed (i.i.d.) samples of $X = (X_1, \ldots, X_p)$, identify the underlying graph structure
- complexity constraint: restrict to subset $\mathcal{G}_{d,p}$ of graphs with maximum degree d

Martin Wainwright (UC Berkeley)

Illustration: Voting behavior of US senators

Graphical model fit to voting records of US senators (Bannerjee, El Ghaoui, & d'Aspremont, 2008)

Outline of remainder of talk

- **1** Background and framework
 - (a) Problem set-up
 - (b) Some challenges in distinguishing graphs
 - (c) Analysis in a high-dimensional framework
- Practical schemes
 - (a) Gaussian graphical models via log-determinant
 - (b) Discrete graphical models via logistic regression
 - (c) Sufficient conditions for high-dimensional consistency

3 Fundamental limits

- (a) An unorthodox channel coding problem
- (b) Necessary conditions
- (c) Sufficient conditions (optimal algorithms)
- 4 Various open questions......

Guilt by association

• Andrew (a) and Bob (b) are brothers

Guilt by association

- And rew (a) and Bob (b) are brothers
- Bob (b) is part of a criminal network

Guilt by association

- And rew (a) and Bob (b) are brothers
- Bob (b) is part of a criminal network
- Is Andrew also a criminal?

Some challenges in distinguishing graphs

• clearly, a lower bound on the minimum edge weight is required:

 $\min_{(s,t)\in E} |\theta^*_{st}| \geq \theta_{\min},$

although $\theta_{\min}(p, d) = o(1)$ is allowed.

• in contrast to other testing/detection problems, large $|\theta_{st}|$ also problematic

Some challenges in distinguishing graphs

• clearly, a lower bound on the minimum edge weight is required:

$$\min_{(s,t)\in E} |\theta_{st}^*| \ge \theta_{\min},$$

although $\theta_{\min}(p, d) = o(1)$ is allowed.

• in contrast to other testing/detection problems, large $|\theta_{st}|$ also problematic

Toy example: Graphs from $\mathcal{G}_{3,2}$ (i.e., p = 3; d = 2), and $x \in \{-1, +1\}^3$

As θ increases, all three Markov random fields become arbitrarily close to:

$$\mathbb{P}(x_1, x_2, x_3) = \begin{cases} 1/2 & \text{if } x \in \{(-1)^3, (+1)^3\} \\ 0 & \text{otherwise.} \end{cases}$$

High-dimensional analysis

- classical analysis: dimension p fixed, sample size $n \to +\infty$
- high-dimensional analysis: allow both dimension p, sample size n, and maximum degree d to increase at arbitrary rates

- take n i.i.d. samples from MRF defined by $G_{p,d}$
- study probability of success as a function of three parameters:

 $Success(n, p, d) = \mathbb{P}[Method recovers graph G_{p,d} from n samples]$

• theory is non-asymptotic: explicit probabilities for finite (n, p, d)

Some issues in graph selection

Consider some fixed loss function, and a fixed level δ of error.

Limitations of tractable algorithms:

Given particular (polynomial-time) algorithms

- for what sample sizes n do they succeed/fail to achieve error δ ?
- given a collection of methods, when does more computation reduce minimum # samples needed?

Information-theoretic limitations:

Data collection as communication from nature \longrightarrow statistician:

- what are fundamental limitations of problem (Shannon capacity)?
- when are known (polynomial-time) methods optimal?
- when are there gaps between poly.-time methods and optimal methods?

$\S2$. Practical methods: Gaussian graphical selection

• recall form of Gaussian density in terms of *inverse covariance* Θ :

$$\mathbb{P}(x_1, \dots, x_p; \Theta) = \frac{\det(\Theta)}{(2\pi)^{p/2}} \exp\left(-\frac{1}{2}x^T \Theta x\right).$$

$\S2$. Practical methods: Gaussian graphical selection

• recall form of Gaussian density in terms of *inverse covariance* Θ :

$$\mathbb{P}(x_1, \dots, x_p; \Theta) = \frac{\det(\Theta)}{(2\pi)^{p/2}} \exp\left(-\frac{1}{2}x^T \Theta x\right).$$

 $\ell_1\text{-}\text{regularized}$ maximum likelihood:

$$\widehat{\Theta} = \arg\min_{\Theta \succ 0} \left\{ \underbrace{-\log \det \Theta + \langle\!\langle \widehat{\Sigma}^n, \Theta \rangle\!\rangle}_{\text{neg. log likelihood}} + \underbrace{\rho_n \sum_{i \neq j} |\Theta_{ij}| \right\}}_{\text{regularizer}}.$$

§2. Practical methods: Gaussian graphical selection

• recall form of Gaussian density in terms of *inverse covariance* Θ :

$$\mathbb{P}(x_1, \dots, x_p; \Theta) = \frac{\det(\Theta)}{(2\pi)^{p/2}} \exp\left(-\frac{1}{2}x^T \Theta x\right).$$

 $\ell_1\text{-}\text{regularized}$ maximum likelihood:

$$\widehat{\Theta} = \arg\min_{\Theta \succ 0} \left\{ \underbrace{-\log \det \Theta + \langle\!\langle \widehat{\Sigma}^n, \Theta \rangle\!\rangle}_{\text{neg. log likelihood}} + \underbrace{\rho_n \sum_{i \neq j} |\Theta_{ij}| \right\}}_{\text{regularizer}}.$$

• plug-in approach: use samples $X^{(k)}, k = 1, ..., n$ to estimate covariance matrix $\Sigma = \Theta^{-1}$ via the sample covariance

$$\widehat{\Sigma}^n := \frac{1}{n} \sum_{k=1}^n X^{(k)} (X^{(k)})^T.$$

• regularization parameter $\rho_n > 0$ is a user-specified quantity

(e.g., Yuan & Lin, 2006; d'Asprémont et al., 2007; Friedman, 2008; Rothman et al., 2008)

Empirical behavior: Unrescaled plots

Plots of success probability versus raw sample size n.

Empirical behavior: Appropriately rescaled

Plots of success probability versus control parameter $\theta_{LR}(n, p, d)$.

- graph sequences $G_{p,d} = (V, E)$ with p vertices, and maximum degree d.
- suitable regularity conditions on Hessian of log-determinant $\Gamma^* := (\Theta^*)^{-1} \otimes (\Theta^*)^{-1}$

- graph sequences $G_{p,d} = (V, E)$ with p vertices, and maximum degree d.
- suitable regularity conditions on Hessian of log-determinant $\Gamma^* := (\Theta^*)^{-1} \otimes (\Theta^*)^{-1}$

Theorem

For multivariate Gaussian and sample size

$$n > c_1 \tau d^2 \log p$$

and regularization parameter $\rho_n \ge c_2 \tau \sqrt{\frac{\log p}{n}}$, then with probability greater than $1 - 2 \exp(-c_3(\tau - 2) \log p)$:

- graph sequences $G_{p,d} = (V, E)$ with p vertices, and maximum degree d.
- suitable regularity conditions on Hessian of log-determinant $\Gamma^* := (\Theta^*)^{-1} \otimes (\Theta^*)^{-1}$

Theorem

For multivariate Gaussian and sample size

$$n > c_1 \tau d^2 \log p$$

and regularization parameter $\rho_n \ge c_2 \tau \sqrt{\frac{\log p}{n}}$, then with probability greater than $1 - 2 \exp(-c_3(\tau - 2) \log p)$:

(a) No false inclusions: The regularized log-determinant estimate $\widehat{\Theta}$ returns an edge set $\widehat{E} \subseteq E^*$.

- graph sequences $G_{p,d} = (V, E)$ with p vertices, and maximum degree d.
- suitable regularity conditions on Hessian of log-determinant $\Gamma^* := (\Theta^*)^{-1} \otimes (\Theta^*)^{-1}$

Theorem

For multivariate Gaussian and sample size

$$n > c_1 \tau d^2 \log p$$

and regularization parameter $\rho_n \ge c_2 \tau \sqrt{\frac{\log p}{n}}$, then with probability greater than $1 - 2 \exp(-c_3(\tau - 2) \log p)$:

(a) No false inclusions: The regularized log-determinant estimate $\widehat{\Theta}$ returns an edge set $\widehat{E} \subseteq E^*$.

(b) ℓ_{∞} -control: Estimate satisfies $\max_{i,j} |\widehat{\Theta}_{ij} - \Theta_{ij}^*| \le 2 c_4 \sqrt{\frac{\tau \log p}{n}}$.
- graph sequences $G_{p,d} = (V, E)$ with p vertices, and maximum degree d.
- suitable regularity conditions on Hessian of log-determinant $\Gamma^* := (\Theta^*)^{-1} \otimes (\Theta^*)^{-1}$

Theorem

For multivariate Gaussian and sample size

$$n > c_1 \tau d^2 \log p$$

and regularization parameter $\rho_n \ge c_2 \tau \sqrt{\frac{\log p}{n}}$, then with probability greater than $1 - 2 \exp(-c_3(\tau - 2) \log p)$:

(a) No false inclusions: The regularized log-determinant estimate $\widehat{\Theta}$ returns an edge set $\widehat{E} \subseteq E^*$.

(b) ℓ_{∞} -control: Estimate satisfies $\max_{i,j} |\widehat{\Theta}_{ij} - \Theta_{ij}^*| \le 2 c_4 \sqrt{\frac{\tau \log p}{n}}$.

(c) Model selection consistency: If $\theta_{\star} \ge c_4 \sqrt{\frac{\tau \log p}{n}}$, then $E = \widehat{E}$.

Corollary

Under same conditions as theorem, operator norm consistency at rates:

$$\max\left\{\|\widehat{\Theta} - \Theta^*\|_2, \|\widehat{\Sigma} - \Sigma^*\|_2\right\} = \mathcal{O}\left(\sqrt{\frac{d^2\log p}{n}}\right),$$

Corollary

Under same conditions as theorem, operator norm consistency at rates:

$$\max\left\{\|\widehat{\Theta} - \Theta^*\|_2, \|\widehat{\Sigma} - \Sigma^*\|_2\right\} = \mathcal{O}\left(\sqrt{\frac{d^2\log p}{n}}\right),$$

• sample covariance estimate is highly inconsistent in this regime:

$$\|\|\frac{1}{n}\sum_{i=1}^{n}X^{(i)}(X^{(i)})^{T}-\Sigma\|\|_{2} \ge c\sqrt{\frac{p}{n}} \to +\infty$$

(Marcenko & Pastur, 1967; Davidson & Szarek, 2001)

Corollary

Under same conditions as theorem, operator norm consistency at rates:

$$\max\left\{\|\widehat{\Theta} - \Theta^*\|_2, \|\widehat{\Sigma} - \Sigma^*\|_2\right\} = \mathcal{O}\left(\sqrt{\frac{d^2 \log p}{n}}\right),$$

• sample covariance estimate is highly inconsistent in this regime:

$$\|\|\frac{1}{n}\sum_{i=1}^{n}X^{(i)}(X^{(i)})^{T}-\Sigma\|\|_{2} \ge c\sqrt{\frac{p}{n}} \to +\infty$$

(Marcenko & Pastur, 1967; Davidson & Szarek, 2001)

• Rothman et al. (2008) showed

$$\max\left\{\|\widehat{\Theta} - \Theta^*\|_2, \|\widehat{\Sigma} - \Sigma^*\|_2\right\} = \mathcal{O}\left(\sqrt{\frac{s\log p}{n}}\right), \quad \text{where } s = \# \text{ edges},$$

which is substantially weaker for *d*-regular graphs with $s = \Theta(dp)$

• maximum likelihood for general graphical model in exponential family:

$$\widehat{\theta} = \arg \max_{\theta \in \mathbb{R}^p} \left\{ \sum_{(s,t) \in E} \theta_{st} \underbrace{\widehat{\mathbb{E}}[X_s X_t]}_{[X_s X_t]} - \log Z(\theta) \right\}$$

empirical moments

• maximum likelihood for general graphical model in exponential family:

$$\widehat{\theta} = \arg \max_{\theta \in \mathbb{R}^p} \left\{ \sum_{(s,t) \in E} \theta_{st} \underbrace{\widehat{\mathbb{E}}[X_s X_t]}_{\text{empirical moments}} - \log Z(\theta) \right\}$$

• exact likelihood involves log partition function

$$\log Z(\theta) = \begin{cases} \int_{\mathbb{R}^n} \exp(-\frac{1}{2}x^T \Theta x) dx & \text{for Gaussian RV} \\ \sum_{x \in -1, +1^p} \exp\left(\sum_{(s,t)} \theta_{st} x_s x_t\right) & \text{for binary RV} \end{cases}$$

• maximum likelihood for general graphical model in exponential family:

$$\widehat{\theta} = \arg \max_{\theta \in \mathbb{R}^{p}} \left\{ \sum_{(s,t) \in E} \theta_{st} \underbrace{\widehat{\mathbb{E}}[X_{s}X_{t}]}_{\text{empirical moments}} - \log Z(\theta) \right\}$$

• exact likelihood involves log partition function

$$\log Z(\theta) = \begin{cases} \int_{\mathbb{R}^n} \exp(-\frac{1}{2}x^T \Theta x) dx & \text{for Gaussian RV} \\ \sum_{x \in -1, +1^p} \exp\left(\sum_{(s,t)} \theta_{st} x_s x_t\right) & \text{for binary RV} \end{cases}$$

• key consequence: likelihood computation is

- ▶ straightfoward for Gaussian MRFs (log-determinant)
- ▶ intractable for Ising models (binary pairwise MRFs) (Welsh, 1993)

• maximum likelihood for general graphical model in exponential family:

$$\widehat{\theta} = \arg \max_{\theta \in \mathbb{R}^{p}} \left\{ \sum_{(s,t) \in E} \theta_{st} \underbrace{\widehat{\mathbb{E}}[X_{s}X_{t}]}_{\text{empirical moments}} - \log Z(\theta) \right\}$$

• exact likelihood involves log partition function

$$\log Z(\theta) = \begin{cases} \int_{\mathbb{R}^n} \exp(-\frac{1}{2}x^T \Theta x) dx & \text{for Gaussian RV} \\ \sum_{x \in -1, +1^p} \exp\left(\sum_{(s,t)} \theta_{st} x_s x_t\right) & \text{for binary RV} \end{cases}$$

• key consequence: likelihood computation is

- ▶ straightfoward for Gaussian MRFs (log-determinant)
- ▶ intractable for Ising models (binary pairwise MRFs) (Welsh, 1993)
- possible work-arounds:
 - ► MCMC methods
 - stochastic approximation methods
 - variational approximations (mean field, Bethe and belief propagation)

Markov property and neighborhood structure

• Markov properties encode neighborhood structure:

- basis of pseudolikelihood method
- used for Gaussian model selection

(Besag, 1974)

(Meinshausen & Buhlmann, 2006)

Graph selection via neighborhood regression

Observation: Recovering graph G equivalent to recovering neighborhood set N(s) for all $s \in V$.

Method: Given *n* i.i.d. samples $\{X^{(1)}, \ldots, X^{(n)}\}$, perform logistic regression of each node X_s on $X_{\backslash s} := \{X_s, t \neq s\}$ to estimate neighborhood structure $\hat{N}(s)$.

● For each node $s \in V$, perform ℓ_1 regularized logistic regression of X_s on the remaining variables $X_{\backslash s}$:

$$\widehat{\theta}[s] := \arg\min_{\theta \in \mathbb{R}^{p-1}} \left\{ \begin{array}{cc} \frac{1}{n} \sum_{i=1}^{n} \underbrace{f(\theta; X_{\backslash s}^{(i)})}_{\text{logistic likelihood}} & + \rho_{n} \underbrace{\|\theta\|_{1}}_{\text{regularization}} \right\}$$

2 Estimate the local neighborhood $\hat{N}(s)$ as the support (non-negative entries) of the regression vector $\hat{\theta}[s]$.

Combine the neighborhood estimates in a consistent manner (AND, or OR rule).

Empirical behavior: Unrescaled plots

Martin Wainwright (UC Berkeley)

High-dimensional graph selection

Empirical behavior: Appropriately rescaled

- graph sequences $G_{p,d} = (V, E)$ with p vertices, and maximum degree d.
- edge weights $|\theta_{st}| \ge \theta_{\min}$ for all $(s,t) \in E$
- $\bullet\,$ draw n i.i.d, samples, and analyze prob. success indexed by (n,p,d)

Theorem

- graph sequences $G_{p,d} = (V, E)$ with p vertices, and maximum degree d.
- edge weights $|\theta_{st}| \ge \theta_{\min}$ for all $(s, t) \in E$
- $\bullet\,$ draw n i.i.d, samples, and analyze prob. success indexed by (n,p,d)

Theorem

Under incoherence conditions, for a rescaled sample size

$$heta_{LR}(n,p,d) \quad := \quad rac{n}{d^3\log p} \ > \ heta_{
m crit}$$

(RavWaiLaf06)

and regularization parameter $\rho_n \ge c_1 \tau \sqrt{\frac{\log p}{n}}$, then with probability greater than $1 - 2 \exp\left(-c_2(\tau - 2) \log p\right) \rightarrow 1$:

(a) Uniqueness: For each node s ∈ V, the l₁-regularized logistic convex program has a unique solution. (Non-trivial since p ≫ n ⇒ not strictly convex).

- graph sequences $G_{p,d} = (V, E)$ with p vertices, and maximum degree d.
- edge weights $|\theta_{st}| \ge \theta_{\min}$ for all $(s, t) \in E$
- $\bullet\,$ draw n i.i.d, samples, and analyze prob. success indexed by (n,p,d)

Theorem

Under incoherence conditions, for a rescaled sample size

$$heta_{LR}(n,p,d) \quad := \quad rac{n}{d^3\log p} \ > \ heta_{
m crit}$$

and regularization parameter $\rho_n \ge c_1 \tau \sqrt{\frac{\log p}{n}}$, then with probability greater than $1 - 2 \exp(-c_2(\tau - 2) \log p) \rightarrow 1$:

- (a) Uniqueness: For each node s ∈ V, the l₁-regularized logistic convex program has a unique solution. (Non-trivial since p ≫ n ⇒ not strictly convex).
- (b) Correct exclusion: The estimated sign neighborhood $\widehat{N}(s)$ correctly excludes all edges not in the true neighborhood.

(RavWaiLaf06)

- graph sequences $G_{p,d} = (V, E)$ with p vertices, and maximum degree d.
- edge weights $|\theta_{st}| \ge \theta_{\min}$ for all $(s, t) \in E$
- $\bullet\,$ draw n i.i.d, samples, and analyze prob. success indexed by (n,p,d)

Theorem

Under incoherence conditions, for a rescaled sample size

$$heta_{LR}(n,p,d) \quad := \quad rac{n}{d^3\log p} \ > \ heta_{
m crit}$$

(RavWaiLaf06)

and regularization parameter $\rho_n \ge c_1 \tau \sqrt{\frac{\log p}{n}}$, then with probability greater than $1 - 2 \exp(-c_2(\tau - 2) \log p) \rightarrow 1$:

- (a) Uniqueness: For each node s ∈ V, the l₁-regularized logistic convex program has a unique solution. (Non-trivial since p ≫ n ⇒ not strictly convex).
- (b) Correct exclusion: The estimated sign neighborhood $\widehat{N}(s)$ correctly excludes all edges not in the true neighborhood.
- (c) Correct inclusion: For $\theta_{\min} \geq c_3 \tau \sqrt{d} \rho_n$, the method selects the correct signed neighborhood.

- graph sequences $G_{p,d} = (V, E)$ with p vertices, and maximum degree d.
- edge weights $|\theta_{st}| \ge \theta_{\min}$ for all $(s, t) \in E$
- $\bullet\,$ draw n i.i.d, samples, and analyze prob. success indexed by (n,p,d)

Theorem

Under incoherence conditions, for a rescaled sample size

$$heta_{LR}(n,p,d) \quad := \quad rac{n}{d^3\log p} \ > \ heta_{
m crit}$$

and regularization parameter $\rho_n \ge c_1 \tau \sqrt{\frac{\log p}{n}}$, then with probability greater than $1 - 2 \exp\left(-c_2(\tau - 2) \log p\right) \rightarrow 1$:

- (a) Uniqueness: For each node s ∈ V, the l₁-regularized logistic convex program has a unique solution. (Non-trivial since p ≫ n ⇒ not strictly convex).
- (b) Correct exclusion: The estimated sign neighborhood $\widehat{N}(s)$ correctly excludes all edges not in the true neighborhood.
- (c) Correct inclusion: For $\theta_{\min} \geq c_3 \tau \sqrt{d} \rho_n$, the method selects the correct signed neighborhood.

Consequence: For $\theta_{\min} = \Omega(1/d)$, it suffices to have $n = \Omega(d^3 \log p)$.

(RavWaiLaf06)

Results for 8-grid graphs

Prob. of success $\mathbb{P}[\widehat{G} = G]$ versus rescaled sample size $\theta_{LR}(n, p, d^3) = \frac{n}{d^3 \log p}$

Assumptions

Define Fisher information matrix of logistic regression: $Q^* := \mathbb{E}_{\theta^*} [\nabla^2 f(\theta^*; X)].$

A1. Dependency condition: Bounded eigenspectra:

$$C_{min} \leq \lambda_{min}(Q_{SS}^*), \quad \text{and} \quad \lambda_{max}(Q_{SS}^*) \leq C_{max}.$$
$$\lambda_{max}(\mathbb{E}_{\theta^*}[XX^T]) \leq D_{\max}.$$

A2. Incoherence There exists an $\nu \in (0, 1]$ such that

$$\| Q_{S^c S}^* (Q_{SS}^*)^{-1} \|_{\infty,\infty} \le 1 - \nu,$$

where $\| A \|_{\infty,\infty} := \max_i \sum_j |A_{ij}|.$

• bounds on eigenvalues are fairly standard

• incoherence condition:

- ▶ partly necessary (prevention of degenerate models)
- ▶ partly an artifact of ℓ_1 -regularization
- incoherence condition is weaker than correlation decay

$\S3$. Info. theory: Graph selection as channel coding

• graphical model selection is an *unorthodox* channel coding problem:

$\S3$. Info. theory: Graph selection as channel coding

- graphical model selection is an *unorthodox* channel coding problem:
 - \blacktriangleright codewords/codebook: graph G in some graph class ${\mathcal G}$
 - <u>channel use</u>: draw sample $X^{(i)} = (X_1^{(i)}, \dots, X_p^{(i)})$ from Markov random field $\mathbb{P}_{\theta(G)}$
 - decoding problem: use *n* samples $\{X^{(1)}, \ldots, X^{(n)}\}$ to correctly distinguish the "codeword"

$\S3$. Info. theory: Graph selection as channel coding

- \bullet graphical model selection is an unorthodox channel coding problem:
 - \blacktriangleright codewords/codebook: graph G in some graph class ${\mathcal G}$
 - <u>channel use</u>: draw sample $X^{(i)} = (X_1^{(i)}, \dots, X_p^{(i)})$ from Markov random field $\mathbb{P}_{\theta(G)}$
 - decoding problem: use *n* samples $\{X^{(1)}, \ldots, X^{(n)}\}$ to correctly distinguish the "codeword"

Channel capacity for graph decoding determined by balance between

- log number of models
- relative distinguishability of different models

Necessary conditions for $\mathcal{G}_{d,p}$

- $G \in \mathcal{G}_{d,p}$: graphs with p nodes and max. degree d
- Ising models with:
 - Minimum edge weight: $|\theta_{st}^*| \ge \theta_{\min}$ for all edges
 - ► Maximum neighborhood weight: $\omega(\theta) := \max_{s \in V} \sum_{t \in N(s)} |\theta_{st}^*|$

Necessary conditions for $\mathcal{G}_{d,p}$

- $G \in \mathcal{G}_{d,p}$: graphs with p nodes and max. degree d
- Ising models with:
 - Minimum edge weight: $|\theta_{st}^*| \ge \theta_{\min}$ for all edges
 - Maximum neighborhood weight: $\omega(\theta) := \max_{s \in V} \sum_{t \in N(s)} |\theta_{st}^*|$

Necessary conditions for $\mathcal{G}_{d,p}$

- $G \in \mathcal{G}_{d,p}$: graphs with p nodes and max. degree d
- Ising models with:
 - Minimum edge weight: $|\theta_{st}^*| \ge \theta_{\min}$ for all edges
 - Maximum neighborhood weight: $\omega(\theta) := \max_{s \in V} \sum_{t \in N(s)} |\theta_{st}^*|$

TheoremIf the sample size n is upper bounded by(Santhanam & W, 2008) $n < \max\left\{\frac{d}{8}\log\frac{p}{8d}, \frac{\exp(\frac{\omega(\theta)}{4}) d\theta_{\min}\log(pd/8)}{128\exp(\frac{3\theta_{\min}}{2})}, \frac{\log p}{2\theta_{\min}\tanh(\theta_{\min})}\right\}$ then the probability of error of any algorithm over $\mathcal{G}_{d,p}$ is at least 1/2.

Interpretation:

- Naive bulk effect: Arises from log cardinality $\log |\mathcal{G}_{d,p}|$
- $\bullet~d\mbox{-clique}$ effect: Difficulty of separating models that contain a near $d\mbox{-clique}$
- Small weight effect: Difficult to detect edges with small weights.

Martin Wainwright (UC Berkeley)

High-dimensional graph selection

Corollary

For asymptotically reliable recovery over $\mathcal{G}_{d,p}$, any algorithm requires at least $n = \Omega(d^2 \log p)$ samples.

Corollary

For asymptotically reliable recovery over $\mathcal{G}_{d,p}$, any algorithm requires at least $n = \Omega(d^2 \log p)$ samples.

• note that maximum neighborhood weight $\omega(\theta^*) \ge d \theta_{\min} \Longrightarrow$ require $\theta_{\min} = \mathcal{O}(1/d)$

Corollary

For asymptotically reliable recovery over $\mathcal{G}_{d,p}$, any algorithm requires at least $n = \Omega(d^2 \log p)$ samples.

- note that maximum neighborhood weight $\omega(\theta^*) \ge d \theta_{\min} \Longrightarrow$ require $\theta_{\min} = \mathcal{O}(1/d)$
- from small weight effect

$$n = \Omega(\frac{\log p}{\theta_{\min} \tanh(\theta_{\min})}) = \Omega(\frac{\log p}{\theta_{\min}^2})$$

Corollary

For asymptotically reliable recovery over $\mathcal{G}_{d,p}$, any algorithm requires at least $n = \Omega(d^2 \log p)$ samples.

- note that maximum neighborhood weight $\omega(\theta^*) \ge d \theta_{\min} \Longrightarrow$ require $\theta_{\min} = \mathcal{O}(1/d)$
- from small weight effect

$$n = \Omega(\frac{\log p}{\theta_{\min} \tanh(\theta_{\min})}) = \Omega(\frac{\log p}{\theta_{\min}^2})$$

• conclude that ℓ_1 -regularized logistic regression (LR) is within $\Theta(d)$ of optimal for general graphs (Ravikumar., W. & Lafferty, 2006)

Corollary

For asymptotically reliable recovery over $\mathcal{G}_{d,p}$, any algorithm requires at least $n = \Omega(d^2 \log p)$ samples.

- note that maximum neighborhood weight $\omega(\theta^*) \ge d \theta_{\min} \Longrightarrow$ require $\theta_{\min} = \mathcal{O}(1/d)$
- from small weight effect

$$n = \Omega(\frac{\log p}{\theta_{\min} \tanh(\theta_{\min})}) = \Omega(\frac{\log p}{\theta_{\min}^2})$$

- conclude that ℓ_1 -regularized logistic regression (LR) is within $\Theta(d)$ of optimal for general graphs (Ravikumar., W. & Lafferty, 2006)
- for bounded degree graphs:
 - ▶ ℓ_1 -LR order-optimal under incoherence conditions with cost $\mathcal{O}(p^4)$
 - thresholding procedure order-optimal under correlation decay, also with polynomial complexity (Bresler, Sly & Mossel, 2008)

• based on assessing difficulty of graph selection over various sub-ensembles $\mathcal{G} \subseteq \mathcal{G}_{p,d}$

- based on assessing difficulty of graph selection over various sub-ensembles $\mathcal{G} \subseteq \mathcal{G}_{p,d}$
- choose $G \in \mathcal{G}$ u.a.r., and consider multi-way hypothesis testing problem based on the data $\mathbf{X}_1^n = \{X^{(1)}, \dots, X^{(n)}\}$

- based on assessing difficulty of graph selection over various sub-ensembles $\mathcal{G} \subseteq \mathcal{G}_{p,d}$
- choose $G \in \mathcal{G}$ u.a.r., and consider multi-way hypothesis testing problem based on the data $\mathbf{X}_1^n = \{X^{(1)}, \dots, X^{(n)}\}$
- for any graph estimator $\psi : \mathcal{X}^n \to \mathcal{G}$, Fano's inequality implies that

$$\mathbb{P}[\psi(\mathbf{X}_1^n) \neq G] \ge 1 - \frac{I(\mathbf{X}_1^n; G)}{\log |\mathcal{G}|} - o(1)$$

where $I(\mathbf{X}_1^n;G)$ is mutual information between observations \mathbf{X}_1^n and randomly chosen graph G

- based on assessing difficulty of graph selection over various sub-ensembles $\mathcal{G} \subseteq \mathcal{G}_{p,d}$
- choose $G \in \mathcal{G}$ u.a.r., and consider multi-way hypothesis testing problem based on the data $\mathbf{X}_1^n = \{X^{(1)}, \dots, X^{(n)}\}$
- for any graph estimator $\psi : \mathcal{X}^n \to \mathcal{G}$, Fano's inequality implies that

$$\mathbb{P}[\psi(\mathbf{X}_1^n) \neq G] \ge 1 - \frac{I(\mathbf{X}_1^n; G)}{\log |\mathcal{G}|} - o(1)$$

where $I(\mathbf{X}_1^n;G)$ is mutual information between observations \mathbf{X}_1^n and randomly chosen graph G

- remaining steps:

 - 2 Compute or lower bound the log cardinality $\log |\mathcal{G}|$.
 - **3** Upper bound the mutual information $I(\mathbf{X}_1^n; G)$.

Two straightforward ensembles

Two straightforward ensembles

• Naive bulk ensemble: All graphs on p vertices with max. degree d (i.e., $\mathcal{G} = \mathcal{G}_{p,d}$)
Two straightforward ensembles

- Naive bulk ensemble: All graphs on p vertices with max. degree d (i.e., $\mathcal{G} = \mathcal{G}_{p,d}$)
 - simple counting argument: $\log |\mathcal{G}_{p,d}| = \Theta(pd\log(p/d))$
 - trivial upper bound: $I(\mathbf{X}_1^n; G) \leq H(\mathbf{X}_1^n) \leq np$.
 - ▶ substituting into Fano yields necessary condition $n = \Omega(d \log(p/d))$
 - ► this bound independently derived by different approach by Bresler et al. (2008)

Two straightforward ensembles

- Naive bulk ensemble: All graphs on p vertices with max. degree d (i.e., $\mathcal{G} = \mathcal{G}_{p,d}$)
 - simple counting argument: $\log |\mathcal{G}_{p,d}| = \Theta(pd\log(p/d))$
 - trivial upper bound: $I(\mathbf{X}_1^n; G) \leq H(\mathbf{X}_1^n) \leq np$.
 - ▶ substituting into Fano yields necessary condition $n = \Omega(d \log(p/d))$
 - ► this bound independently derived by different approach by Bresler et al. (2008)
- **2** Small weight effect: Ensemble \mathcal{G} consisting of graphs with a single edge with weight $\theta = \theta_{\min}$

Two straightforward ensembles

- Naive bulk ensemble: All graphs on p vertices with max. degree d (i.e., $\mathcal{G} = \mathcal{G}_{p,d}$)
 - simple counting argument: $\log |\mathcal{G}_{p,d}| = \Theta(pd\log(p/d))$
 - trivial upper bound: $I(\mathbf{X}_1^n; G) \leq H(\mathbf{X}_1^n) \leq np$.
 - ▶ substituting into Fano yields necessary condition $n = \Omega(d \log(p/d))$
 - ► this bound independently derived by different approach by Bresler et al. (2008)
- **2** Small weight effect: Ensemble \mathcal{G} consisting of graphs with a single edge with weight $\theta = \theta_{\min}$
 - simple counting: $\log |\mathcal{G}| = \log {\binom{p}{2}}$
 - upper bound on mutual information:

$$I(\mathbf{X}_1^n; G) \leq \frac{1}{\binom{p}{2}} \sum_{(i,j), (k,\ell) \in E} D(\theta(G^{ij}) \| \theta(G^{k\ell})).$$

▶ upper bound on symmetrized Kullback-Leibler divergences:

 $D\big(\theta(G^{ij})\|\theta(G^{k\ell})\big) + D\big(\theta(G^{k\ell})\|\theta(G^{ij})\big) \le 2\theta_{\min} \tanh(\theta_{\min}/2)$

► substituting into Fano yields necessary condition $n = \Omega\left(\frac{\log p}{\theta_{\min} \tanh(\theta_{\min}/2)}\right)$

A harder *d*-clique ensemble

Constructive procedure:

- Divide the vertex set V into $\lfloor \frac{p}{d+1} \rfloor$ groups of size d+1.
- **2** Form the base graph \overline{G} by making a (d+1)-clique within each group.
- **3** Form graph G^{uv} by deleting edge (u, v) from \overline{G} .
- **4** Form Markov random field $\mathbb{P}_{\theta(G^{uv})}$ by setting $\theta_{st} = \theta_{\min}$ for all edges.

(a) Base graph \overline{G}

(b) Graph G^{uv}

(c) Graph ${\cal G}^{st}$

• For $d \leq p/4$, we can form

$$|\mathcal{G}| \ge \lfloor \frac{p}{d+1} \rfloor \binom{d+1}{2} = \Omega(dp)$$

such graphs.

Summary and open questions

- Practical methods:
 - ▶ Log-determinant for Gaussian graphical models:

$$n > c_1 \max\{\frac{1}{\theta_{\min}^2}, d^2\} \log p.$$

▶ Logistic regression for discrete models succeeds with sample size:

$$n > c_1 \max\{\frac{d}{\theta_{\min}^2}, d^3\} \log p.$$

Summary and open questions

- Practical methods:
 - ▶ Log-determinant for Gaussian graphical models:

$$n > c_1 \max\{\frac{1}{\theta_{\min}^2}, d^2\} \log p.$$

▶ Logistic regression for discrete models succeeds with sample size:

$$n > c_1 \max\{\frac{d}{\theta_{\min}^2}, d^3\} \log p.$$

• Fundamental limit: Any algorithm fails for sample size

$$n < c_2 \max\{\frac{1}{\theta_{\min}^2}, d^2\} \log p$$

Summary and open questions

- Practical methods:
 - ▶ Log-determinant for Gaussian graphical models:

$$n > c_1 \max\{\frac{1}{\theta_{\min}^2}, d^2\} \log p.$$

▶ Logistic regression for discrete models succeeds with sample size:

$$n > c_1 \max\{rac{d}{ heta_{\min}^2}, d^3\} \log p.$$

• Fundamental limit: Any algorithm fails for sample size

$$n < c_2 \max\{\frac{1}{\theta_{\min}^2}, d^2\} \log p$$

- some extensions and open questions:
 - ▶ non-binary discrete MRFs via block-structured regularization schemes
 - other performance metrics (e.g., (1δ) edges correct)
 - broader issue: optimal trade-offs between statistical/computational efficiency?

Some papers on graph selection

- Ravikumar, P., Wainwright, M. J. and Lafferty, J. (2009).
 High-dimensional Ising model selection using l₁-regularized logistic regression. Annals of Statistics.
- Ravikumar, P., Wainwright, M. J., Raskutti, G. and Yu, B. High-dimensional covariance estimation: Convergence rates of ℓ_1 -regularized log-determinant divergence. Appeared at *NIPS Conference* 2008.
- Santhanam, P. and Wainwright, M. J. (2008). Information-theoretic limitations of high-dimensional graphical model selection. Presented at *International Symposium on Information Theory*, 2008.
- Wainwright, M. J. (2009). Sharp thresholds for noisy and high-dimensional recovery of sparsity using ℓ_1 -constrained quadratic programming. *IEEE Trans. on Information Theory*, May 2009.

Strategy: Upper bound the mutual information by controlling the *symmetrized Kullback-Leibler divergence*:

 $S(\theta(G^{st}) \| \theta(G^{uv})) = D(\theta(G^{st}) \| \theta(G^{uv})) + D(\theta(G^{uv}) \| \theta(G^{st}))$

Strategy: Upper bound the mutual information by controlling the *symmetrized Kullback-Leibler divergence*:

 $S(\theta(G^{st}) \| \theta(G^{uv})) = D\big(\theta(G^{st}) \| \theta(G^{uv})\big) + D\big(\theta(G^{uv}) \| \theta(G^{st})\big)$

Lemma

For the given ensemble, the symmetrized KL divergence is upper bounded as

$$S(\theta(G^{st}) \| \theta(G^{uv})) \le \frac{8d\theta_{\min} \exp(3\theta_{\min}/2)}{\exp(d\theta_{\min}/2)}$$

Strategy: Upper bound the mutual information by controlling the *symmetrized Kullback-Leibler divergence*:

 $S(\theta(G^{st}) \| \theta(G^{uv})) = D\big(\theta(G^{st}) \| \theta(G^{uv})\big) + D\big(\theta(G^{uv}) \| \theta(G^{st})\big)$

Lemma

For the given ensemble, the symmetrized KL divergence is upper bounded as

$$S(\theta(G^{st}) \| \theta(G^{uv})) \le \frac{8d\theta_{\min} \exp(3\theta_{\min}/2)}{\exp(d\theta_{\min}/2)}$$

Key consequences:

• complexity controls exponentially in maximum neighborhood weight

$$\omega(\theta^*) := \max_{s \in V} \sum_{t \in N(s)} |\theta_{st}|.$$

Strategy: Upper bound the mutual information by controlling the *symmetrized Kullback-Leibler divergence*:

 $S(\theta(G^{st}) \| \theta(G^{uv})) = D\big(\theta(G^{st}) \| \theta(G^{uv})\big) + D\big(\theta(G^{uv}) \| \theta(G^{st})\big)$

Lemma

For the given ensemble, the symmetrized KL divergence is upper bounded as

$$S(\theta(G^{st}) \| \theta(G^{uv})) \le \frac{8d\theta_{\min} \exp(3\theta_{\min}/2)}{\exp(d\theta_{\min}/2)}$$

Key consequences:

• complexity controls exponentially in maximum neighborhood weight

$$\omega(\theta^*) := \max_{s \in V} \sum_{t \in N(s)} |\theta_{st}|.$$

• combining with Fano's inequality yields the necessary condition

$$n > \frac{\exp(\frac{\omega(\theta)}{4}) d\theta_{\min} \log(pd/8)}{128 \exp(\frac{3\theta_{\min}}{2})}$$

Sufficient conditions for $G_{d,p}$

- $G \in \mathcal{G}_{d,p}$: graphs with p nodes and max. degree d
- Ising models with:
 - Minimum edge weight: $|\theta_{st}^*| \ge \theta_{\min}$ for all edges
 - ► Maximum neighborhood weight: $\omega(\theta) := \max_{s \in V} \sum_{t \in N(s)} |\theta_{st}^*|$

Sufficient conditions for $G_{d,p}$

- $G \in \mathcal{G}_{d,p}$: graphs with p nodes and max. degree d
- Ising models with:
 - Minimum edge weight: $|\theta_{st}^*| \ge \theta_{\min}$ for all edges
 - ► Maximum neighborhood weight: $\omega(\theta) := \max_{s \in V} \sum_{t \in N(s)} |\theta_{st}^*|$

Theorem

There is an (exponential-time) method that succeeds if

$$n > \max\left\{d\log p, \ \frac{6\exp(2\omega(\theta))}{\sinh^2(\frac{|\theta|}{2})}d\log p, \ \frac{8\log p}{\theta_{\min}^2}\right\}$$

Sufficient conditions for $G_{d,p}$

- $G \in \mathcal{G}_{d,p}$: graphs with p nodes and max. degree d
- Ising models with:
 - Minimum edge weight: $|\theta_{st}^*| \ge \theta_{\min}$ for all edges
 - Maximum neighborhood weight: $\omega(\theta) := \max_{s \in V} \sum_{t \in N(s)} |\theta_{st}^*|$

Theorem

There is an (exponential-time) method that succeeds if

$$n \ > \ \max \Big\{ d\log p, \ \frac{6\exp(2\omega(\theta))}{\sinh^2(\frac{|\theta|}{2})} d\log p, \ \frac{8\log p}{\theta_{\min}^2} \Big\}$$

Comments:

• to avoid exponential penalty via maximum neighborhood term, require that $\theta_{\min} = \mathcal{O}(1/d)$

• leads to simplified lower bound $n = \Omega\left(\max\left\{\frac{\log p}{\theta^2}, \ d^3\log p\right\}\right)$