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Introduction

Markov random fields (undirected graphical models): central to many
applications in science and engineering:

◮ communication, coding, and information theory
◮ control theory, networking
◮ machine learning and statistics
◮ statistical signal processing
◮ combinatorial optimization, theoretical computer science
◮ computational biology
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Introduction

Markov random fields (undirected graphical models): central to many
applications in science and engineering:

◮ communication, coding, and information theory
◮ control theory, networking
◮ machine learning and statistics
◮ statistical signal processing
◮ combinatorial optimization, theoretical computer science
◮ computational biology

some core computational problems
◮ counting/integrating: computing marginal distributions and data

likelihoods
◮ optimization: computing most probable configurations (or top

M -configurations)
◮ model selection: fitting and selecting models on the basis of data
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What are graphical models?

Markov random field: random vector (X1, . . . ,Xp) with distribution
factoring according to a graph G = (V,E):

A B C

D

factorization based on clique structure of graph:

P(x1, . . . , xp; θ) =
1

Z(θ)
exp

{ ∑

C∈C

θC(xC)
}
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Gaussian graphical models
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(2π)p/2
exp

(
− 1

2
xT Θx

)
.

graphical model structured specified by zero-pattern of inverse covariance
matrix Θ
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Discrete-variable graphical models

random variable Xs at node s takes values in discrete space (e.g.,
X = {−1,+1})

hierarchies of probability distributions:
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Discrete-variable graphical models

random variable Xs at node s takes values in discrete space (e.g.,
X = {−1,+1})

hierarchies of probability distributions:
◮ Independence model:

P(x) =
1

Z(θ)
exp

˘

X

s∈V

θsxs

¯

.

◮ Pairwise MRF (Ising model, 1923)

P(x) =
1

Z(θ)
exp

˘

X

s∈V

θsxs +
X

(s,t)∈E

θstxsxt

¯

.

◮ Triplet MRF

P(x) =
1

Z(θ)
exp

˘

X

s∈V

θsxs +
X

(s,t)∈E2

θstxsxt +
X

(s,t,u)∈E3

θstuxsxtxu

¯

.

(hyper)graph structure enforces that θuv = 0 for all (uv) /∈ E



Samples from binary-valued pairwise MRFs

Independence model θst = 0



Samples from binary-valued pairwise MRFs

Medium coupling θst ≈ 0.2



Samples from binary-valued pairwise MRFs

Strong coupling θst ≈ 0.8



Graphical model selection

let G = (V,E) be an undirected graph on p = |V | vertices
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Graphical model selection

let G = (V,E) be an undirected graph on p = |V | vertices

pairwise Markov random field: family of prob. distributions

P(x1, . . . , xp; θ) =
1

Z(θ)
exp

{ ∑

(s,t)∈E

θstxsxt

}

Problem of graph selection: given n independent and identically
distributed (i.i.d.) samples of X = (X1, . . . ,Xp), identify the underlying
graph structure
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Graphical model selection

let G = (V,E) be an undirected graph on p = |V | vertices

pairwise Markov random field: family of prob. distributions

P(x1, . . . , xp; θ) =
1

Z(θ)
exp

{ ∑

(s,t)∈E

θstxsxt

}

Problem of graph selection: given n independent and identically
distributed (i.i.d.) samples of X = (X1, . . . ,Xp), identify the underlying
graph structure

complexity constraint: restrict to subset Gd,p of graphs with maximum
degree d
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Illustration: Voting behavior of US senators

Graphical model fit to voting records of US senators (Bannerjee, El Ghaoui, &

d’Aspremont, 2008)



Outline of remainder of talk
1 Background and framework

(a) Problem set-up
(b) Some challenges in distinguishing graphs
(c) Analysis in a high-dimensional framework

2 Practical schemes

(a) Gaussian graphical models via log-determinant
(b) Discrete graphical models via logistic regression
(c) Sufficient conditions for high-dimensional consistency

3 Fundamental limits

(a) An unorthodox channel coding problem
(b) Necessary conditions
(c) Sufficient conditions (optimal algorithms)

4 Various open questions......
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a

b
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d

ef

Andrew (a) and Bob (b) are brothers

Bob (b) is part of a criminal network

Is Andrew also a criminal?



Some challenges in distinguishing graphs

clearly, a lower bound on the minimum edge weight is required:

min
(s,t)∈E

|θ∗st| ≥ θmin,

although θmin(p, d) = o(1) is allowed.

in contrast to other testing/detection problems, large |θst| also
problematic



Some challenges in distinguishing graphs

clearly, a lower bound on the minimum edge weight is required:

min
(s,t)∈E

|θ∗st| ≥ θmin,

although θmin(p, d) = o(1) is allowed.

in contrast to other testing/detection problems, large |θst| also
problematic

Toy example: Graphs from G3,2 (i.e., p = 3; d = 2), and x ∈ {−1,+1}3

θ θ
θ

θ

θ

θ

As θ increases, all three Markov random fields become arbitrarily close to:

P(x1, x2, x3) =

{
1/2 if x ∈ {(−1)3, (+1)3}
0 otherwise.



High-dimensional analysis
classical analysis: dimension p fixed, sample size n → +∞

high-dimensional analysis: allow both dimension p, sample size n, and
maximum degree d to increase at arbitrary rates

take n i.i.d. samples from MRF defined by Gp,d

study probability of success as a function of three parameters:

Success(n, p, d) = P[Method recovers graph Gp,d from n samples]

theory is non-asymptotic: explicit probabilities for finite (n, p, d)



Some issues in graph selection

Consider some fixed loss function, and a fixed level δ of error.

Limitations of tractable algorithms:
Given particular (polynomial-time) algorithms

for what sample sizes n do they succeed/fail to achieve error δ?

given a collection of methods, when does more computation reduce minimum #
samples needed?

Information-theoretic limitations:

Data collection as communication from nature −→ statistician:

what are fundamental limitations of problem (Shannon capacity)?

when are known (polynomial-time) methods optimal?

when are there gaps between poly.-time methods and optimal methods?
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§2. Practical methods: Gaussian graphical selection
recall form of Gaussian density in terms of inverse covariance Θ:

P(x1, . . . , xp; Θ) =
det(Θ)

(2π)p/2
exp

(
− 1

2
xT Θx

)
.
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neg. log likelihood regularizer



§2. Practical methods: Gaussian graphical selection
recall form of Gaussian density in terms of inverse covariance Θ:

P(x1, . . . , xp; Θ) =
det(Θ)

(2π)p/2
exp

(
− 1

2
xT Θx

)
.

ℓ1-regularized maximum likelihood:

Θ̂ = arg min
Θ≻0

{
− log det Θ + 〈〈Σ̂n, Θ〉〉︸ ︷︷ ︸ + ρn

∑

i6=j

|Θij |
}

︸ ︷︷ ︸

.

neg. log likelihood regularizer

plug-in approach: use samples X(k), k = 1, . . . , n to estimate covariance matrix
Σ = Θ−1 via the sample covariance

bΣn :=
1

n

n
X

k=1

X(k)(X(k))T .

regularization parameter ρn > 0 is a user-specified quantity

(e.g., Yuan & Lin, 2006; d’Asprémont et al., 2007; Friedman, 2008; Rothman et al., 2008)



Empirical behavior: Unrescaled plots
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Empirical behavior: Appropriately rescaled
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Sufficient conditions for consistent model selection

graph sequences Gp,d = (V, E) with p vertices, and maximum degree d.

suitable regularity conditions on Hessian of log-determinant
Γ∗ := (Θ∗)−1 ⊗ (Θ∗)−1
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Sufficient conditions for consistent model selection

graph sequences Gp,d = (V, E) with p vertices, and maximum degree d.

suitable regularity conditions on Hessian of log-determinant
Γ∗ := (Θ∗)−1 ⊗ (Θ∗)−1

Theorem

For multivariate Gaussian and sample size

n > c1τ d
2 log p

and regularization parameter ρn ≥ c2 τ
√

log p
n , then with probability greater

than 1 − 2 exp
(
− c3(τ − 2) log p

)
:
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and regularization parameter ρn ≥ c2 τ
√

log p
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graph sequences Gp,d = (V, E) with p vertices, and maximum degree d.

suitable regularity conditions on Hessian of log-determinant
Γ∗ := (Θ∗)−1 ⊗ (Θ∗)−1

Theorem

For multivariate Gaussian and sample size

n > c1τ d
2 log p

and regularization parameter ρn ≥ c2 τ
√

log p
n , then with probability greater

than 1 − 2 exp
(
− c3(τ − 2) log p

)
:

(a) No false inclusions: The regularized log-determinant estimate Θ̂ returns

an edge set Ê ⊆ E∗.

(b) ℓ∞-control: Estimate satisfies maxi,j |Θ̂ij − Θ∗
ij | ≤ 2 c4

√
τ log p

n .
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graph sequences Gp,d = (V, E) with p vertices, and maximum degree d.

suitable regularity conditions on Hessian of log-determinant
Γ∗ := (Θ∗)−1 ⊗ (Θ∗)−1

Theorem

For multivariate Gaussian and sample size

n > c1τ d
2 log p

and regularization parameter ρn ≥ c2 τ
√

log p
n , then with probability greater

than 1 − 2 exp
(
− c3(τ − 2) log p

)
:

(a) No false inclusions: The regularized log-determinant estimate Θ̂ returns

an edge set Ê ⊆ E∗.

(b) ℓ∞-control: Estimate satisfies maxi,j |Θ̂ij − Θ∗
ij | ≤ 2 c4

√
τ log p

n .

(c) Model selection consistency: If θ⋆ ≥ c4

√
τ log p

n , then E = Ê.

Martin Wainwright (UC Berkeley) High-dimensional graph selection September 2009 17 / 36



Some consequences

Corollary

Under same conditions as theorem, operator norm consistency at rates:

max
{
|||Θ̂ − Θ∗|||2, |||Σ̂ − Σ∗|||2

}
= O

(
√
d2 log p

n

)
,
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Some consequences

Corollary

Under same conditions as theorem, operator norm consistency at rates:

max
{
|||Θ̂ − Θ∗|||2, |||Σ̂ − Σ∗|||2

}
= O

(
√
d2 log p

n

)
,

sample covariance estimate is highly inconsistent in this regime:

||| 1
n

n∑

i=1

X(i)(X(i))T − Σ|||2 ≥ c

√
p

n
→ +∞

(Marcenko & Pastur, 1967; Davidson & Szarek, 2001)
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Some consequences

Corollary

Under same conditions as theorem, operator norm consistency at rates:

max
{
|||Θ̂ − Θ∗|||2, |||Σ̂ − Σ∗|||2

}
= O

(
√
d2 log p

n

)
,

sample covariance estimate is highly inconsistent in this regime:

||| 1
n

n∑

i=1

X(i)(X(i))T − Σ|||2 ≥ c

√
p

n
→ +∞

(Marcenko & Pastur, 1967; Davidson & Szarek, 2001)

Rothman et al. (2008) showed

max
{
|||Θ̂ − Θ∗|||2, |||Σ̂ − Σ∗|||2

}
= O

(
√
s log p

n

)
, where s = # edges,

which is substantially weaker for d-regular graphs with s = Θ(dp)
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Global max. likelihood for discrete models?

maximum likelihood for general graphical model in exponential family:

θ̂ = arg max
θ∈Rp





∑

(s,t)∈E

θst Ê[XsXt]︸ ︷︷ ︸ − logZ(θ)






empirical moments
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Global max. likelihood for discrete models?

maximum likelihood for general graphical model in exponential family:

θ̂ = arg max
θ∈Rp





∑

(s,t)∈E

θst Ê[XsXt]︸ ︷︷ ︸ − logZ(θ)






empirical moments

exact likelihood involves log partition function

logZ(θ) =






∫
Rn exp(− 1

2x
T Θx)dx for Gaussian RV

∑
x∈−1,+1p

exp
( ∑

(s,t) θstxsxt

)
for binary RV
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Global max. likelihood for discrete models?

maximum likelihood for general graphical model in exponential family:

θ̂ = arg max
θ∈Rp





∑

(s,t)∈E

θst Ê[XsXt]︸ ︷︷ ︸ − logZ(θ)






empirical moments

exact likelihood involves log partition function

logZ(θ) =






∫
Rn exp(− 1

2x
T Θx)dx for Gaussian RV

∑
x∈−1,+1p

exp
( ∑

(s,t) θstxsxt

)
for binary RV

key consequence: likelihood computation is
◮ straightfoward for Gaussian MRFs (log-determinant)
◮ intractable for Ising models (binary pairwise MRFs) (Welsh, 1993)
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Global max. likelihood for discrete models?

maximum likelihood for general graphical model in exponential family:

θ̂ = arg max
θ∈Rp





∑

(s,t)∈E

θst Ê[XsXt]︸ ︷︷ ︸ − logZ(θ)






empirical moments

exact likelihood involves log partition function

logZ(θ) =






∫
Rn exp(− 1

2x
T Θx)dx for Gaussian RV

∑
x∈−1,+1p

exp
( ∑

(s,t) θstxsxt

)
for binary RV

key consequence: likelihood computation is
◮ straightfoward for Gaussian MRFs (log-determinant)
◮ intractable for Ising models (binary pairwise MRFs) (Welsh, 1993)

possible work-arounds:
◮ MCMC methods
◮ stochastic approximation methods
◮ variational approximations (mean field, Bethe and belief propagation)
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Markov property and neighborhood structure

Markov properties encode neighborhood structure:

(Xs | XV \s)︸ ︷︷ ︸
d
= (Xs | XN(s))︸ ︷︷ ︸

Condition on full graph Condition on Markov blanket

N(s) = {s, t, u, v, w}

Xs

Xs
Xt

Xu

Xv

Xw

basis of pseudolikelihood method (Besag, 1974)

used for Gaussian model selection (Meinshausen & Buhlmann, 2006)
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Graph selection via neighborhood regression

Observation: Recovering graph G equivalent to recovering neighborhood set N(s)
for all s ∈ V .

Method: Given n i.i.d. samples {X(1), . . . , X(n)}, perform logistic regression of

each node Xs on X\s := {Xs, t 6= s} to estimate neighborhood structure bN(s).

1 For each node s ∈ V , perform ℓ1 regularized logistic regression of Xs on the
remaining variables X\s:

bθ[s] := arg min
θ∈Rp−1

(

1

n

n
X

i=1

f(θ; X
(i)

\s )
| {z }

+ ρn ‖θ‖1
|{z}

)

logistic likelihood regularization

2 Estimate the local neighborhood bN(s) as the support (non-negative entries) of

the regression vector bθ[s].

3 Combine the neighborhood estimates in a consistent manner (AND, or OR
rule).
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Empirical behavior: Unrescaled plots
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Empirical behavior: Appropriately rescaled
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Sufficient conditions for consistent model selection
graph sequences Gp,d = (V, E) with p vertices, and maximum degree d.

edge weights |θst| ≥ θmin for all (s, t) ∈ E

draw n i.i.d, samples, and analyze prob. success indexed by (n, p, d)

Theorem
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edge weights |θst| ≥ θmin for all (s, t) ∈ E

draw n i.i.d, samples, and analyze prob. success indexed by (n, p, d)

Theorem

Under incoherence conditions, for a rescaled sample size (RavWaiLaf06)

θLR(n, p, d) :=
n

d3 log p
> θcrit

and regularization parameter ρn ≥ c1 τ
√

log p
n , then with probability greater

than 1 − 2 exp
(
− c2(τ − 2) log p

)
→ 1:

(a) Uniqueness: For each node s ∈ V , the ℓ1-regularized logistic convex
program has a unique solution. (Non-trivial since p ≫ n =⇒ not strictly convex).
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(b) Correct exclusion: The estimated sign neighborhood N̂(s) correctly
excludes all edges not in the true neighborhood.
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dρn, the method selects the correct

signed neighborhood.



Sufficient conditions for consistent model selection
graph sequences Gp,d = (V, E) with p vertices, and maximum degree d.

edge weights |θst| ≥ θmin for all (s, t) ∈ E

draw n i.i.d, samples, and analyze prob. success indexed by (n, p, d)

Theorem

Under incoherence conditions, for a rescaled sample size (RavWaiLaf06)

θLR(n, p, d) :=
n

d3 log p
> θcrit

and regularization parameter ρn ≥ c1 τ
√

log p
n , then with probability greater

than 1 − 2 exp
(
− c2(τ − 2) log p

)
→ 1:

(a) Uniqueness: For each node s ∈ V , the ℓ1-regularized logistic convex
program has a unique solution. (Non-trivial since p ≫ n =⇒ not strictly convex).

(b) Correct exclusion: The estimated sign neighborhood N̂(s) correctly
excludes all edges not in the true neighborhood.

(c) Correct inclusion: For θmin ≥ c3τ
√
dρn, the method selects the correct

signed neighborhood.

Consequence: For θmin = Ω(1/d), it suffices to have n = Ω(d3 log p).



Results for 8-grid graphs
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Assumptions

Define Fisher information matrix of logistic regression:
Q∗ := Eθ∗

[
∇2f(θ∗;X)

]
.

A1. Dependency condition: Bounded eigenspectra:

Cmin ≤ λmin(Q∗
SS), and λmax(Q∗

SS) ≤ Cmax.

λmax(Eθ∗ [XXT ]) ≤ Dmax.

A2. Incoherence There exists an ν ∈ (0, 1] such that

|||Q∗
ScS(Q∗

SS)−1|||∞,∞ ≤ 1 − ν.

where |||A|||∞,∞ := maxi

∑
j |Aij |.

bounds on eigenvalues are fairly standard

incoherence condition:

◮ partly necessary (prevention of degenerate models)
◮ partly an artifact of ℓ1-regularization

incoherence condition is weaker than correlation decay
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§3. Info. theory: Graph selection as channel coding

graphical model selection is an unorthodox channel coding problem:
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◮ codewords/codebook: graph G in some graph class G

◮ channel use: draw sample X(i) = (X
(i)
1 , . . . , X

(i)
p ) from Markov random

field Pθ(G)

◮ decoding problem: use n samples {X(1), . . . , X(n)} to correctly distinguish
the “codeword”

X(1), . . . ,X(n)P(X | G)G
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graphical model selection is an unorthodox channel coding problem:

◮ codewords/codebook: graph G in some graph class G

◮ channel use: draw sample X(i) = (X
(i)
1 , . . . , X

(i)
p ) from Markov random

field Pθ(G)

◮ decoding problem: use n samples {X(1), . . . , X(n)} to correctly distinguish
the “codeword”

X(1), . . . ,X(n)P(X | G)G

Channel capacity for graph decoding determined by balance between

log number of models

relative distinguishability of different models
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Necessary conditions for Gd,p
G ∈ Gd,p: graphs with p nodes and max. degree d

Ising models with:
◮ Minimum edge weight: |θ∗

st| ≥ θmin for all edges
◮ Maximum neighborhood weight: ω(θ) := max

s∈V

P

t∈N(s)

|θ∗
st|
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Necessary conditions for Gd,p
G ∈ Gd,p: graphs with p nodes and max. degree d

Ising models with:
◮ Minimum edge weight: |θ∗

st| ≥ θmin for all edges
◮ Maximum neighborhood weight: ω(θ) := max

s∈V

P

t∈N(s)

|θ∗
st|

Theorem

If the sample size n is upper bounded by (Santhanam & W, 2008)

n < max
{d

8
log

p

8d
,

exp(ω(θ)
4 ) dθmin log(pd/8)

128 exp(3θmin

2 )
,

log p

2θmin tanh(θmin)

}

then the probability of error of any algorithm over Gd,p is at least 1/2.
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Necessary conditions for Gd,p
G ∈ Gd,p: graphs with p nodes and max. degree d

Ising models with:
◮ Minimum edge weight: |θ∗

st| ≥ θmin for all edges
◮ Maximum neighborhood weight: ω(θ) := max

s∈V

P

t∈N(s)

|θ∗
st|

Theorem

If the sample size n is upper bounded by (Santhanam & W, 2008)

n < max
{d

8
log

p

8d
,

exp(ω(θ)
4 ) dθmin log(pd/8)

128 exp(3θmin

2 )
,

log p

2θmin tanh(θmin)

}

then the probability of error of any algorithm over Gd,p is at least 1/2.

Interpretation:

Naive bulk effect: Arises from log cardinality log |Gd,p|
d-clique effect: Difficulty of separating models that contain a near d-clique

Small weight effect: Difficult to detect edges with small weights.
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Some consequences

Corollary

For asymptotically reliable recovery over Gd,p, any algorithm requires at least
n = Ω(d2 log p) samples.
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n = Ω(d2 log p) samples.

note that maximum neighborhood weight ω(θ∗) ≥ d θmin =⇒ require
θmin = O(1/d)

from small weight effect

n = Ω(
log p

θmin tanh(θmin)
) = Ω

( log p

θ2min

)

conclude that ℓ1-regularized logistic regression (LR) is within Θ(d) of
optimal for general graphs (Ravikumar., W. & Lafferty, 2006)
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Some consequences

Corollary

For asymptotically reliable recovery over Gd,p, any algorithm requires at least
n = Ω(d2 log p) samples.

note that maximum neighborhood weight ω(θ∗) ≥ d θmin =⇒ require
θmin = O(1/d)

from small weight effect

n = Ω(
log p

θmin tanh(θmin)
) = Ω

( log p

θ2min

)

conclude that ℓ1-regularized logistic regression (LR) is within Θ(d) of
optimal for general graphs (Ravikumar., W. & Lafferty, 2006)

for bounded degree graphs:
◮ ℓ1-LR order-optimal under incoherence conditions with cost O(p4)
◮ thresholding procedure order-optimal under correlation decay, also with

polynomial complexity (Bresler, Sly & Mossel, 2008)

Martin Wainwright (UC Berkeley) High-dimensional graph selection September 2009 29 / 36



Proof sketch: Main ideas for necessary conditions

based on assessing difficulty of graph selection over various sub-ensembles
G ⊆ Gp,d
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choose G ∈ G u.a.r., and consider multi-way hypothesis testing problem
based on the data Xn

1 = {X(1), . . . ,X(n)}
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based on assessing difficulty of graph selection over various sub-ensembles
G ⊆ Gp,d

choose G ∈ G u.a.r., and consider multi-way hypothesis testing problem
based on the data Xn

1 = {X(1), . . . ,X(n)}

for any graph estimator ψ : Xn → G, Fano’s inequality implies that

P[ψ(Xn
1 ) 6= G] ≥ 1 − I(Xn

1 ;G)

log |G| − o(1)

where I(Xn
1 ;G) is mutual information between observations Xn

1 and
randomly chosen graph G
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Proof sketch: Main ideas for necessary conditions

based on assessing difficulty of graph selection over various sub-ensembles
G ⊆ Gp,d

choose G ∈ G u.a.r., and consider multi-way hypothesis testing problem
based on the data Xn

1 = {X(1), . . . ,X(n)}

for any graph estimator ψ : Xn → G, Fano’s inequality implies that

P[ψ(Xn
1 ) 6= G] ≥ 1 − I(Xn

1 ;G)

log |G| − o(1)

where I(Xn
1 ;G) is mutual information between observations Xn

1 and
randomly chosen graph G

remaining steps:

1 Construct “difficult” sub-ensembles G ⊆ Gp,d

2 Compute or lower bound the log cardinality log |G|.

3 Upper bound the mutual information I(Xn
1 ; G).
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◮ simple counting argument: log |Gp,d| = Θ
`

pd log(p/d)
´

◮ trivial upper bound: I(Xn
1 ; G) ≤ H(Xn

1 ) ≤ np.
◮ substituting into Fano yields necessary condition n = Ω(d log(p/d))
◮ this bound independently derived by different approach by Bresler et al.

(2008)
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with weight θ = θmin



Two straightforward ensembles
1 Naive bulk ensemble: All graphs on p vertices with max. degree d (i.e.,

G = Gp,d)

◮ simple counting argument: log |Gp,d| = Θ
`

pd log(p/d)
´

◮ trivial upper bound: I(Xn
1 ; G) ≤ H(Xn

1 ) ≤ np.
◮ substituting into Fano yields necessary condition n = Ω(d log(p/d))
◮ this bound independently derived by different approach by Bresler et al.

(2008)

2 Small weight effect: Ensemble G consisting of graphs with a single edge
with weight θ = θmin

◮ simple counting: log |G| = log
`

p
2

´

◮ upper bound on mutual information:

I(Xn
1 ; G) ≤

1
`

p
2

´

X

(i,j),(k,ℓ)∈E

D
`

θ(Gij)‖θ(Gkℓ)
´

.

◮ upper bound on symmetrized Kullback-Leibler divergences:

D
`

θ(Gij)‖θ(Gkℓ)
´

+ D
`

θ(Gkℓ)‖θ(Gij)
´

≤ 2θmin tanh(θmin/2)

◮ substituting into Fano yields necessary condition n = Ω
`

log p
θmin tanh(θmin/2)

´



A harder d-clique ensemble
Constructive procedure:

1 Divide the vertex set V into ⌊ p
d+1⌋ groups of size d+ 1.

2 Form the base graph G by making a (d+ 1)-clique within each group.
3 Form graph Guv by deleting edge (u, v) from G.
4 Form Markov random field Pθ(Guv) by setting θst = θmin for all edges.

(a) Base graph G (b) Graph Guv (c) Graph Gst

For d ≤ p/4, we can form

|G| ≥ ⌊ p

d+ 1
⌋
(
d+ 1

2

)
= Ω(dp)

such graphs.



Summary and open questions

Practical methods:
◮ Log-determinant for Gaussian graphical models:

n > c1 max{
1

θ2
min

, d2} log p.

◮ Logistic regression for discrete models succeeds with sample size:

n > c1 max{
d

θ2
min

, d3} log p.
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Summary and open questions

Practical methods:
◮ Log-determinant for Gaussian graphical models:

n > c1 max{
1

θ2
min

, d2} log p.

◮ Logistic regression for discrete models succeeds with sample size:

n > c1 max{
d

θ2
min

, d3} log p.

Fundamental limit: Any algorithm fails for sample size

n < c2 max{ 1

θ2min

, d2} log p

some extensions and open questions:
◮ non-binary discrete MRFs via block-structured regularization schemes
◮ other performance metrics (e.g, (1 − δ) edges correct)
◮ broader issue: optimal trade-offs between statistical/computational

efficiency?
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A key separation lemma
Strategy: Upper bound the mutual information by controlling the
symmetrized Kullback-Leibler divergence:
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A key separation lemma
Strategy: Upper bound the mutual information by controlling the
symmetrized Kullback-Leibler divergence:

S(θ(Gst)‖θ(Guv)) = D
(
θ(Gst)‖θ(Guv)

)
+D

(
θ(Guv)‖θ(Gst)

)

Lemma

For the given ensemble, the symmetrized KL divergence is upper bounded as

S(θ(Gst)‖θ(Guv)) ≤ 8dθmin exp(3θmin/2)

exp(dθmin/2)

Key consequences:

complexity controls exponentially in maximum neighborhood weight

ω(θ∗) := max
s∈V

∑

t∈N(s)

|θst|.

combining with Fano’s inequality yields the necessary condition

n >
exp(ω(θ)

4 ) dθmin log(pd/8)

128 exp(3θmin

2 )



Sufficient conditions for Gd,p

G ∈ Gd,p: graphs with p nodes and max. degree d

Ising models with:

◮ Minimum edge weight: |θ∗
st| ≥ θmin for all edges

◮ Maximum neighborhood weight: ω(θ) := max
s∈V

P

t∈N(s)

|θ∗
st|
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G ∈ Gd,p: graphs with p nodes and max. degree d

Ising models with:

◮ Minimum edge weight: |θ∗
st| ≥ θmin for all edges

◮ Maximum neighborhood weight: ω(θ) := max
s∈V

P

t∈N(s)

|θ∗
st|

Theorem

There is an (exponential-time) method that succeeds if

n > max
{
d log p,

6 exp(2ω(θ))

sinh2( |θ|2 )
d log p,

8 log p

θ2min

}
.
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Sufficient conditions for Gd,p

G ∈ Gd,p: graphs with p nodes and max. degree d

Ising models with:

◮ Minimum edge weight: |θ∗
st| ≥ θmin for all edges

◮ Maximum neighborhood weight: ω(θ) := max
s∈V

P

t∈N(s)

|θ∗
st|

Theorem

There is an (exponential-time) method that succeeds if

n > max
{
d log p,

6 exp(2ω(θ))

sinh2( |θ|2 )
d log p,

8 log p

θ2min

}
.

Comments:

to avoid exponential penalty via maximum neighborhood term, require
that θmin = O(1/d)

leads to simplified lower bound n = Ω
(
max

{
log p
θ2
min

, d3 log p
})
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