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Introduction

@ Markov random fields (undirected graphical models): central to many
applications in science and engineering;:
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statistical signal processing

combinatorial optimization, theoretical computer science
computational biology
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Introduction

@ Markov random fields (undirected graphical models): central to many
applications in science and engineering;:

communication, coding, and information theory

control theory, networking

machine learning and statistics

statistical signal processing

combinatorial optimization, theoretical computer science
computational biology
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@ some core computational problems
> counting/integrating: computing marginal distributions and data
likelihoods
> optimization: computing most probable configurations (or top
M-configurations)
» model selection: fitting and selecting models on the basis of data
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What are graphical models?

@ Markov random field: random vector (Xq,...,X,) with distribution
factoring according to a graph G = (V, E):

o factorization based on clique structure of graph:

P(z1,...,2p;0) = Zza)exp{cz:ec%(m(j)}
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Gaussian graphical models

Zero pattern of inverse covariance

1 2 3 4 5

@ density of multivariate Gaussian X ~ N(0,07!):

det(©)
(27)p/2 P

P(z1,...,2p;,0) = (- %xT@z).

@ graphical model structured specified by zero-pattern of inverse covariance
matrix ©
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Discrete-variable graphical models

o random variable X at node s takes values in discrete space (e.g.,
X ={-1,41})

@ hierarchies of probability distributions:
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o random variable X at node s takes values in discrete space (e.g.,
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@ hierarchies of probability distributions:
» Independence model:
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Discrete-variable graphical models

o random variable X at node s takes values in discrete space (e.g.,

X ={-1,41})

@ hierarchies of probability distributions:
» Independence model:

P(x) exp{Z@ xs

seV

» Pairwise MRF (Ising model, 1923)

P(z) exp{ZGwer Z ﬂtmxt}

seV (s,t)EE

» Triplet MRF

P(z) = exp{ SO+ Y Oumemit+ Y OsuTemiaa}.

seV (s,t)EES (s,t,u)EE3

@ (hyper)graph structure enforces that 6, = 0 for all (uwv) ¢ E



Samples from binary-valued pairwise MRFs

M.

Independence model 65 = 0



Samples from binary-valued pairwise MRFs

: | *':':

[
Medium coupling 04 ~ 0.2



Samples from binary-valued pairwise MRFs

Strong coupling f4 = 0.8



Graphical model selection

@ let G = (V, E) be an undirected graph on p = |V| vertices
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P(z1,...,zp0) = Z(e)exp{(stz)gEﬁstxsxt}
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@ let G = (V, E) be an undirected graph on p = |V| vertices

@ pairwise Markov random field: family of prob. distributions

1
P(z1,...,zp0) = Z(e)exp{(stz)gEﬁstxsxt}

@ Problem of graph selection: given n independent and identically
distributed (i.i.d.) samples of X = (Xq,...,X,), identify the underlying
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Graphical model selection

@ let G = (V, E) be an undirected graph on p = |V| vertices

@ pairwise Markov random field: family of prob. distributions

1
P(z1,...,zp0) = Z(Q)exp{(stz);EQStmsxt}

@ Problem of graph selection: given n independent and identically
distributed (i.i.d.) samples of X = (Xq,...,X,), identify the underlying
graph structure

@ complexity constraint: restrict to subset G4, of graphs with maximum
degree d
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lllustration: Voting behavior of US senators

Graphical model fit to voting records of US senators (Bannerjee, El Ghaoui, &
d’Aspremont, 2008)



Outline of remainder of talk

© Background and framework
(a) Problem set-up
(b) Some challenges in distinguishing graphs
(c) Analysis in a high-dimensional framework

© Practical schemes
(a) Gaussian graphical models via log-determinant
(b) Discrete graphical models via logistic regression
(c) Sufficient conditions for high-dimensional consistency

© Fundamental limits

(a) An unorthodox channel coding problem
(b) Necessary conditions
(c) Sufficient conditions (optimal algorithms)

@ Various open questions......
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Guilt by association

@ Andrew (a) and Bob (b) are brothers
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Guilt by association

f e
@ Andrew (a) and Bob (b) are brothers
@ Bob (b) is part of a criminal network

@ Is Andrew also a criminal?



Some challenges in distinguishing graphs

@ clearly, a lower bound on the minimum edge weight is required:

. *
(sntl)lgE |95t| > amin,

although 6,in(p, d) = o(1) is allowed.

@ in contrast to other testing/detection problems, large |0;| also
problematic



Some challenges in distinguishing graphs

@ clearly, a lower bound on the minimum edge weight is required:

(Sntl)m 0%, > Omin,

although 6,in(p, d) = o(1) is allowed.
@ in contrast to other testing/detection problems, large |0;| also

problematic

Toy example: Graphs from Gs 5 (i.e., p=3;d=2), and z € {-1,+1}3

/NN

As 0 increases, all three Markov random fields become arbitrarily close to:

1/2 ifz e {(-1)3,(+1)3%}
0 otherwise.

P(J;l) $2,.T3) = {



High-dimensional analysis
@ classical analysis: dimension p fixed, sample size n — 400

@ high-dimensional analysis: allow both dimension p, sample size n, and
maximum degree d to increase at arbitrary rates

o take n ii.d. samples from MRF defined by G), 4
@ study probability of success as a function of three parameters:
Success(n,p,d) = P[Method recovers graph G, 4 from n samples]

@ theory is non-asymptotic: explicit probabilities for finite (n,p, d)



Some issues in graph selection

Consider some fixed loss function, and a fixed level § of error.

Limitations of tractable algorithms:
Given particular (polynomial-time) algorithms

@ for what sample sizes n do they succeed/fail to achieve error §7

@ given a collection of methods, when does more computation reduce minimum #
samples needed?

Information-theoretic limitations:

Data collection as communication from nature — statistician:
® what are fundamental limitations of problem (Shannon capacity)?
@ when are known (polynomial-time) methods optimal?

@ when are there gaps between poly.-time methods and optimal methods?
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§2. Practical methods: Gaussian graphical selection
@ recall form of Gaussian density in terms of inverse covariance ©:
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§2. Practical methods: Gaussian graphical selection
@ recall form of Gaussian density in terms of inverse covariance ©:

det(© 1
P(z1,...,2p;,0) = (27‘&';”/)2 exp ( — 5ITG)QU).

{1-regularized maximum likelihood:

~

© = argleng_%{—logdet@—i—(@’, o) + pn2|@1¢j|}.

i#]
~———
neg. log likelihood regularizer
@ plug-in approach: use samples X““), k=1,...,n to estimate covariance matrix

¥ = O~ ! via the sample covariance
sno= L SoX® (XM

n
k=1

@ regularization parameter p,, > 0 is a user-specified quantity

(e.g., Yuan & Lin, 2006; d’Asprémont et al., 2007; Friedman, 2008; Rothman et al., 2008)



Prob. of success

Empirical behavior: Unrescaled plots

Chain graph
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Plots of success probability versus raw sample size n.



Empirical behavior: Appropriately rescaled

Chain graph
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Plots of success probability versus control parameter 81 r(n, p,d).



Sufficient conditions for consistent model selection

@ graph sequences Gp.q = (V, E) with p vertices, and maximum degree d.

@ suitable regularity conditions on Hessian of log-determinant
T* .= (6*)71 ® (6*)71
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Sufficient conditions for consistent model selection

@ graph sequences Gp.q = (V, E) with p vertices, and maximum degree d.

@ suitable regularity conditions on Hessian of log-determinant
F* = (6*)71 ® (6*)71

Theorem

For multivariate Gaussian and sample size

n > crdilogp

and regularization parameter p, > ca T 105 P then with probability greater
than 1 — 2exp ( — c3(7 — 2)logp):
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@ graph sequences Gp.q = (V, E) with p vertices, and maximum degree d.

@ suitable regularity conditions on Hessian of log-determinant
F* = (6*)71 ® (6*)71

Theorem

For multivariate Gaussian and sample size

n > crdilogp

and regularization parameter p, > ca T 105 P then with probability greater

than 1 — 2exp ( — c3(7 — 2)logp):

(a) No false inclusions: The regularized log-determinant estimate O returns
an edge set E C E*.
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Sufficient conditions for consistent model selection

@ graph sequences Gp.q = (V, E) with p vertices, and maximum degree d.

@ suitable regularity conditions on Hessian of log-determinant
F* = (6*)71 ® (6*)71

Theorem

For multivariate Gaussian and sample size

n > crdilogp

and regularization parameter p, > ca T 105 P then with probability greater
than 1 — 2exp ( — c3(7 — 2)logp):

(a) No false inclusions: The regularized log-determinant estimate O returns
an edge set E C E*.

(b) lo-control: Estimate satisfies max; |@” — 05| < 2c4y/ %.

(c) Model selection consistency: If 6, > c;;ﬁ%, then E = E.
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Some consequences

Corollary

Under same conditions as theorem, operator morm consistency at rates:

d?logp
O( ),

max {[|© — ©[l2, | - X*[|2} -
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Some consequences

Corollary

Under same conditions as theorem, operator morm consistency at rates:

d?logp
o= )

@ sample covariance estimate is highly inconsistent in this regime:

||—ZX“ 0 2|||2>c\fe+oo

(Marcenko & Pastur, 1967; Davidson & Szarek, 2001)

max {[|© — ©[l2, | - X*[|2}
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Some consequences

Corollary

Under same conditions as theorem, operator morm consistency at rates:

o * $ * d?1
max {10 - ", IE -T2} = O(1/—=2L),

@ sample covariance estimate is highly inconsistent in this regime:

|||fZX(1 (XTI — 3y > c\f — 400

i=1

(Marcenko & Pastur, 1967; Davidson & Szarek, 2001)

@ Rothman et al. (2008) showed

~ ~ slo
max{\”@ — 0|2, JIZ — E*|||2} = O(\/ ngp), where s = # edges,

which is substantially weaker for d-regular graphs with s = ©(dp)
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Global max. likelihood for discrete models?
@ maximum likelihood for general graphical model in exponential family:

o~

0 = arg max ( tZ)EE 05t E[XX:] —log Z(0)
S,

empirical moments

Martin Wainwright (UC Berkeley) High-dimensional graph selection



Global max. likelihood for discrete models?
@ maximum likelihood for general graphical model in exponential family:

6 = argmax (;Eestzﬁz[xsm—logzw)
S,

empirical moments

@ exact likelihood involves log partition function

Jgn exp(—327 Oz)dx for Gaussian RV
log Z(0) = ; e (3 (e) Ostwsy)  for binary RV
rze—1,+1P
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Global max. likelihood for discrete models?
@ maximum likelihood for general graphical model in exponential family:

6 = argmax (;Eest E[XsX,] —log Z(0)
S,

empirical moments

@ exact likelihood involves log partition function

Jgn exp(—327 Oz)dx for Gaussian RV
log Z(0) = ; e (3 (e Ostsay)  for binary RV
re—1,+1P

@ key consequence: likelihood computation is
» straightfoward for Gaussian MRFs (log-determinant)
» intractable for Ising models (binary pairwise MRFs) (Welsh, 1993)
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Global max. likelihood for discrete models?
@ maximum likelihood for general graphical model in exponential family:

6 = argmax (;Eest E[XsX,] —log Z(0)
S,

empirical moments

@ exact likelihood involves log partition function

Jgn exp(—327 Oz)dx for Gaussian RV
log Z(0) = ; e (3 (e Ostsay)  for binary RV
re—1,+1P

@ key consequence: likelihood computation is
» straightfoward for Gaussian MRFs (log-determinant)
» intractable for Ising models (binary pairwise MRFs) (Welsh, 1993)

@ possible work-arounds:
» MCMC methods
» stochastic approximation methods
» variational approximations (mean field, Bethe and belief propagation)
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Markov property and neighborhood structure

@ Markov properties encode neighborhood structure:

d
(Xs | XV\s) = (Xs | XN(S))
—_— —_—
Condition on full graph Condition on Markov blanket

N(s) = {s,t,u,v,w}

@ basis of pseudolikelihood method (Besag, 1974)
@ used for Gaussian model selection (Meinshausen & Buhlmann, 2006)
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Graph selection via neighborhood regression

Observation: Recovering graph G equivalent to recovering neighborhood set N (s)
forall s e V.

Method: Given n i.i.d. samples {X(l)7 RN X(”)}7 perform logistic regression of
each node X, on X\, := {Xs, t # s} to estimate neighborhood structure N(s).

@ For each node s € V, perform ¢; regularized logistic regression of X on the
remaining variables X\ :

0s] = arg min fGX() + pn |0
[s] { Z 1612

1
OERP™ i=1 W—’
logistic likelihood regularization

© Estimate the local neighborhood N(s) as the support (non-negative entries) of
the regression vector 6[s].

© Combine the neighborhood estimates in a consistent manner (AND, or OR
rule).
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Empirical behavior: Unrescaled plots

Star graph; Linear fraction neighbors

Prob. success

0.2r ;! ——p= 64|
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0 > T

0 100 200 300 400 500 600
Number of samples
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Empirical behavior: Appropriately rescaled

Star graph; Linear fraction neighbors
1 ; __A A

o o
()] (o]

©
~

Prob. success

0.2 ——p= 64|
—e—p =100
-*-p=225
0 L T
0 1 1.5 2

Control parameter
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Sufficient conditions for consistent model selection

@ graph sequences Gp.q = (V, E) with p vertices, and maximum degree d.
@ edge weights |0s¢| > Omin for all (s,t) € E

@ draw n i.i.d, samples, and analyze prob. success indexed by (n,p, d)

Theorem




Sufficient conditions for consistent model selection

@ graph sequences Gp.q = (V, E) with p vertices, and maximum degree d.
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Under incoherence conditions, for a rescaled sample size (RavWaiLaf06)
OLr(n, p,d) _ T s
n,p, = i
LR p 43 logp crit

and regularization parameter p, > c1 T 105 P then with probability greater
than 1 — 2exp ( —co(T —2) logp) — 1:

(a) Uniqueness: For each node s € V, the {1-regularized logistic convex
program has a unique solution. (Non-trivial since p > n == not strictly convez).
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Sufficient conditions for consistent model selection

@ graph sequences Gp.q = (V, E) with p vertices, and maximum degree d.
@ edge weights |0s¢| > Omin for all (s,t) € E

@ draw n i.i.d, samples, and analyze prob. success indexed by (n,p, d)

Theorem
Under incoherence conditions, for a rescaled sample size (RavWaiLaf06)
OLr(n, p,d) _ T s
n,p, = i
LR p 43 logp crit

and regularization parameter p, > c1 T 105 P then with probability greater

than 1 — 2exp ( —co(T —2) logp) — 1:

(a) Uniqueness: For each node s € V, the {1-regularized logistic convex
program has a unique solution. (Non-trivial since p > n == not strictly convez).

(b) Correct exclusion: The estimated sign neighborhood N(s) correctly
excludes all edges not in the true neighborhood.

(c) Correct inclusion: For 0., > cs7Vdpy, the method selects the correct
signed neighborhood.

Consequence: For 0, = Q(1/d), it suffices to have n = Q(d® log p).




Results for 8-grid graphs

8-nearest neighbor grid (attractive)
1 ‘ ‘ :

o
o)

o
fe)

Prob. success

©
~

Control parameter

Prob. of success IP’[@ = G] versus rescaled sample size 01 g(n,p,d>) = Tlogp
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Assumptions

Define Fisher information matrix of logistic regression:

Q" ==Ky [V2f (0" X)].

Al. Dependency condition: Bounded eigenspectra:

Omin S Amzn(QgS)a and )\mam(QZS) S Cmaw-

Amaz(Bp« [XXT]) < Diax.
A2. Incoherence There exists an v € (0, 1] such that
1Q5:5(Q%5) Mlooe < 1-w.
where || A co,00 = max; Zj |4l
@ bounds on eigenvalues are fairly standard

@ incoherence condition:

» partly necessary (prevention of degenerate models)
» partly an artifact of £;-regularization

@ incoherence condition is weaker than correlation decay

Martin Wainwright (UC Berkeley) High-dimensional graph selection September 2009
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63. Info. theory: Graph selection as channel coding

@ graphical model selection is an unorthodox channel coding problem:
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63. Info. theory: Graph selection as channel coding

@ graphical model selection is an unorthodox channel coding problem:

» codewords/codebook: graph G in some graph class G

» channel use: draw sample X (¥ = (Xfi), ..., XY from Markov random
field Pg(G)

» decoding problem: use n samples {X(1>, . ,X(">} to correctly distinguish
the “codeword”

23
mg
5
29

P(X | G) X0, xm
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63. Info. theory: Graph selection as channel coding

@ graphical model selection is an unorthodox channel coding problem:

» codewords/codebook: graph G in some graph class G

» channel use: draw sample X (¥ = (Xfi), ..., XY from Markov random
field Pg(G)

» decoding problem: use n samples {X(1>, . ,X(">} to correctly distinguish
the “codeword”

P(X | G) X0, xm

T

Channel capacity for graph decoding determined by balance between

@ log number of models

@ relative distinguishability of different models
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Necessary conditions for G,

@ G € Ggp: graphs with p nodes and max. degree d
@ Ising models with:
» Minimum edge weight: |05 > Omin for all edges

» Mazimum neighborhood weight: w(0) := max S |0%]
s tEN(s)
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Necessary conditions for G,

@ G € Ggp: graphs with p nodes and max. degree d
@ Ising models with:

» Minimum edge weight: |05 > Omin for all edges
> Mazimum neighborhood weight: w(f) := max Y. [0%]

S€EV e N(s)
Theorem
If the sample size n is upper bounded by (Santhanam & W, 2008)
- max {d log P exp( ) dfrmin log(pd/8) logp }
n m
S 8d’ 128 exp(2min ) " 2010 tanh(frmin )

then the probability of error of any algorithm over Gq, is at least 1/2.
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Necessary conditions for G,

@ G € Ggp: graphs with p nodes and max. degree d
@ Ising models with:
» Minimum edge weight: |05 > Omin for all edges

» Mazimum neighborhood weight: w(0) = max S |0%]
s tEN(s)

Theorem
If the sample size n is upper bounded by (Santhanam & W, 2008)

p CXp( % ) d9m1n 10g (pd/8) Ing }

d
1
"os max{ %88’ 128 exp(2sn) * 20inin tanh(fmm)

then the probability of error of any algorithm over Gq, is at least 1/2.

Interpretation:
@ Naive bulk effect: Arises from log cardinality log |Gy |
o d-clique effect: Difficulty of separating models that contain a near d-clique
@ Small weight effect: Difficult to detect edges with small weights.
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Some consequences

Corollary

For asymptotically reliable recovery over Gq,, any algorithm requires at least
n = Q(d?logp) samples.
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Some consequences

Corollary

For asymptotically reliable recovery over Gqp, any algorithm requires at least
n = Q(d?logp) samples.

@ note that maximum neighborhood weight w(6*) > d 6,,;, = require

Ornin = O(1/d)
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Some consequences

Corollary

For asymptotically reliable recovery over Gqp, any algorithm requires at least
n = Q(d?logp) samples.

@ note that maximum neighborhood weight w(6*) > d 6,,;, = require

Omin = O(1/d)
@ from small weight effect

logp logp
el )y = (==&
Gmin tanh(@min) ) ( 92 )

min

n =
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Some consequences

Corollary

For asymptotically reliable recovery over Gqp, any algorithm requires at least
n = Q(d?logp) samples.

@ note that maximum neighborhood weight w(6*) > d 6,,;, = require

Omin = O(1/d)
@ from small weight effect

logp logp
el )y = (==&
Omin tanh(@min) ) ( 92 )

min

n =

@ conclude that ¢;-regularized logistic regression (LR) is within ©(d) of
optimal for general graphs (Ravikumar., W. & Lafferty, 2006)
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Some consequences

Corollary

For asymptotically reliable recovery over Gqp, any algorithm requires at least
n = Q(d?logp) samples.

@ note that maximum neighborhood weight w(6*) > d 6,,;, = require

Omin = O(1/d)
@ from small weight effect

logp logp
_er Yy =0
Gmin tanh(ﬁmin) ) ( 92 )

min

n =

@ conclude that ¢;-regularized logistic regression (LR) is within ©(d) of
optimal for general graphs (Ravikumar., W. & Lafferty, 2006)

@ for bounded degree graphs:
» (1-LR order-optimal under incoherence conditions with cost O(p*)
» thresholding procedure order-optimal under correlation decay, also with
polynomial complexity (Bresler, Sly & Mossel, 2008)
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Proof sketch: Main ideas for necessary conditions

@ based on assessing difficulty of graph selection over various sub-ensembles

g C gp,d

Martin Wainwright (UC Berkeley) High-dimensional graph selection



Proof sketch: Main ideas for necessary conditions

@ based on assessing difficulty of graph selection over various sub-ensembles

g C gp,d

@ choose G € G u.a.r., and consider multi-way hypothesis testing problem
based on the data Xp = {X1) ... X}
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Proof sketch: Main ideas for necessary conditions

@ based on assessing difficulty of graph selection over various sub-ensembles

g C gp,d

@ choose G € G u.a.r., and consider multi-way hypothesis testing problem
based on the data Xp = {X1) ... X}

o for any graph estimator ¢ : X" — G, Fano’s inequality implies that

1(X7;G)

BIU(XY) £6) 2 1 S

—o(1)

where I(X7; G) is mutual information between observations X7 and
randomly chosen graph G
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Proof sketch: Main ideas for necessary conditions

@ based on assessing difficulty of graph selection over various sub-ensembles

g C gp,d

@ choose G € G u.a.r., and consider multi-way hypothesis testing problem
based on the data Xp = {X1) ... X}

o for any graph estimator ¢ : X" — G, Fano’s inequality implies that

1(X7;G)

BIU(XY) £6) 2 1 S

—o(1)

where I(X7; G) is mutual information between observations X7 and
randomly chosen graph G
@ remaining steps:
© Construct “difficult” sub-ensembles G C GOp.d

© Compute or lower bound the log cardinality log|G|.

© Upper bound the mutual information I(X7;G).
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Two straightforward ensembles

@ Naive bulk ensemble: All graphs on p vertices with max. degree d (i.e.,
g = gp,d)

simple counting argument: log |G, 4| = © (pdlog(p/d))

trivial upper bound: I(XT;G) < H(X?) < np.

substituting into Fano yields necessary condition n = Q(dlog(p/d))

this bound independently derived by different approach by Bresler et al.

(2008)

v vyVvyy

© Small weight effect: Ensemble G consisting of graphs with a single edge
with weight 6 = O,

» simple counting: log |G| = log (})
» upper bound on mutual information:
1 .
I(X7;G) < ) > DOGT)]0GM)).
2/ (i,5),(k,£)EE
» upper bound on symmetrized Kullback-Leibler divergences:

D(0(G)||0(G**)) + D(0(G*)[|0(GY)) < 201min tanh(Oimin/2)

» substituting into Fano yields necessary condition n = Q(#M)



A harder d-clique ensemble

Constructive procedure:
© Divide the vertex set V' into | /25 | groups of size d + 1.
© Form the base graph G by making a (d + 1)-clique within each group.
© Form graph G"* by deleting edge (u,v) from G.
© Form Markov random field Py(guvy by setting 65 = Opin for all edges.

PP PR |
@%@ P @%@@%

) Base graph G (b) Graph G** c¢) Graph G*¢

@ For d < p/4, we can form

612 L2 (3 1) = o)

such graphs.



Summary and open questions

@ Practical methods:
» Log-determinant for Gaussian graphical models:
1
N d’} logp.

min

n > ¢1 max{

» Logistic regression for discrete models succeeds with sample size:

d
02—,d3} log p.

min

n > c¢1 max{
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Summary and open questions

@ Practical methods:
» Log-determinant for Gaussian graphical models:

n>c max{‘92 ,d*} log p.

min

» Logistic regression for discrete models succeeds with sample size:

n > c¢1 max{ 02d ,d*} log p.

min

@ Fundamental limit: Any algorithm fails for sample size

n < cg max{-—5— 02 ,d*} logp

min
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Summary and open questions

@ Practical methods:
» Log-determinant for Gaussian graphical models:
1
N d*} log p.

min

n > ¢ max{

» Logistic regression for discrete models succeeds with sample size:

d
62—,613} log p.

min

n > c¢1 max{

@ Fundamental limit: Any algorithm fails for sample size

1 -
n < ¢y max{——,d*} logp

min

@ some extensions and open questions:

» non-binary discrete MRFs via block-structured regularization schemes

» other performance metrics (e.g, (1 — §) edges correct)

» broader issue: optimal trade-offs between statistical/computational
efficiency?
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A key separation lemma

Strategy: Upper bound the mutual information by controlling the
symmetrized Kullback-Leibler divergence:

SOG*H6(G*)) = D(O(G=)[|6(G™)) + D(6(G**)[|6(G*))
Lemma

For the given ensemble, the symmetrized KL divergence is upper bounded as
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A key separation lemma

Strategy: Upper bound the mutual information by controlling the
symmetrized Kullback-Leibler divergence:

SOGH0(G™)) = D(O(G)[|I0(G™)) + D(O(G™)[[0(G™))

Lemma

For the given ensemble, the symmetrized KL divergence is upper bounded as

8dBOrmin €XP(30min/2)

SO(G6(G™)) < xp(@fmin/2)

Key consequences:

@ complexity controls exponentially in maximum neighborhood weight

w(0*) := max Z |05t ].

tEN(s

@ combining with Fano’s inequality yields the necessary condition

exp(#) dOrmin log(pd/8)
128 exp( 7‘393““ )




Sufficient conditions for G,

@ G € Ggp: graphs with p nodes and max. degree d
@ Ising models with:

> Minimum edge weight: |0%;] > Omin for all edges

» Mazimum neighborhood weight: w(0) := max S |0%]
s teEN(s)
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Sufficient conditions for G,

@ G € Ggp: graphs with p nodes and max. degree d
@ Ising models with:

> Minimum edge weight: |0%;] > Omin for all edges

» Mazimum neighborhood weight: w(0) := max S |0%]
s teEN(s)

Theorem

There is an (exponential-time) method that succeeds if

6 exp(2w(0)) dlogp 8logp }
b 02 .

n > max{dlogp,
Slnh2(@) min
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Sufficient conditions for G,

@ G € Ggp: graphs with p nodes and max. degree d
@ Ising models with:

> Minimum edge weight: |0%;] > Omin for all edges

> Mazimum neighborhood weight: w(0) := max Y. [0%]
SEV LeN(s)

Theorem
There is an (exponential-time) method that succeeds if
6 exp(2w(0))

dlogp,
sinh?( % )

)

min

n > max {dlogp,

Comments:

@ to avoid exponential penalty via maximum neighborhood term, require
that Gmin = O(l/d)

@ leads to simplified lower bound n = Q(max { gﬁg'p , d*logp})
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