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Wireless network
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High-Level Goal

 Different types of traffic sharing the wireless 

network:

 Unicast and multicast

 Short-lived flows and long-lived flows

 Elastic and Inelastic

 Non-real-time and Real-time (with delay & jitter 

requirements)

 Need an efficient protocol stack to allocate 

resources between these different types of flows.
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Outline of the Talk

 Basic Theory (2005)

 Optimization and Resource Allocation

 Traditional results for long-lived elastic flows 

only

 New Results (2009)

 Packets with strict deadlines

 Mixture of flows with finite sizes and persistent 

flows
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2-Link, 2-User wireless network

User 1

User 2

cA=1
cB=1

 Links A and B can serve one packet in each time instant

 Both links cannot be active simultaneously: interference 

constraint

 Two users:

 User 1 traverses link A only

 User 2 traverses link B only

 How should we divide the capacity of the two links between 

the two users while respecting the interference constraint?
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What is Resource Allocation?

User 1

User 2

cA=1
cB=1

 Determine the appropriate values for these variables

 x1: rate at which user 1 is allowed to transmit 

data

 x2: rate at which user 2 is allowed to transmit 

data

 ¹a: fraction of time link a is active

 ¹b: fraction of time link b is active
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2-Link, 2-User wireless network

User 1

User 2

cA=1
cB=1

Flow conservation 

constraint for at Link 1: 

x1 is the arrival rate of 

user 1

a is the fraction of

time link A is activated

Either link A or 

link B can be 

active, but not 

both.

Constraints:

(associate a utility 

function with each 

user)

x0 · ¹ax1 · ¹a

x1 ·  a

x2 ·  b

 a+ b · 1
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Lagrange Multipliers

subject to
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Lagrangian Decomposition

Congestion control:

 User 1:

…

MaxWeight Algorithm for Scheduling:

Solution is an extreme point! 

Only one link activated at a time
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Resource Constraints and Queue Dynamics

subject to

• Lagrange multipliers 

= Queue lengths
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Recap: Queueing and Optimization

 Each constraint is represented by a queue:

y ≤ x

 Stability of the queue implies constraint is satisfied and 

vice-versa; resource allocation is some form of the 

Maxweight algorithm with queue lengths as weights

 Dual formulation reveals the form of the MaxWeight algorithm 

(Tassiulas-Ephremides, 1992)

 Queue length proportional to the Lagrange multiplier 

(stochastic arrivals/departures , ²: step-size parameter):

q(k+1)=[q(k)+² (Y(k)-X(k))]+

y x
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Typical Theorem

 Let

 J* be the optimal value of the objective of the 

deterministic problem

 Jst be the long-run average objective in the real system, 

which is usually stochastic (stochastic arrivals, 

stochastic channels, etc.)

 Theorem: The queues are stable. Further, 

E(Jst) ¸ J* - K²;E(l ql) · f(1/²)

• Eryilmaz & Srikant (2005); Neely, Modiano, Li (2005); Stolyar (2005);

Decomposition also by Lin & Shroff (2004)
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Issues

 All constraints formulated in terms of long-term averages

 Does this mean only long-lived elastic flows can be 

modeled using this framework?

 We will present two applications which can be modeled 

using this framework:

 Packets with deadlines: constraint in terms of lower bounds on the 

long-run fraction of packets delivered before deadline expiry, i.e., a 

certain % of packets have to served before deadline expires

 A mixture of long-lived and short-lived flows: Short-lived flows 

bring a finite number of packets to the network and depart when 

their packets are delivered.
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Application I: Per-packet Deadlines

 Consider an ad hoc network consisting of L links

 Time is divided into frames of T slots each (Hou, Borkar, 

Kumar, „09)

 QoS requirement for link l: fraction of packets lost due to 

deadline expiry has to be less than or equal to pl

1 2 T……..

Arrivals to each link occur here;

Single-hop traffic only

Packets not served by the 

end of the frame are lost



15

Schedule (Matrix) for Each Frame

Time 

Slot 1

Time 

Slot 2

. . Time 

Slot T

Link 1 1

(ON)

0 0 1 1

Link 2 1 0 1 0 0

. 0 

(OFF)

1 0 0 1

. 0 1 0 0 1

Link L 0 1 1 0 0

 In each time slot, 

select a set of links 

to be ON, while 

satisfying some 

interference 

constraints

 Thus, a schedule is 

an LxT matrix of 1s 

and 0s

Problem: Find a schedule in each frame such that the QoS constraints are 

satisfied for each link
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An Optimization Formulation

 Slk = 1 if link l is scheduled in time slot k

 Al: Number of arrivals to link l in a frame, a random 

variable, with mean ¸l (unknown)

 Constraint: Average number of slots allocated must be 

greater than or equal to the QoS requirement for each link l

E[min(k Slk, Al)]  ¸ ¸l(1-pl)

 A dummy optimization problem (B is some constant):

max B
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Fictitious Queue

 Recall    x ≥ y corresponds to

 Similarly,

corresponds to

y x

E[min(k Slk, Al)]  ¸ ¸l(1-pl)

Upon each packet arrival
to link l, add a packet to
this queue with prob.
(1-pl)

Remove packet
from the queue
every time a packet
is successfully 
scheduledDeficit counter:

Keeps track of 
deficit in QoS
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Optimal Schedule

 dl: deficit of link l

 Choose a schedule at each frame to maximize 

l dl (k Slk) 

subject to                        k Slk · Al

 This is simply the MaxWeight algorithm where the deficits

are used as weights, instead of real queue lengths

 The constraint simply states that the number of slots

allocated to link l in a frame should not be greater than the

number of arrivals in the frame

# slots allocated to link l
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Resource Allocation

 Beyond just meeting constraints: allocate extra resources to 

meet some fairness constraint

max l wl (k Slk)

subject to            E[min(k Slk, Al)]  ¸ ¸l(1-pl)

 Optimal Solution becomes obvious after adding constraint 

to the objective using Lagrange multipliers: Choose 

schedule S in each frame to maximize

l (wl+² dl)(k Slk) 
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Theorem

 Result 1: 

E(wl xli) - lwl xli
* = O(²)

 Result 2:

E(l dl) = O(1/²)

² provides a tradeoff between optimality and queue 

lengths and deficits
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Application II: Downlink Scheduling

 Model: A Base station transmitting to a number of receivers

 The base station can transmit to only one user at a time

 Classical Model: a fixed number of users, say N

 Each user‟s channel can be in one of many states:

 Ri(t): Rate at which the base station can transmit to 

User i if it chooses to schedule user i

 Classical problem (channel states are known to the base 

station): Which user should the base station select for 

transmission at each time instant?
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Classical Solution

 Suppose that the goal is to maximize network throughput:

 i.e., the queues in the network must be stable as long as 

the arrival rates lie within the capacity region of the 

system

 (Tassiulas-Ephremides „92): Transmit to user i such that

i 2 arg max
j

q
j
(t) R

j
(t)

 Solution can be derived from optimization considerations as 

mentioned earlier in the case of ad hoc networks

 One has to simply account for the time-variations in the 

channel
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New Model: Short-lived Flows

 What if the number of flows in the network is not fixed?

 Each flow arrives with a finite number of bits. Departs 

when all of its bits are served

 Flows arrive according to some stochastic process 

(Poisson, Bernoulli, etc.)

 The number of bits in each flow is finite, so need a different 

notion of stability since queues cannot become large

 Need the number of flows in the system to be “finite” 

Van de Ven, Borst, Shneer „09:  The MaxWeight algorithm 

need not be stabilizing; the number of flows can become 

infinite even when the load lies within the capacity region
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Necessary condition for stability

 Suppose each channel has a maximum rate Rmax

 A necessary condition for stability: 

 F: File size, a random variable.  Expected number of 

time slots (workload) required to serve a file is

E(d F/Rmax e),

achieved when each user transmits only when its

channel is in the best condition

 ¸: Rate of flow arrivals (number of flows per time slot)

Necessary condition for stability : ¸ E(d F/Rmax e) ≤ 1
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Scheduling Algorithm

 Transmit to the user with the best rate at each time instant, 

Maxi Ri(t)

 Does not even consider queue lengths in making scheduling 

decisions

 Why does it work?

 When the number of flows in the network is large, some 

flow must have a rate equal to Rmax with high 

probability

 Thus, we schedule users when their channel condition is 

the best; therefore, we use the minimum number of time 

slots to serve a user
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Short-Lived and Long-Lived Flows

 Now consider the situation where there are some long-lived 

(persistent) flows in the networks

 For simplicity, we will consider the case of one long-lived 

flow which generates packets at rate º packets per time slot

 Solution: using an optimization formulation
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Capacity constraints

 Rc: rate at which the long-lived flow can be served when its 

channel state is c (a random variable)

 ¼c: probability that the long-lived channel state is c

 pc: probability of serving the long-flow in state c

 Constraints: 

 Long-lived flows: º · 
c
¼

c
p

c
R

c

 Short-lived flows: ¸ E(d F/Rmax e) · 
c
¼

c
(1-p

c
)
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Optimization Interpretation

 Lagrange multiplier of º · 
c
¼

c
p

c
R

c

 Left-hand side is packet arrival rate, right hand side is 

packet departure rate of long-lived flows

 So the Lagrange multiplier is (proportional to) the 

queue length of the long-lived flow

 Lagrange multiplier of ¸ E(d F/Rmax e) · 
c
¼

c
(1-p

c
)

 Left-hand side is the minimum number of slots 

(workload) required to serve short-lived flows, the 

right-hand side is the number of slots available 

 So, the Lagrange multiplier is (proportional to) the 

minimum number of slots required (workload) to serve 

the short-lived flows in the solution
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Optimization Solution

 If the workload of short-lived flows is larger than the queue 

length of the long-lived flow, then serve a short-lived flow

 Choose the flow with the best channel condition

 Else, serve the long-lived flow

 Extensions: 

 More than one long-lived flow

 Different short-lived flows have different Rmax

 The Rmax‟s are unknown; learn them, by using the best 

channel condition seen by each flow so far



33

Simulations
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Conclusions

 Optimization theory provides a cookbook for solving 

resource allocation problems in communication networks

 Lagrange multipliers are proportional to queue lengths

 May need to interpret “queue length” appropriately: 

e.g., deficit counter, workload

 Resource allocation decisions are made by comparing 

Lagrange multipliers using the MaxWeight algorithm

 Typically obvious when writing out the dual formulation 

 Tradeoff between optimality and queue lengths using the 

drift of Lyapunov functions


