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Wireless network
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High-Level Goal

 Different types of traffic sharing the wireless 

network:

 Unicast and multicast

 Short-lived flows and long-lived flows

 Elastic and Inelastic

 Non-real-time and Real-time (with delay & jitter 

requirements)

 Need an efficient protocol stack to allocate 

resources between these different types of flows.
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Outline of the Talk

 Basic Theory (2005)

 Optimization and Resource Allocation

 Traditional results for long-lived elastic flows 

only

 New Results (2009)

 Packets with strict deadlines

 Mixture of flows with finite sizes and persistent 

flows
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2-Link, 2-User wireless network

User 1

User 2

cA=1
cB=1

 Links A and B can serve one packet in each time instant

 Both links cannot be active simultaneously: interference 

constraint

 Two users:

 User 1 traverses link A only

 User 2 traverses link B only

 How should we divide the capacity of the two links between 

the two users while respecting the interference constraint?
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What is Resource Allocation?

User 1

User 2

cA=1
cB=1

 Determine the appropriate values for these variables

 x1: rate at which user 1 is allowed to transmit 

data

 x2: rate at which user 2 is allowed to transmit 

data

 ¹a: fraction of time link a is active

 ¹b: fraction of time link b is active
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2-Link, 2-User wireless network

User 1

User 2

cA=1
cB=1

Flow conservation 

constraint for at Link 1: 

x1 is the arrival rate of 

user 1

a is the fraction of

time link A is activated

Either link A or 

link B can be 

active, but not 

both.

Constraints:

(associate a utility 

function with each 

user)

x0 · ¹ax1 · ¹a

x1 ·  a

x2 ·  b

 a+ b · 1
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Lagrange Multipliers

subject to
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Lagrangian Decomposition

Congestion control:

 User 1:

…

MaxWeight Algorithm for Scheduling:

Solution is an extreme point! 

Only one link activated at a time



10

Resource Constraints and Queue Dynamics

subject to

• Lagrange multipliers 

= Queue lengths
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Recap: Queueing and Optimization

 Each constraint is represented by a queue:

y ≤ x

 Stability of the queue implies constraint is satisfied and 

vice-versa; resource allocation is some form of the 

Maxweight algorithm with queue lengths as weights

 Dual formulation reveals the form of the MaxWeight algorithm 

(Tassiulas-Ephremides, 1992)

 Queue length proportional to the Lagrange multiplier 

(stochastic arrivals/departures , ²: step-size parameter):

q(k+1)=[q(k)+² (Y(k)-X(k))]+

y x
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Typical Theorem

 Let

 J* be the optimal value of the objective of the 

deterministic problem

 Jst be the long-run average objective in the real system, 

which is usually stochastic (stochastic arrivals, 

stochastic channels, etc.)

 Theorem: The queues are stable. Further, 

E(Jst) ¸ J* - K²;E(l ql) · f(1/²)

• Eryilmaz & Srikant (2005); Neely, Modiano, Li (2005); Stolyar (2005);

Decomposition also by Lin & Shroff (2004)
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Issues

 All constraints formulated in terms of long-term averages

 Does this mean only long-lived elastic flows can be 

modeled using this framework?

 We will present two applications which can be modeled 

using this framework:

 Packets with deadlines: constraint in terms of lower bounds on the 

long-run fraction of packets delivered before deadline expiry, i.e., a 

certain % of packets have to served before deadline expires

 A mixture of long-lived and short-lived flows: Short-lived flows 

bring a finite number of packets to the network and depart when 

their packets are delivered.
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Application I: Per-packet Deadlines

 Consider an ad hoc network consisting of L links

 Time is divided into frames of T slots each (Hou, Borkar, 

Kumar, „09)

 QoS requirement for link l: fraction of packets lost due to 

deadline expiry has to be less than or equal to pl

1 2 T……..

Arrivals to each link occur here;

Single-hop traffic only

Packets not served by the 

end of the frame are lost
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Schedule (Matrix) for Each Frame

Time 

Slot 1

Time 

Slot 2

. . Time 

Slot T

Link 1 1

(ON)

0 0 1 1

Link 2 1 0 1 0 0

. 0 

(OFF)

1 0 0 1

. 0 1 0 0 1

Link L 0 1 1 0 0

 In each time slot, 

select a set of links 

to be ON, while 

satisfying some 

interference 

constraints

 Thus, a schedule is 

an LxT matrix of 1s 

and 0s

Problem: Find a schedule in each frame such that the QoS constraints are 

satisfied for each link
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An Optimization Formulation

 Slk = 1 if link l is scheduled in time slot k

 Al: Number of arrivals to link l in a frame, a random 

variable, with mean ¸l (unknown)

 Constraint: Average number of slots allocated must be 

greater than or equal to the QoS requirement for each link l

E[min(k Slk, Al)]  ¸ ¸l(1-pl)

 A dummy optimization problem (B is some constant):

max B
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Fictitious Queue

 Recall    x ≥ y corresponds to

 Similarly,

corresponds to

y x

E[min(k Slk, Al)]  ¸ ¸l(1-pl)

Upon each packet arrival
to link l, add a packet to
this queue with prob.
(1-pl)

Remove packet
from the queue
every time a packet
is successfully 
scheduledDeficit counter:

Keeps track of 
deficit in QoS
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Optimal Schedule

 dl: deficit of link l

 Choose a schedule at each frame to maximize 

l dl (k Slk) 

subject to                        k Slk · Al

 This is simply the MaxWeight algorithm where the deficits

are used as weights, instead of real queue lengths

 The constraint simply states that the number of slots

allocated to link l in a frame should not be greater than the

number of arrivals in the frame

# slots allocated to link l
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Resource Allocation

 Beyond just meeting constraints: allocate extra resources to 

meet some fairness constraint

max l wl (k Slk)

subject to            E[min(k Slk, Al)]  ¸ ¸l(1-pl)

 Optimal Solution becomes obvious after adding constraint 

to the objective using Lagrange multipliers: Choose 

schedule S in each frame to maximize

l (wl+² dl)(k Slk) 
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Theorem

 Result 1: 

E(wl xli) - lwl xli
* = O(²)

 Result 2:

E(l dl) = O(1/²)

² provides a tradeoff between optimality and queue 

lengths and deficits
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Application II: Downlink Scheduling

 Model: A Base station transmitting to a number of receivers

 The base station can transmit to only one user at a time

 Classical Model: a fixed number of users, say N

 Each user‟s channel can be in one of many states:

 Ri(t): Rate at which the base station can transmit to 

User i if it chooses to schedule user i

 Classical problem (channel states are known to the base 

station): Which user should the base station select for 

transmission at each time instant?
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Classical Solution

 Suppose that the goal is to maximize network throughput:

 i.e., the queues in the network must be stable as long as 

the arrival rates lie within the capacity region of the 

system

 (Tassiulas-Ephremides „92): Transmit to user i such that

i 2 arg max
j

q
j
(t) R

j
(t)

 Solution can be derived from optimization considerations as 

mentioned earlier in the case of ad hoc networks

 One has to simply account for the time-variations in the 

channel
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New Model: Short-lived Flows

 What if the number of flows in the network is not fixed?

 Each flow arrives with a finite number of bits. Departs 

when all of its bits are served

 Flows arrive according to some stochastic process 

(Poisson, Bernoulli, etc.)

 The number of bits in each flow is finite, so need a different 

notion of stability since queues cannot become large

 Need the number of flows in the system to be “finite” 

Van de Ven, Borst, Shneer „09:  The MaxWeight algorithm 

need not be stabilizing; the number of flows can become 

infinite even when the load lies within the capacity region
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Necessary condition for stability

 Suppose each channel has a maximum rate Rmax

 A necessary condition for stability: 

 F: File size, a random variable.  Expected number of 

time slots (workload) required to serve a file is

E(d F/Rmax e),

achieved when each user transmits only when its

channel is in the best condition

 ¸: Rate of flow arrivals (number of flows per time slot)

Necessary condition for stability : ¸ E(d F/Rmax e) ≤ 1



28

Scheduling Algorithm

 Transmit to the user with the best rate at each time instant, 

Maxi Ri(t)

 Does not even consider queue lengths in making scheduling 

decisions

 Why does it work?

 When the number of flows in the network is large, some 

flow must have a rate equal to Rmax with high 

probability

 Thus, we schedule users when their channel condition is 

the best; therefore, we use the minimum number of time 

slots to serve a user
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Short-Lived and Long-Lived Flows

 Now consider the situation where there are some long-lived 

(persistent) flows in the networks

 For simplicity, we will consider the case of one long-lived 

flow which generates packets at rate º packets per time slot

 Solution: using an optimization formulation
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Capacity constraints

 Rc: rate at which the long-lived flow can be served when its 

channel state is c (a random variable)

 ¼c: probability that the long-lived channel state is c

 pc: probability of serving the long-flow in state c

 Constraints: 

 Long-lived flows: º · 
c
¼

c
p

c
R

c

 Short-lived flows: ¸ E(d F/Rmax e) · 
c
¼

c
(1-p

c
)
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Optimization Interpretation

 Lagrange multiplier of º · 
c
¼

c
p

c
R

c

 Left-hand side is packet arrival rate, right hand side is 

packet departure rate of long-lived flows

 So the Lagrange multiplier is (proportional to) the 

queue length of the long-lived flow

 Lagrange multiplier of ¸ E(d F/Rmax e) · 
c
¼

c
(1-p

c
)

 Left-hand side is the minimum number of slots 

(workload) required to serve short-lived flows, the 

right-hand side is the number of slots available 

 So, the Lagrange multiplier is (proportional to) the 

minimum number of slots required (workload) to serve 

the short-lived flows in the solution
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Optimization Solution

 If the workload of short-lived flows is larger than the queue 

length of the long-lived flow, then serve a short-lived flow

 Choose the flow with the best channel condition

 Else, serve the long-lived flow

 Extensions: 

 More than one long-lived flow

 Different short-lived flows have different Rmax

 The Rmax‟s are unknown; learn them, by using the best 

channel condition seen by each flow so far
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Simulations
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Conclusions

 Optimization theory provides a cookbook for solving 

resource allocation problems in communication networks

 Lagrange multipliers are proportional to queue lengths

 May need to interpret “queue length” appropriately: 

e.g., deficit counter, workload

 Resource allocation decisions are made by comparing 

Lagrange multipliers using the MaxWeight algorithm

 Typically obvious when writing out the dual formulation 

 Tradeoff between optimality and queue lengths using the 

drift of Lyapunov functions


