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Multagent scenarios

• Traffic

• Evolution of convention

• Social network formation

• Auctions & markets

• Voting

• etc

• Game elements (inherited):

– Actors/players
– Choices
– Preferences

Descriptive Agenda
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More multiagent scenarios

• Weapon-target assignment

• Data network routing

• Mobile sensor coverage

• Autonomous vehicle teams

• etc

• Game elements (designed):

– Actors/players
– Choices
– Preferences

Prescriptive Agenda
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Prescriptive agenda metrics

• Prescriptive agenda = distributed robust optimization

• Choose to address cooperation as noncooperative game

• Players are programmable components (vs humans)

• Must specify

– Elements of game (players, actions, payoffs)
– Learning algorithm

• Metrics:

– Information available to agent?
– Communications/stage?
– Processing/stage?
– Asymptotic behavior?
– Global objective performance?
– Convergence rates?

3



Outline

• Game theoretic learning

• Special class: Potential games

• Survey of algorithms

• Illustrations
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Running examples

Distributed routing
Multi-agent sudoku
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Game setup & Nash equilibrium

• Setup:

– Players: {1, ..., p}
– Actions: ai ∈ Ai
– Action profiles:

(a1, a2, ..., ap) ∈ A = A1 ×A2 × ...×Ap

– Payoffs: ui : (a1, a2, ..., ap) = (ai, a−i) 7→ R

– Global objective: G : A → R

• Action profile a∗ ∈ A is a Nash equilibrium (NE) if for all players:

ui(a
∗
1, a
∗
2, ..., a

∗
p) = ui(a

∗
i , a
∗
−i) ≥ ui(a

′
i, a
∗
−i)

i.e., no unilateral incentive to change actions.
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Game theoretic learning

• Iterations:

– t = 0, 1, 2, ...

– ai(t) = rand(si(t)), si(t) ∈ ∆(Ai)
– si(t) = Fi(available info at time t)

• Key questions: If NE is a descriptive outcome...

– How could agents converge to NE?
– Which NE?
– Are NE efficient?
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Game theoretic learning

• Iterations:

– t = 0, 1, 2, ...

– ai(t) = rand(si(t)), si(t) ∈ ∆(Ai)
– si(t) = Fi(available info at time t)

• Key questions: If NE is a descriptive outcome...

– How could agents converge to NE?
– Which NE?
– Are NE efficient?

• Focus shifted away from NE towards adaptation/learning

“The attainment of equilibrium requires a disequilibrium process”
K. Arrow

“Game theory lacks a general and convincing argument that a
Nash outcome will occur.”
Fudenberg & Tirole

“...human subjects are no great shakes at thinking either [vs in-
sects]. When they find their way to an equilibrium of a game, they
typically do so using trial-and-error methods.”
K. Binmore

Survey: Hart, “Adaptive heuristics”, 2005.
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Game theoretic learning for prescriptive agenda?

• Approach: Use game theoretic learning to steer collection towards desirable configura-
tion

• Informational hierarchy:

– Action based: Players can observe the actions of others.
– Oracle based: Players receive an aggregate report of the actions of others.
– Payoff based: Players only measure online payoffs.

• Focus:

– Asymptotic behavior
– Processing per stage
– Communications per stage
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Potential games

• For some φ : A → R

φ(ai, a−i)− φ(a′i, a−i) > 0

⇔
ui(ai, a−i)− ui(a′i, a−i) > 0

i.e., potential function increases iff unilateral improvement.

• Features:

– Typical of “coordination games”
– Desirable convergence properties under various algorithms
– Need not imply “cooperation” or φ = G
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Illustrations

• Distributed routing

– Payoff = negative congestion. cr(σr)
– Potential function:

φ =
∑
r

σr∑
n=1

cr(n)

– Overall congestion:

G =
∑
r

σrcr(σr)

– Note: φ 6= G

• Multiagent sudoku:

ui(a) =#reps in row + #reps in column +
#reps in sector

φ(a) =
∑
i

ui(a)
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Fictitious play (FP)

• Each player:

– Maintains empeirical frequencies (histograms) of other player actions
– Forecasts (incorrectly) that others are playing randomly and independently according

to empirical frequencies
– Selects an action that maximizes expected payoff

• Bookkeeping is action based

• Monderer & Shapley (1996): FP converges to NE in potential games.
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FP processing

• Viewpoint of driver 1 (3 drivers & 2 roads)

• Prohibitive-per-stage for large numbers of players with large action sets

– Monitor all other players with IDs (cf., distributed routing)
– Take expectation over large joint action space (cf., sudoku)
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Joint strategy fictitious play (JSFP)

• Virtual payoff vector

Ui(t) =


ui(1, a−i(t))

ui(2, a−i(t))
...

ui(m, a−i(t))


i.e., the payofs that could have been obtained at time t

• Time averaged virtual payoff:

Vi(t + 1) = (1− ρ)Vi(t) + ρUi(t)

• Stepsize ρ is either

– Constant (fading memory)
– Diminishing (true average), e.g., ρ = 1

t+1

• Bookkeeping is oracle based (cf., traffic reports)
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JSFP, cont

• JSFP algorithm: Each player

– Maintains time averaged virtual payoff
– Selects an action with maximal virtual payoff
– OR repeats previous stage action with some probability (i.e., inertia)

• Marden, Arslan, & JSS (2005): JSFP with inertia converges to a NE in potential games.
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JSFP processing

• Equivalent to best response to joint actions of other players

• Related to “no regret” algorithms

• Survey: Foster & Vohra, Regret in the online decision problem, 1999.

16



Equilibrium selection & Gibbs distribution

• Alternative algorithms offer more quantitative characterization of asymptotic behaviors.

• Preliminary: Gibbs distribution (cf., softmax, logit response)

σ(v;T ) =
1

1Tev/T
ev/T ∈ ∆

e.g.,

σ(v1, v2;T ) =

(
ev1/T

ev1/T +ev2/T

ev2/T

ev1/T +ev2/T

)
• As T ↓ 0 assigns all probability to arg max {v1, v2, ..., vn}
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Spatial adaptive play

• At stage t

– Player i is selected at random
– Chosen player sets

ai(t) = rand
[
σ
(
ui(1, a−i(t− 1)), ..., ui(m, a−i(t− 1));T

)]
– Interpretation: Noisy best reply to previous joint actions

• Fact: SAP results in a Markov chain over joint action space A with a unique stationary
distribution, µ.

• Blume (1993): In (cardinal) potential games,

µ(a) = σ(φ(a);T ) =
eφ(a)/T∑

a′∈A e
φ(a′)/T

• Implication: As T ↓ 0, all probability assigned to potential maximizer.
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SAP variation: Binary

• Motivation:

– Reduced processing per stage
– First step towards constrained actions

• At stage t:

– Player i is selected at random
– Chosen player compares ai(t− 1) with randomly selected a′i

ai(t) = rand [σ(ui(ai(t− 1), a−i(t− 1)), ui(a
′
i, a−i(t− 1);T ))]

• Arslan, Marden, & JSS (2007): Binary SAP results in same stationary distribution as
SAP.

• Consequence: Arbitrarily high steady state probability on potential function maximizer.
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SAP variation: Constrained

• Action evolution must satisfy: ai(t) ∈ C(ai(t− 1))

– Limited mobility
– Obstacles

• Algorithm: Same as before except

a′i ∈ C(ai(t− 1))

• Marden & JSS (2008): Constrained SAP results in potential function maximizer being
stochastically stable.

– Arbitrarily high steady state probability on potential function maximizer
– Does not characterize steady state distribution
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Payoff based algorithms

• Action & oracle based algorithms require:

– Explicit communications
– Explicit representations of payoff functions

• Payoff based algorithms:

– No (explicit) communication among agents
– Only requires ability to measure payoff upon deployment
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Experimentation dynamics

• Initialization of baseline action and baseline utility :

abi(1) = ai(0)

ubi(1) = ui(a(0))

• Action selection:
ai(t) = abi(t)with probability (1− ε)

ai(t) is chosen randomly over Ai with probability ε

• Baseline action & utility update:

Successful
Experimentation

ai(t) 6= abi(t)

ui(a(t)) > ubi(t)

⇓
abi(t + 1) = ai(t)

ubi(t + 1) = ui(a(t))

Unsuccessful
Experimentation

ai(t) 6= abi(t)

ui(a(t)) ≤ ubi(t)

⇓
abi(t + 1) = abi(t)

ubi(t + 1) = ubi(t)

No
Experimentation

ai(t) = abi(t)

⇓
abi(t + 1) = abi(t)

ubi(t + 1) = ui(a(t))
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Experimentation dynamics, cont

• Marden, Young, Arslan, & JSS (2007): For potential games,

lim
t→∞

Pr [a(t) is a NE] > p∗

for any p∗ < 1 with sufficiently small exploration rate ε.

• Suitably modified algorithm admits noisy utility measurements.
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Payoff assignment

• How to assign individual payoff functions?

• Desirable features:

– Induce “localization”
– Have desirable NE
– Produce potential game

• First attempt: Global utility

– Set ui(a) = G(a) for all players.
– Main disadvantage: Lack of localization

• Another issue: NE efficiency.

– Global optimal:
a∗ = arg max

a∈A
G(a)

– Efficiency loss = “Price of Anarchy”

PoA = min
a∈NE

G(a)

G(a∗)
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Illustration: Sensor placement

• Two sensors and two sectors:

– Good sensor, g: Pr [detect] = 0.9.
Bad sensor, b: Pr [detect] = 0.1.

– High value sector: H = 3.
Low value sector: L = 2.

• Optimal placement: g = H & b = L.

g

b

L H
L 0.91, 0.91 1.8, 0.3

H 2.7, 0.2 1.37, 1.37

Equally shared: No pure NE

g

b

L H
L 1.8, 0.2 1.8, 0.3

H 2.7, 0.2 2.7, 0.3

Selfish: Optimal not NE
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Marginal contribution payoff

• Introduce “null” action: ∅

• Interpretation: Context dependent

• Define:
ui(ai, a−i) = G(ai, a−i)−G(∅, a−i)

i.e., unilateral marginal contribution (also called “wonderful life utility” by Wolpert)

• Advantages:

– Results in a potential game with φ = G

– Can induce “localization” effect in presence of spatial separatin
– For sensor placement: Marginal contribution in selected cell
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Proofs: Better reply graph

• Better reply graph

– Nodes: joint actions
– Directed edges: Better reply for unilaterally de-

viating player

• Illustration: 3 players, 2 moves each

• Features:

– Potential function increases along edges
– NE iff no outgoing edges
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Proofs: Sticky NE

• Recall max regret with inertia:

– Players monitor regret vector & choose maximal regret action
– OR repeat previous action with some probability
– Regret maximizer is not best reply to previous stage

• A path to NE that occurs with δ > 0 probability:

– Players linger (inertia)
– Eventually, regret maximizer = best reply to joint action
– Single player deviates if not NE
– Repeat

• NE + lingering implies permanent NE

• Cannot avoid NE path indefinitely
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Proofs: Steady state Gibbs distribution

• Recall (binary) SAP

– Single agent, randomly selected
– Uses Gibbs distribution to select next action

• Features:

– Node hops not limited to better replies (softmax)
– Better replies have higher probabilities

• Detailed balance equation:

Pr [a→ a′]µ(a) = Pr [a′ → a]µ(a′)

(stronger condition than stationary distribution)

• Proof: Transition probabilities under SAP satisfy detailed balance
equation with Gibbs distribution for potential games.
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Proofs: Stochastic stability

• Recall stochastic stability definition:

– Let P ε denote the transition probability matrix of an irreducible & aperiodic Markov
chain.

– Let µε be the (unique) stationary distribution for P ε

– A state, x, is stochastically stable if

lim inf
ε→0

µε(x) > 0

• Implication: Increasing probability of being in stochastically stable state with decreasing
ε.

• Utilization:

– Payoff based experimentation: NE are only stochastically stable baseline actions.
– Constrained SAP: Potential maximizers are only stochastically stable joint actions.
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Proofs: Stochastic stability, cont

• Young (1993): To determine stochastic stability

– View learning dynamics as ε perturbation of reference (ε = 0) Markov chain
– Divide reference Markov chain into recurrence classes (typically Nash equilibria)
– Define resistance to transition between recurrence classes:

0 < lim
ε↓0

P ε
ij

εr(i→j)
<∞

– Form stochastic potential for each recurrence class
– Minimal stochastic potential implies stochastic stability

• Trivial illustration:

– Perturbed & Reference Markov Chain:

P ε =

(
1− ε ε

ε2 1− ε2
)

P 0 =

(
1 0

0 1

)
– Resistances:

0 < lim
ε↓0

P ε
ij

εr(i→j)
<∞

r(1→ 2) = 1 & r(2→ 1) = 2

– Stochastically stable state: 2

31



Proofs: Stochastic stability, cont

• Analytical utilization:

– Do not build all trees

– Show that one tree has lower stochastic potential than another

[a', u'']

[a, u]

[a*, u*]

[a', u']

[a*, u'][a'', u'']

[a, u']

[a, u'']

[a', u'']

[a, u]

[a*, u*]

[a', u']

[a*, u'][a'', u'']

[a, u']

[a, u'']

R = 1

R = 1

R = 1

R > 1

R > 1

R > 2

Original Tree T (Rooted in D - Case 2) Revised Tree T' (Rooted in E)
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Illustration: Rendezvous with obstacles

• Assume undirected connected constant graph (can be gen-
eralized)

• Global objective:

G(ai, a−i) = −1

2

∑
k

∑
j∈Nk

|ak − aj|

• Global objective without agent i

G(∅, a−i) = −1

2

∑
k 6=i

∑
j∈Nk\i

|ak − aj|

• Marginal contribution utility:

ui(ai, a−i) = G(ai, a−i)−G(∅, a−i) = −
∑
j∈Ni

|ai − aj|

• Apply constrained SAP...
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Illustration: Distributed routing

• Setup: 10 parallel roads. 100 vehicles.

• Marginal contribution utility using overall congestion induces
“tolls”

τr(k) = (k − 1) · (cr(k)− cr(k − 1))

• Apply max regret with intertia...
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Final remarks

• Recap:

– Descriptive vs prescriptive
– Action/Oracle/Payoff based algorithms
– NE or potential function maximization
– Potential games & payoff design

• Future work:

– Convergence rates
– Exploiting prescriptive setting
– Agent dynamics
– Control theory and descriptive agenda
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