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Building theoretical foundations for distributed control

We need methodology for

◮ Decentralized specifications

◮ Decentralized design

◮ Verification of global behavior
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50 year old idea: Dual decomposition

min
zi
[V1(z1, z2) + V2(z2) + V3(z3, z2)]

= max
pi
min
zi,vi

[

V1(z1,v1) + V2(z2) + V3(z3,v3) + p1(z2 − v1) + p3(z2 − v3)
]

The optimum is a Nash equilibrium of the following game:

The three computers try to minimize their respecive costs

Computer 1: minz1,v1
[
V1(z1,v1) − p1v1

]

Computer 2: minz2
[
V2(z2) + (p1 + p3)z2

]

Computer 3: minz3,v3
[
V3(z3,v3) − p3v3

]

while the ”market makers” try to maximize their payoffs

Between computer 1 and 2: maxp1 [p1(z2 − v1)]

Between computer 2 and 3: maxp3 [p3(z2 − v3)]

The saddle point algorithm

Update in gradient direction:

Computer 1:

{

ż1 = −�V1/�z1

v̇1 = −�V1/�z2 + p1

Computer 1 and 2: ṗ1 = z2 − v1

Computer 2: ż2 = −�V2/�z2 − p1 − p3

Computer 2 and 3: ṗ3 = z2 − v3

Computer 3:

{

ż3 = −�V3/�z3

v̇3 = −�V3/�z2 + p3

Globally convergent if Vi are convex!

[Arrow, Hurwicz, Usawa 1958]

Decentralized Bounds on Suboptimality

Given any p1, p3, z̄1, z̄2, z̄3, the distributed test

V1(z̄1, z̄2) − p1 z̄2 ≤ α min
z1,v1

[V1(z1,v1) − p1v1]

V2(z̄2) + (p1 + p3)z̄2 ≤ α min
z2
[V2(z2) + (p1 + p3)z2]

V3(z̄3, z̄2) − p3 z̄2 ≤ α min
z3,v3

[V3(z3,v3) − p3v3]

implies that the globally optimal cost J∗ is bounded as

J∗ ≤ V1(z̄1, z̄2) + V2(z̄2) + V3(z̄3, z̄2) ≤ α J∗

Proof: Add both sides up!

Important Aspects of Dual Decomposition

◮ Very weak assumptions on graph

◮ No need for central coordination

◮ Natural learning procedure is globally convergent

◮ Unique Nash equilibrium corresponds to global optimum

Conclusion: Ideal for control synthesis by prescriptive games

A long history

The saddle algorithm:

Arrow, Hurwicz, Usawa 1958

Books on control and coordination in hierarchical systems:

Mesarovic, Macko, Takahara 1970

Singh, Titli 1978

Findeisen 1980

Major application to water supply network:

Carpentier and Cohen, Automatica 1993
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Example 1: A vehicle formation

x1 x2 x3 x4 x5

Each vehicle obeys the independent dynamics







x1(t+ 1)
x2(t+ 1)
x3(t+ 1)
x4(t+ 1)






=







∗ 0 0 0

0 ∗ 0 0

0 0 ∗ 0

0 0 0 ∗













x1(t)
x2(t)
x3(t)
x4(t)






+







B1u1(t) +w1(t)
B2u2(t) +w2(t)
B3u3(t) +w3(t)
B4u4(t) +w4(t)







The objective is to make EpCxi+1 − Cxip
2 small for i = 1, . . . , 4.

Example 2: A supply chain for fresh products

x1 x2 x3 x4 x5

Fresh products degrade with time:







x1(t+ 1)
x2(t+ 1)
x3(t+ 1)
x4(t+ 1)






=







∗ 0 0 0

0 ∗ 0 0

0 0 ∗ 0

0 0 0 ∗













x1(t)
x2(t)
x3(t)
x4(t)






+







−u1(t) +w1(t)
u1(t) − u2(t)
u2(t) − u3(t)
u3(t) +w4(t)







Example 3: Water distribution systems
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x1(t)
x2(t)
x3(t)
x4(t)
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B1u1 +w1
B2u2 +w2
B3u3 +w3
B4u4 +w4
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Example 4: Wind farms

x1 x2 x3 x4







x1(t+ 1)
x2(t+ 1)
x3(t+ 1)
x4(t+ 1)






=







∗ ∗ 0 0

∗ ∗ ∗ 0

0 ∗ ∗ ∗

0 0 ∗ ∗













x1(t)
x2(t)
x3(t)
x4(t)






+







B1u1(t) +w1(t)
B2u2(t) +w2(t)
B3u3(t) +w3(t)
B4u4(t) +w4(t)







A control problem with graph structure

x1 x2 xJ−1 xJ








x1(τ + 1)
x2(τ + 1)

...

xJ (τ + 1)







=









A11 A12 0

A21
. . .

. . .

. . .
. . . A(J−1)J

0 AJ(J−1) AJJ
















x1(τ )
x2(τ )

...

xJ (τ )







+








u1(τ )
u2(τ )

...

uJ (τ )








Minimize the convex objective
∑N
t=0

J∑

i=1

{i(xi(τ ),ui(τ ))

︸ ︷︷ ︸

{(x(τ ),u(τ ))

with convex constraints xi(τ ) ∈ Xi, ui(τ ) ∈ Ui and x(0) = x̄.

Decomposing the problem

Minimize
∑N
t=0 {(x(τ ),u(τ ))

subject to








x1(τ + 1)
x2(τ + 1)

...

xJ (τ + 1)







=








A11x1(τ )
A22x2(τ )

...

AJJ xJ (τ )







+








v1(τ )
v2(τ )

...

vJ (τ )







+








u1(τ )
u2(τ )

...

uJ (τ )








where x(0) = x̄ and

vi =
∑

j ,=iAi j x j

holds for all i.

Decomposing the Cost Function

max
p
min
u,v,x

N∑

τ=0

J∑

i=1

[

{i(xi,ui) + p
T
i

(

vi −
∑

j ,=iAi j x j

) ]

= max
p

∑

i

min
ui,xi

N∑

τ=0

[

{i(xi,ui) + p
T
i vi − x

T
i

(
∑

j ,=iA
T
jipj

) ]

︸ ︷︷ ︸

{p
i
(xi,ui,vi)

so, given the sequences {pj(t)}
N
t=0, agent i should minimize

N∑

τ=0

{i(xi,ui)

︸ ︷︷ ︸

local cost

+

what he expects others to charge him
︷ ︸︸ ︷

N∑

τ=0

pTi vi −

N∑

τ=0

xTi

(
∑

j ,=iA
T
jipj

)

︸ ︷︷ ︸

what he is payed by others

subject to xi(t+ 1) = Aiixi(t) + vi(t) + ui(t) and xi(0) = x̄i.



Distributed Optimization Procedure

Local optimizations in each node

V
N,p
i (x̄i) =min

ui,xi

N∑

τ=0

{pi
(
xi(τ ),ui(τ ),vi(τ )

)

can be coordinated by (local) gradient updates of the prices

pk+1i (τ ) = pki (τ ) + γ
k
i

[

vki (τ ) −
∑

j ,=iAi j x
k
j (τ )

]

Future prices included in negotiation for first control input!

Convergence guaranteed under different types of assumptions

on the step size sequence γ ki .
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Idea of Distributed Model Predicitve Control

Replace the original problem by iterative online solutions of the

decentralized finite horizon problem

min
xi,ui

N∑

t=0

l
p
i (xi(t),ui(t),vi(t))

Two sources of error: Finite horizon and non-optimal prices

"

A Distributed MPC Algorithm

At time t:

1. Measure the states xi(t) locally.

2. Use gradient iterations to generate
◮ price prediction sequences {pi(t,τ )}

N
τ=0

◮ state prediction sequences {xi(t,τ )}
N
τ=1

◮ input prediction sequences {ui(t,τ )}
N
τ=1

warm-starting from predictions at time t− 1.

3. Apply the inputs ui(t) = ui(t, 0).

Important parameters: Prediction horizons Ni, number of

gradient iterations Ki and gradient step sizes γ i.

Fixed or flexible parameters Ni, Ki, γ i?

Fixed parameters

◮ Simpler implementation

◮ Gives distributed LTI controllers

◮ Can be analyzed off-line or on-line

Flexible parameters

◮ Useful to handle hard state constraints

◮ Can speed up on-line computations

◮ Can slow down on-line computations

“Wind Farm” Revisited

Minimize V = E
∑n
i=1

(
pxip
2 + puip

2
)

subject to








x1(t+ 1)
x2(t+ 1)

...

xn(t+ 1)







=
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x1(t)
x2(t)

...

xn(t)







+








u1(t) +w1(t)
u2(t) +w2(t)

...

un(t) +wn(t)








We will solve this by “distributed MPC”. For every t, the agents

measure their local state xi(t). The vector of future prices is

then updated by a few gradient iterations starting from the

prices computed at t− 1 for a time horizon of length N .

Re-negotiation of future prices at every time step!

This is the key to dynamic dual decomposition.

Performance Versus Number of Gradient Iterations
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Optimal cost

MPC−cost, N = 1

MPC−cost, N = 4

MPC−cost, N = 7

A distributed controller with 100 agents, using only local data.

Low order local dynamics, so short prediction horizons are OK

Challenges for theory

◮ What prediction horizon is needed?

◮ How many gradient iterations for the prices?

References:

Grüne and Rantzer, IEEE TAC October 2008.

Pannek, PhD thesis 2009

Giselsson and Rantzer, submission for ACC 2010.



Theorem on accuracy of distributed MPC

Suppose all local finite horizon costs

V
N,p
i (x̄i) = minui,xi

∑N
τ=0 {

p
i

(
xi(τ ),ui(τ ),vi(τ )

)
≥ 0

satisfy

V
N,p(t,⋅)
i (xi(t)) ≥ V

N,p(t+1,⋅)
i (xi(t+ 1)) +α {

p(t,⋅)
i

(
xi(t),ui(t),

∑

j ,=iAi jx j(t)
)

for all i and t ≥ 0. Then

α

∞∑

t=0

{(x(t),u(t)) ≤ V∞(x̄)

Notice: Failure of inequality hints on update of Ni or Ki!

Conclusions on Distributed MPC

We have synthesized a game that solves optimal control

problems via independent decision-makers in every node,

acting in their own interest!

◮ Optimal strategies independent of global graph structure!

◮ States are measured only locally

◮ Linearly complexity (given horizon and iteration scheme)

◮ Distributed bounds on distance to optimality
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Tuning a tri-diagonal controller for the “Wind Farm”

Minimize V = E
∑n
i=1

(
pxip
2 + puip

2
)








x1(t+ 1)
x2(t+ 1)

...

xn(t+ 1)







=









0.6 0.1 0

0.3
. . .

. . .

. . .
. . . 0.1

0 0.3 0.6
















x1(t+ 1)
x2(t+ 1)

...

xn(t+ 1)







+








u1(t) +w1(t)
u2(t) +w2(t)

...

un(t) +wn(t)








We will optimize a tri-diagonal control structure

L̄ =









∗ ∗ 0

∗
. . .

. . . ∗

0 ∗ ∗









Computing the closed loop control performance

We are applying the control law u = −Lx to the system

x(t+ 1) = Ax(t) + Bu(t) +w(t)

where w is white noise with variance W. Define

J(L) = E
(

pxp2Q + pup
2
R

)

Then the gradient with respect to a particular element Li j is

(∇LJ)i j = 2RLE [xix
T
j ] + 2B

T
E [pix

T
j ]

where p(t) is the stationary solution of the adjoint equation

p(t− 1) = (A− BL)T p(t) − (Q + LTRL)x(t)

A distributed synthesis procedure

1. Measure the states xi(t) for t = tk, . . . , tk + N

2. Simulate the adjoint equation

pi(t− 1) =
∑

j∈Ei

(A− BL)Tji pj(t) − 2(Qixi(t) −
∑

j∈Ei

LTjiR ju j(t))

for t = tk, . . . , tk + N by communicating states between nodes.

3. Calculate the estimates of Euix
T
j and E pix

T
j by

(
Euix

T
j

)

est
= 1
N+1

tk+N∑

t=tk

ui(t)x j(t)
T

(
E pix

T
j

)

est
= 1
N+1

tk+N∑

t=tk

pi(t)x j(t)
T

4. For fixed step length γ > 0, update

L
(k+1)
i j = L

(k)
i j + 2γ Ri

(

Euix
T
j

)

est
+ BTi

(

E pix
T
j

)

est
.

Let tk+1 = tk + N and start over.

Gradient iteration for the wind park

cost =

14.9887

L =

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

Gradient iteration for the wind park

cost =

10.5429

L =

0.0327 0.0400 0 0 0

-0.0007 0.0560 0.0527 0 0

0 -0.0069 0.0434 0.0315 0

0 0 -0.0207 0.0131 0.0437

0 0 0 -0.0033 0.0373



Gradient iteration for the wind park

cost =

7.8184

L =

0.0310 0.0595 0 0 0

-0.0168 0.1002 0.1151 0 0

0 0.0345 0.1357 0.0986 0

0 0 0.0636 0.0831 0.1351

0 0 0 0.0102 0.1295

Gradient iteration for the wind park

cost =

7.6192

L =

0.0404 0.0685 0 0 0

-0.0086 0.1076 0.1193 0 0

0 0.0382 0.1421 0.1094 0

0 0 0.0593 0.0991 0.1449

0 0 0 0.0131 0.1348

Gradient iteration for the wind park

cost =

7.4004

L =

0.0576 0.0583 0 0 0

0.0115 0.1224 0.1381 0 0

0 0.0373 0.1500 0.1153 0

0 0 0.0546 0.1068 0.1566

0 0 0 0.0168 0.1594

Gradient iteration for the wind park

cost =

7.2493

L =

0.0712 0.0654 0 0 0

0.0061 0.1224 0.1443 0 0

0 0.0341 0.1550 0.1166 0

0 0 0.0773 0.1409 0.1580

0 0 0 0.0418 0.1601

Gradient iteration for the wind park

cost =

6.9736

L =

0.0936 0.1056 0 0 0

0.0331 0.1775 0.1341 0 0

0 0.0563 0.1500 0.1215 0

0 0 0.0700 0.1564 0.1567

0 0 0 0.0567 0.1646

Gradient iteration for the wind park

cost =

6.8211

L =

0.1390 0.1070 0 0 0

0.0357 0.1821 0.1549 0 0

0 0.0668 0.1797 0.1098 0

0 0 0.0633 0.1685 0.1413

0 0 0 0.0589 0.1754

Gradient iteration for the wind park

cost =

6.7464

L =

0.1438 0.1208 0 0 0

0.0470 0.2031 0.1632 0 0

0 0.0749 0.1909 0.1046 0

0 0 0.0779 0.1843 0.1388

0 0 0 0.0445 0.1732

Performance Versus Number of Gradient Iterations
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Cost of system, N=2

Cost of system, N=5

Cost of system, N=20

Optimal cost

A distributed controller with 100 agents, using only local data.

Fewer gradient iterations gives faster convergence, but worse

stationary performance.
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Theme Semester Spring 2010

Invited world-leading researchers from Control, Computer

Science, Economics, Communication, Mathematics, . . .

◮ Multi-agent coordination and estimation

(Jan 18 - Feb 19, 2010)

◮ Distributed decisions via games and price mechanisms

(Feb 22 - Mar 26, 2010)

◮ Adaptation and learning in autonomous systems

(Apr 6 - 30, 2010)

◮ Distributed model predictive control and supply chains

(May 3 - 28, 2010)

See www.lccc.lth.se and announcements.

Case study: A water supply network in Paris

[Carpentier and Cohen, Automatica 1993]

◮ Network serving about 1 million inhabitants

◮ 20 main water reservoirs

◮ 30 pumping stations

◮ 13 peripheral subnetworks

Challenges for control

◮ Minimize cost for pumping

◮ Bounds on reservoirs

◮ Bounds and delays in pumping power

◮ Prediction of consumption

Optimal control using dual decomposition and saddle algorithm

Subnetworks separated by two variables: Water flow and price


