Distributed Procedures for Control Synthesis

Anders Rantzer

with contributions by Pontus Giselsson, Karl Mårtensson

Lund University, Sweden

Outline

Dynamic dual decomposition

Distributed Model Predictive Control

Distributed Iterative Feedback Tuning

Introduction

₽

We need methodology for

- Decentralized specifications
- Decentralized design
- Verification of global behavior

50 year old idea: Dual decomposition

 $\min_{z_1}[V_1(z_1,z_2)+V_2(z_2)+V_3(z_3,z_2)]$

 $= \max_{p_1, \dots, z_1, v_1} \left[V_1(z_1, v_1) + V_2(z_2) + V_3(z_3, v_3) + p_1(z_2 - v_1) + p_3(z_2 - v_3) \right]$

The optimum is a Nash equilibrium of the following game: The three computers try to minimize their respective costs

while the "market makers" try to maximize their payoffs

Between computer 1 and 2: $\max_{p_1} [p_1(z_2 - v_1)]$ Between computer 2 and 3: $\max_{p_3} [p_3(z_2 - v_3)]$

The saddle point algorithm

Update in gradient direction:

0

0

Computer 1:	$egin{cases} \dot{z}_1 &= -\partial V_1/\partial z_1 \ \dot{v}_1 &= -\partial V_1/\partial z_2 + p_1 \end{cases}$
Computer 1 and 2:	$\dot{p}_1 = z_2 - v_1$
Computer 2:	$\dot{z}_2=-\partial V_2/\partial z_2-p_1-p_3$
Computer 2 and 3:	$\dot{p}_3 = z_2 - v_3$
Computer 3:	$egin{cases} \dot{z}_3 = -\partial V_3/\partial z_3 \ \dot{v}_3 = -\partial V_3/\partial z_2 + p_3 \end{cases}$

Globally convergent if V_i are convex! [Arrow, Hurwicz, Usawa 1958]

Important Aspects of Dual Decomposition

- Very weak assumptions on graph
- No need for central coordination
- Natural learning procedure is globally convergent
- Unique Nash equilibrium corresponds to global optimum

Conclusion: Ideal for control synthesis by prescriptive games

Decentralized Bounds on Suboptimality

Given any $p_1, p_3, \bar{z}_1, \bar{z}_2, \bar{z}_3$, the distributed test

$$\begin{split} &V_1(\tilde{z}_1, \tilde{z}_2) - p_1 \tilde{z}_2 \leq \alpha \min_{z_1, v_1} \left[V_1(z_1, v_1) - p_1 v_1 \right] \\ &V_2(\tilde{z}_2) + (p_1 + p_3) \tilde{z}_2 \leq \alpha \min_{z_2} \left[V_2(z_2) + (p_1 + p_3) z_2 \right] \\ &V_3(\tilde{z}_3, \tilde{z}_2) - p_3 \tilde{z}_2 \leq \alpha \min_{z_3, v_3} \left[V_3(z_3, v_3) - p_3 v_3 \right] \end{split}$$

implies that the globally optimal cost J^* is bounded as

 $J^* \le V_1(\bar{z}_1, \bar{z}_2) + V_2(\bar{z}_2) + V_3(\bar{z}_3, \bar{z}_2) \le \alpha J^*$

Proof: Add both sides up!

A long history

The saddle algorithm: Arrow, Hurwicz, Usawa 1958

Books on control and coordination in hierarchical systems: Mesarovic, Macko, Takahara 1970 Singh, Titli 1978 Findeisen 1980

Major application to water supply network: Carpentier and Cohen, Automatica 1993

- Dynamic dual decomposition
- Distributed Model Predictive Control
- Distributed Iterative Feedback Tuning

Each vehicle obeys the independent dynamics

$ \begin{bmatrix} x_1(t+1) \\ x_2(t+1) \\ x_3(t+1) \end{bmatrix} =$	$\begin{bmatrix} * \\ 0 \\ 0 \end{bmatrix}$	0 * 0	0 0 *	0	$ x_2(t) _+$	$\begin{bmatrix} B_1 u_1(t) + w_1(t) \\ B_2 u_2(t) + w_2(t) \\ B_3 u_3(t) + w_3(t) \end{bmatrix}$
$\begin{bmatrix} x_3(t+1) \\ x_4(t+1) \end{bmatrix}$	0	0 0	* 0	0 *		$\begin{bmatrix} B_3 u_3(t) + w_3(t) \\ B_4 u_4(t) + w_4(t) \end{bmatrix}$

The objective is to make $\mathbf{E}|Cx_{i+1} - Cx_i|^2$ small for $i = 1, \dots, 4$.

Example 2: A supply chain for fresh products

Fresh products degrade with time:

$\begin{bmatrix} x_1(t+1) \\ x_2(t+1) \end{bmatrix}$	$\begin{bmatrix} * \\ 0 \end{bmatrix}$				$\begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$	$\begin{bmatrix} -u_1(t) + w_1(t) \\ u_1(t) - u_2(t) \end{bmatrix}$
$\begin{bmatrix} x_3(t+1) \\ x_4(t+1) \end{bmatrix} =$	0 0	0	*	0	$\begin{bmatrix} x_3(t) \\ x_4(t) \end{bmatrix} +$	$\begin{bmatrix} u_2(t) - u_3(t) \\ u_3(t) + w_4(t) \end{bmatrix}$

Decomposing the problem

Minimize
$$\sum_{t=0}^{N} \ell(x(\tau), u(\tau))$$

subject to

$$\begin{bmatrix} x_1(\tau+1) \\ x_2(\tau+1) \\ \vdots \\ x_j(\tau+1) \end{bmatrix} = \begin{bmatrix} A_{11}x_1(\tau) \\ A_{22}x_2(\tau) \\ \vdots \\ A_{jj}x_j(\tau) \end{bmatrix} + \begin{bmatrix} v_1(\tau) \\ v_2(\tau) \\ \vdots \\ v_j(\tau) \end{bmatrix} + \begin{bmatrix} u_1(\tau) \\ u_2(\tau) \\ \vdots \\ u_j(\tau) \end{bmatrix}$$

where $x(0) = \bar{x}$ and

$$v_i = \sum_{j \neq i} A_{ij} x_j$$

holds for all *i*.

Example 3: Water distribution systems

A control problem with graph structure

with convex constraints $x_i(\tau) \in X_i$, $u_i(\tau) \in U_i$ and $x(0) = \bar{x}$.

Decomposing the Cost Function

$$\begin{split} \max_{p} \min_{u,v,x} \sum_{\tau=0}^{N} \sum_{i=1}^{j} \left[\ell_{i}(x_{i},u_{i}) + p_{i}^{T} \left(v_{i} - \sum_{j \neq i} A_{ij} x_{j} \right) \right] \\ = \max_{p} \sum_{i} \min_{u_{i},x_{i}} \sum_{\tau=0}^{N} \underbrace{\left[\ell_{i}(x_{i},u_{i}) + p_{i}^{T} v_{i} - x_{i}^{T} \left(\sum_{j \neq i} A_{ji}^{T} p_{j} \right) \right]}_{\ell_{i}^{p}(x_{i},u_{i},v_{i})} \end{split}$$

so, given the sequences $\{p_j(t)\}_{t=0}^N$, agent *i* should minimize

what he expects others to charge him

$$\sum_{\tau=0}^{N} \ell_i(x_i, u_i) + \sum_{\tau=0}^{N} p_i^T v_i - \sum_{\tau=0}^{N} x_i^T \left(\sum_{j \neq i} A_j^T p_j \right)$$
what he is paved by other

what he is payed by others

subject to $x_i(t+1) = A_{ii}x_i(t) + v_i(t) + u_i(t)$ and $x_i(0) = \overline{x}_i$.

Local optimizations in each node

$$V_{i}^{N,p}(\bar{x}_{i}) = \min_{u_{i},x_{i}} \sum_{\tau=0}^{N} \ell_{i}^{p}(x_{i}(\tau), u_{i}(\tau), v_{i}(\tau))$$

can be coordinated by (local) gradient updates of the prices

$$p_i^{k+1}(\tau) = p_i^k(\tau) + \gamma_i^k \left[v_i^k(\tau) - \sum_{j \neq i} A_{ij} x_j^k(\tau) \right]$$

Future prices included in negotiation for first control input!

Convergence guaranteed under different types of assumptions on the step size sequence γ_i^k .

Idea of Distributed Model Predicitve Control

Replace the original problem by iterative online solutions of the decentralized finite horizon problem

$$\min_{x_{i},u_{i}}\sum_{t=0}^{N}l_{i}^{p}(x_{i}(t),u_{i}(t),v_{i}(t))$$

Two sources of error: Finite horizon and non-optimal prices

Fixed or flexible parameters N_i , K_i , γ_i ?

Fixed parameters

- Simpler implementation
- Gives distributed LTI controllers
- Can be analyzed off-line or on-line

Flexible parameters

- Useful to handle hard state constraints
- Can speed up on-line computations
- Can slow down on-line computations

Performance Versus Number of Gradient Iterations

A distributed controller with 100 agents, using only local data. Low order local dynamics, so short prediction horizons are OK

- Introduction 0
- Dynamic dual decomposition
- **Distributed Model Predictive Control**
- **Distributed Iterative Feedback Tuning**

A Distributed MPC Algorithm

At time t:

- 1. Measure the states $x_i(t)$ locally.
- 2. Use gradient iterations to generate
 - price prediction sequences $\{p_i(t,\tau)\}_{\overline{k=0}}^N$
 - state prediction sequences {x_i(t, τ)} ► state prediction sequences $\{x_i(t, \tau)\}_{\tau=1}^{T}$ ► input prediction sequences $\{u_i(t, \tau)\}_{\tau=1}^{N}$

 - warm-starting from predictions at time t 1.
- **3**. Apply the inputs $u_i(t) = u_i(t, 0)$.

Important parameters: Prediction horizons N_i , number of gradient iterations K_i and gradient step sizes γ_i .

"Wind Farm" Revisited

Minimize $V = \mathbf{E} \sum_{i=1}^{n} (|x_i|^2 + |u_i|^2)$ subject to

$\left\lceil x_1(t+1) \right\rceil$	0.6	0.1		0]	$\begin{bmatrix} x_1(t) \end{bmatrix}$	$\left\lceil u_1(t) + w_1(t) \right\rceil$
$x_2(t+1)$	0.3	·	٠.		$x_2(t)$	$u_2(t) + w_2(t)$
: =		·	·	0.1		: I
$\lfloor x_n(t+1) \rfloor$	0		0.3	0.6	$\lfloor x_n(t) \rfloor$	$\left\lfloor u_n(t) + w_n(t) \right\rfloor$

We will solve this by "distributed MPC". For every t, the agents measure their local state $x_i(t)$. The vector of future prices is then updated by a few gradient iterations starting from the prices computed at t - 1 for a time horizon of length N.

Re-negotiation of future prices at every time step! This is the key to dynamic dual decomposition.

Challenges for theory

- What prediction horizon is needed?
- How many gradient iterations for the prices?

References: Grüne and Rantzer, IEEE TAC October 2008. Pannek, PhD thesis 2009 Giselsson and Rantzer, submission for ACC 2010.

Theorem on accuracy of distributed MPC

Suppose all local finite horizon costs

Introduction

0

o

0

.

$$\begin{split} V_i^{N,p}(\bar{x}_i) &= \min_{u_i,x_i} \sum_{\tau=0}^N \ell_i^p \left(x_i(\tau), u_i(\tau), v_i(\tau) \right) \ge 0\\ \text{satisfy}\\ V_i^{N,p(t,\cdot)}(x_i(t)) &\geq V_i^{N,p(t+1,\cdot)}(x_i(t+1)) + \alpha \ell_i^{p(t,\cdot)}(x_i(t), u_i(t), \sum_{j \neq i} A_{ij} x_j(t))\\ \text{for all } i \text{ and } t \ge 0. \text{ Then} \\ \underline{\sim} \end{split}$$

$$\alpha \sum_{t=0}^{\infty} \ell(x(t), u(t)) \le V^{\infty}(\bar{x})$$

Notice: Failure of inequality hints on update of N_i or K_i !

Dynamic dual decomposition

Distributed Model Predictive Control

Distributed Iterative Feedback Tuning

Outline

Conclusions on Distributed MPC

We have synthesized a game that solves optimal control problems via independent decision-makers in every node, acting in their own interest!

- Optimal strategies independent of global graph structure!
- States are measured only locally
- Linearly complexity (given horizon and iteration scheme)
- Distributed bounds on distance to optimality

Tuning a tri-diagonal controller for the "Wind Farm"

Minimize $V = \mathbf{E} \sum_{i=1}^{n} (|x_i|^2 + |u_i|^2)$

$\begin{bmatrix} x_1(t+1) \\ x_2(t+1) \end{bmatrix}_{-}$	0.6 0.3	۰.	·	0	$\begin{bmatrix} x_1(t+1) \\ x_2(t+1) \end{bmatrix} +$	$\begin{bmatrix} u_1(t) + w_1(t) \\ u_2(t) + w_2(t) \\ \vdots \end{bmatrix}$
$\begin{bmatrix} \vdots \\ x_n(t+1) \end{bmatrix}^{-1}$	0	•.	·. 0.3	0.1 0.6	:	

We will optimize a tri-diagonal control structure

$$\bar{L} = \begin{bmatrix} * & * & 0 \\ * & \ddots & \\ & \ddots & * \\ 0 & & * & * \end{bmatrix}$$

Computing the closed loop control performance

We are applying the control law u = -Lx to the system

$$x(t+1) = Ax(t) + Bu(t) + w(t)$$

where w is white noise with variance W. Define

$$J(L) = \mathbf{E} \left(|x|_Q^2 + |u|_R^2 \right)$$

Then the gradient with respect to a particular element L_{ij} is

$$(\nabla_L J)_{ij} = 2RL\mathbf{E}\left[x_i x_j^T\right] + 2B^T \mathbf{E}\left[p_i x_j^T\right]$$

where p(t) is the stationary solution of the adjoint equation

$$p(t-1) = (A - BL)^T p(t) - (Q + L^T RL)x(t)$$

Gradient iteration for the wind park

cost =				cost =		
14.9887				10.5429		
L =				L =		
0 0	0	0	0	0.0327 0.0400 0	0	0
0 0	0	0	0	-0.0007 0.0560 0.0527	0	0
0 0	0	0	0	0 -0.0069 0.0434	0.0315	0
0 0	0	0	0	0 0 -0.0207	0.0131	0.0437
0 0	0	0	0	0 0 0	-0.0033	0.0373

A distributed synthesis procedure

- 1. Measure the states $x_i(t)$ for $t = t_k, \ldots, t_k + N$
- 2. Simulate the adjoint equation

$$p_i(t-1) = \sum_{j \in E_i} (A - BL)_{ji}^T p_j(t) - 2(Q_i x_i(t) - \sum_{j \in E_i} L_{ji}^T R_j u_j(t))$$

for $t = t_k, \ldots, t_k + N$ by communicating states between nodes.

3. Calculate the estimates of $\mathbf{E} u_i x_i^T$ and $\mathbf{E} p_i x_i^T$ by

$$\left(\mathbf{E}\,u_{i}x_{j}^{T}\right)_{\text{est}} = \frac{1}{N+1}\sum_{t=t_{k}}^{t_{k}+N}u_{i}(t)x_{j}(t)^{T} \quad \left(\mathbf{E}\,p_{i}x_{j}^{T}\right)_{\text{est}} = \frac{1}{N+1}\sum_{t=t_{k}}^{t_{k}+N}p_{i}(t)x_{j}(t)^{T}$$

4. For fixed step length $\gamma > 0$, update $L_{ij}^{(k+1)} = L_{ij}^{(k)} + 2\gamma R_i \left(\mathbf{E} u_i x_j^T\right)_{\text{est}} + B_i^T \left(\mathbf{E} p_i x_j^T\right)_{\text{est}}$ Let $t_{k+1} = t_k + N$ and start over.

Gradient iteration for the wind park

Gradient i	teration 1	for the	wind	park
------------	------------	---------	------	------

Gradient iteration for the wind park

cost =				
7.8184				
L =				
0.0310	0.0595	0	0	0
-0.0168	0.1002	0.1151	0	0
0	0.0345	0.1357	0.0986	0
0	0	0.0636	0.0831	0.1351
0	0	0	0.0102	0.1295

cost =				
7.6192				
L =				
0.0404	0.0685	0	0	0
-0.0086	0.1076	0.1193	0	0
0	0.0382	0.1421	0.1094	0
0	0	0.0593	0.0991	0.1449
0	0	0	0.0131	0.1348

Grac	Gradient iteration for the wind park				Grac	Gradient iteration for the wind						
cost =					cost =							
7.4004					7.2493							
L =					L =							
0.0576	0.0583	0	0	0	0.0712	0.0654	0	0				
0.0115	0.1224	0.1381	0	0	0.0061	0.1224	0.1443	0				
0	0.0373	0.1500	0.1153	0	0	0.0341	0.1550	0.1166				
0	0	0.0546	0.1068	0.1566	0	0	0.0773	0.1409				
0	0	0	0.0168	0.1594	0	0	0	0.0418				

Grac	Gradient iteration for the wind park				Grad	Gradient iteration for the wind park						
cost =					cost =							
6.9736					6.8211							
L =					L =							
0.0936	0.1056	0	0	0	0.1390	0.1070	0	0	0			
0.0331	0.1775	0.1341	0	0	0.0357	0.1821	0.1549	0	0			
0	0.0563	0.1500	0.1215	0	0	0.0668	0.1797	0.1098	0			
0	0	0.0700	0.1564	0.1567	0	0	0.0633	0.1685	0.1413			
0	0	0	0.0567	0.1646	0	0	0	0.0589	0.1754			

0.1732

Performance \	Versus	Number	of	Gradient	Iterations
---------------	---------------	--------	----	----------	------------

A distributed controller with 100 agents, using only local data. Fewer gradient iterations gives faster convergence, but worse stationary performance.

cost =				
6.7464				
L =				
0.1438	0.1208	0	0	0
0.0470	0.2031	0.1632	0	0
0	0.0749	0.1909	0.1046	0
0	0	0.0779	0.1843	0.1388

0

0

Gradient iteration for the wind park

0

0.0445

wind park

0

0

0 0.1580

0.1601

- Introduction
- Dynamic dual decomposition
- Distributed Model Predictive Control
- Distributed Iterative Feedback Tuning

Invited world-leading researchers from Control, Computer Science, Economics, Communication, Mathematics, . . .

- Multi-agent coordination and estimation (Jan 18 - Feb 19, 2010)
- Distributed decisions via games and price mechanisms (Feb 22 - Mar 26, 2010)
- Adaptation and learning in autonomous systems (Apr 6 - 30, 2010)
- Distributed model predictive control and supply chains (May 3 - 28, 2010)

See www.lccc.lth.se and announcements.

Case study: A water supply network in Paris	
[Carpentier and Cohen, Automatica 1993]	
 Network serving about 1 million inhabitants 20 main water reservoirs 30 pumping stations 13 peripheral subnetworks 	
Challenges for control	
 Minimize cost for pumping Bounds on reservoirs Bounds and delays in pumping power Prediction of consumption 	
Optimal control using dual decomposition and saddle algorithm Subnetworks separated by two variables: Water flow and price	

Г