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The saddle point algorithm

Update in gradient direction:

Computer 1: 2L =—0V1/0z

U1 = —0V1/0z2 + p1
Computer 1 and 2: P11 =29 — 01
Computer 2: 29 = —0V3/02z3 — p1 — p3
Computer 2 and 3: pP3 =29 — U3
Computer 3: 25 = —0Vs /02,

U3 = —(9V3/822 + p3

Globally convergent if V; are convex!
[Arrow, Hurwicz, Usawa 1958]

Building theoretical foundations for distributed control

Process

Controlle

We need methodology for
» Decentralized specifications
» Decentralized design
» Verification of global behavior

50 year old idea: Dual decomposition

nr;in[Vl(zl, 22) + Vz(Zz) + V3(Z3, Zz)]

= maxmin [Vl (21,v1) + Va(22) + V3(25,03) + p1(22 — v1) + p3(z2 — 03)}
The optimum is a Nash equilibrium of the following game:

The three computers try to minimize their respecive costs

Computer 1:  min,, ,, [V1(z1,v1) — p1v1]
Computer 2: min,, [Va(z2) + (p1 + ps)z2)

Computer 3: min,, ,, [V3(23,1)3) —p3vg}
while the "market makers” try to maximize their payoffs

Between computer 1 and 2: max,, [p1(z2 — v1)]
Between computer 2 and 3: max,, [p3(z2 — v3)]

Decentralized Bounds on Suboptimality

Given any p1, ps, 21, 22, 23, the distributed test
Vi(21,22) —p1Ze < Izrlllvrll [Vi(21,v1) = p1v1]
Va(22) + (p1+p3)Za < & Hgn [Va(z2) + (p1 + p3)22]
Vs(23,22) —psz2 < « IZI;1UI; [Vs(z3,v3) — psvs]
implies that the globally optimal cost JJ* is bounded as

J* < Vl(él,éz) + Vg(fg) + V3(§3,22) <ad*

Proof: Add both sides up!

Important Aspects of Dual Decomposition

v

Very weak assumptions on graph

No need for central coordination

v

v

Natural learning procedure is globally convergent

v

Unique Nash equilibrium corresponds to global optimum

Conclusion: Ideal for control synthesis by prescriptive games

A long history

The saddle algorithm:
Arrow, Hurwicz, Usawa 1958

Books on control and coordination in hierarchical systems:
Mesarovic, Macko, Takahara 1970

Singh, Titli 1978

Findeisen 1980

Major application to water supply network:
Carpentier and Cohen, Automatica 1993
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Example 2: A supply chain for fresh products

Fresh products degrade with time:

x1(t+1) x 0 0 0] [x1(2) —u1(t) +wi(t)
xz(t + 1) 0 = 0 0 xz(t) ul(t) — uz(t)
x3(t +1) 0 0 =« 0| [x3(2) ug(t) —us(t)
x4(t + 1) 0 0 0 = [x4(2) us(t) + wa(?)
Example 4: Wind farms
X1 X2 X3 X4
O+—0O O O
xl(t + 1) % 0 O] [x1 (t) Blul(t) + w1 (t)
X9 (t + 1) % % 0 |xg (t) Boug (t) + wo (t)
x3(t+1) 0 = = | fxs(t) Bsus(t) +ws(t)
x4(t+1) 0 0 = x| |x4(2) Byua(t) + wa(2)

Example 1: A vehicle formation

X1 X2 X3 Xq X5

Each vehicle obeys the independent dynamics

X1 (t + 1) *+ 0 0 0 xl(t) Blul(t) + w1 (t)
X2 (t + 1) 0 %« 0 0] [xg (t) n Boug (t) + ws (t)
x3(t+1) 0 0 = 0f |x3(¢) Bsus(t) + ws(t)
x4(t+1) 0 0 0 x| |x4(?) Bauy(t) + wa(2)

The objective is to make E|Cx;, 1 — Cx;|2 small fori = 1,...,4.

Example 3: Water distribution systems

w1 231
X1
wz uz
x1(¢+1) = 0 0 0] [xi(2) Biu; +w;
Xo x(t+1)[ _ |x = 0 0] |xa(2) " Boug + wsy
x3(t+ 1) 0 = = 0 |x3(2) Bsus + ws
x4(¢+ 1) 0 0 = =] |xa(t) Byuy + wy
ws us
X3

A control problem with graph structure

X1 X2 Xj-1 Xy
O=——+0=— —+0O=—=0
x1(7 + 1) An An 0 x1(7) u1(7)
xt+1)| Ay . - x3(7) N us(7)
E A : :
(-1)7
xj(T + 1) 0 A](],l) Ayyg x](T) uf(T)

J
Minimize the convex objective S > £:(xi(7),u;(7))
i=1
£(x(7)u(7))
with convex constraints x;(7) € X;, u;(r) € U; and x(0) = %.

Decomposing the problem

Minimize SN, £(x(z), u(t))

subject to
xl(‘r + 1) Auxl(’l') l)l(T) ul(T)
x2(r + 1) Azzxz(f) Uz(l') uz(‘:)
: - : + : + :
x5(7 + 1) Aggx5(7) vy(7) uy(7)

where x(0) = x and

Vi = 2 jiAij%;

holds for all i.

Decomposing the Cost Function

= max Z min > [Zi (i ui) + pf vi — x (Zj;éiAJT"ipj) ]

i

20 (,u4,07)
so, given the sequences {p;(¢)}Y,,, agent i should minimize

what he expects others to charge him
N

N N
D tiww)+ Y opfui = D o] (Zj;eiAﬁPj)
7=0 =0 7=0
~—_—
local cost what he is payed by others

subject to x; (¢ + 1) = Ajjx;(¢) + vi(¢) + ui(¢) and x;(0) = &;.




Distributed Optimization Procedure

Local optimizations in each node

N
VVP(5) =min > £ (xi(7), ui (1), 04(7)
=0

Ui, Xi
can be coordinated by (local) gradient updates of the prices
pE(E) = pHE) + 7 [uh(0) — B, Ak (0)]

Future prices included in negotiation for first control input!

Convergence guaranteed under different types of assumptions
on the step size sequence 7.

Idea of Distributed Model Predicitve Control

Replace the original problem by iterative online solutions of the
decentralized finite horizon problem

N
r;lin Z 12 (x; (), ui(2),vi(2))
w0

Two sources of error: Finite horizon and non-optimal prices

Fixed or flexible parameters N;, K;, v;?

Fixed parameters

» Simpler implementation
» Gives distributed LTI controllers
» Can be analyzed off-line or on-line

Flexible parameters

» Useful to handle hard state constraints
» Can speed up on-line computations
» Can slow down on-line computations
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A Distributed MPC Algorithm

At time ¢:

1. Measure the states «x;(¢) locally.

2. Use gradient iterations to generate
» price prediction sequences {p;(¢,7)},
> state prediction sequences {x;(,7)}Y,
> input prediction sequences {u;(t,7)},

warm-starting from predictions at time ¢ — 1.

3. Apply the inputs u;(¢) = u;(¢,0).

Important parameters: Prediction horizons N;, number of
gradient iterations K; and gradient step sizes ;.

“Wind Farm” Revisited

Minimize V =E 3", (|a;|® + |u;]?) subject to

x1 (¢ +1) 0.6 0.1 0| Tx1(2) u(t) +wi(t)

xz(t + 1) _ 03 . -, X2(t) + uz(t) + wo (t)
: .01 : :

% (¢ +1) 0 0.3 06| [*:(?) un(t) +wn ()

We will solve this by “distributed MPC”. For every ¢, the agents
measure their local state x;(¢). The vector of future prices is
then updated by a few gradient iterations starting from the
prices computed at ¢ — 1 for a time horizon of length N.

Re-negotiation of future prices at every time step!
This is the key to dynamic dual decomposition.

Performance Versus Number of Gradient Iterations

— — — Optimal cost
190} —— MPC—cost, N =1/
———MPC—cost,N=4
180l —— MPC—cost, N= 7|

expected cost
@
3

2 3 4 5 6 7 8 9 10
nbr of communications / sample

A distributed controller with 100 agents, using only local data.
Low order local dynamics, so short prediction horizons are OK

Challenges for theory

» What prediction horizon is needed?

» How many gradient iterations for the prices?

References:

Grine and Rantzer, IEEE TAC October 2008.
Pannek, PhD thesis 2009

Giselsson and Rantzer, submission for ACC 2010.




Theorem on accuracy of distributed MPC

Suppose all local finite horizon costs

VNP (&) = ming, o Yo € (xi(7),ui(7),04(7)) > 0

i i

satisfy
VP (3(8) 2 VPO (i (e + 1)) + @l (xi(8), wi(8), 3, 0415 (2))

foralli and ¢ > 0. Then

Notice: Failure of inequality hints on update of N; or K;!
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Computing the closed loop control performance

We are applying the control law u = —Lx to the system
x(t+ 1) = Ax(t) + Bu(t) + w(?)
where w is white noise with variance W. Define
I(L) =E (Jaff + ul?)
Then the gradient with respect to a particular element L;; is
(Vid)ij = 2RLE [x;x] | + 2B"E [pix] |
where p(t) is the stationary solution of the adjoint equation

p(t—1)=(A—BL)"p(t) - (@ + L"RL)x(t)

Conclusions on Distributed MPC

We have synthesized a game that solves optimal control
problems via independent decision-makers in every node,
acting in their own interest!
» Optimal strategies independent of global graph structure!
» States are measured only locally

» Linearly complexity (given horizon and iteration scheme)

» Distributed bounds on distance to optimality

Tuning a tri-diagonal controller for the “Wind Farm”

Minimize V. =E Y"1 ; (|xi]? + |ui]?)

x1(t+1) 06 0.1 0 Txi(4+1) ui(t) +wi(t)

x9(t+1) _|os3 x9(t+ 1) ua(t) + wa(t)
: S 01 : :

xn(t+1) 0 0.3 06| [x(t+1) un(t) + wn(t)

We will optimize a tri-diagonal control structure

A distributed synthesis procedure

1. Measure the states x;(¢) for ¢ = tp,...,t, + N
2. Simulate the adjoint equation

pi(t—1) =Y (A= BL)} pj(t) —2(Qixi(t) = Y LjR;u;(t))

JEE; JEE;

for ¢ = tp,...,t, + N by communicating states between nodes.

3. Calculate the estimates of Eu;x7 and E p;x7 by

tp+N tp+N
(E uixJT)est =51 Z wi(t)x; (8)F (Ep,-ij)est =51 Z pi()x; ()T

t=t; t=ty

4. For fixed step length ¥ > 0, update
k1 k
L&D = L 4 oy (Euiij)est + BT (Epiij)

2

Let ¢,.1 = # + N and start over.

est

Gradient iteration for the wind park

cost =
14.9887

L =
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

Gradient iteration for the wind park

cost =
10.5429
L =
0.0327 0.0400 0 0 0
-0.0007 0.0560 0.0527 0 0
0 -0.0069 0.0434 0.0315 0
0 0 -0.0207 0.0131 0.0437

0 0 0 -0.0033 0.0373




Gradient iteration for the wind park

Gradient iteration for the wind park

cost = cost =
7.8184 7.6192
L= L=
0.0310 0.0595 0 0 0 0.0404 0.0685 0 0 0
-0.0168 0.1002 0.1151 0 0 -0.0086 0.1076 0.1193 0 0
0 0.0345 0.1357 0.0986 0 0 0.0382 0.1421 0.1094 0
0 0 0.0636 0.0831 0.1351 0 0 0.0593 0.0991 0.1449
0 0 0 0.0102 0.1295 0 0 0 0.0131 0.1348
Gradient iteration for the wind park Gradient iteration for the wind park
cost = cost =
7.4004 7.2493
L= L=
0.0576 0.0583 0 0 0 0.0712 0.0654 0 0 0
0.0115 0.1224 0.1381 0 0 0.0061 0.1224 0.1443 0 0
0 0.0373 0.1500 0.1153 0 0 0.0341 0.1550 0.1166 0
0 0 0.0546 0.1068 0.1566 0 0 0.0773 0.1409 0.1580
0 0 0 0.0168 0.1594 0 0 0 0.0418 0.1601
Gradient iteration for the wind park Gradient iteration for the wind park
cost = cost =
6.9736 6.8211
L= L=
0.0936 0.1056 0 0 0 0.1390 0.1070 0 0 0
0.0331 0.1775 0.1341 0 0 0.0357 0.1821 0.1549 0 0
0 0.0563 0.1500 0.1215 0 0 0.0668 0.1797 0.1098 0
0 0 0.0700 0.1564 0.1567 0 0 0.0633 0.1685 0.1413
0 0 0 0.0567 0.1646 0 0 0 0.0589 0.1754
Gradient iteration for the wind park Performance Versus Number of Gradient Iterations
Expected total cost
220 | ' ' i ‘Cosl of‘system‘, N=2 ||
cost = 1 T Gt ot ratem Nego
1 — - — Optimal cost
200!
6.7464 |
180 :
L = 160 :\
140 ‘
0.1438  0.1208 0 0 o e
0.0470 0.2031 0.1632 0 0 120
0 0.0749 0.1909 0.1046 0
0 0 0.0779 0.1843 0.1388 0 100 200 300 400 500 600 700 800 900 1000
0 0 0 0.0445 0.1732

A distributed controller with 100 agents, using only local data.
Fewer gradient iterations gives faster convergence, but worse
stationary performance.
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Case study: A water supply network in Paris

[Carpentier and Cohen, Automatica 1993]

vV v vy

Network serving about 1 million inhabitants
20 main water reservoirs

30 pumping stations

13 peripheral subnetworks

Challenges for control

>
| 3
>
>

Minimize cost for pumping

Bounds on reservoirs

Bounds and delays in pumping power
Prediction of consumption

Optimal control using dual decomposition and saddle algorithm
Subnetworks separated by two variables: Water flow and price
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