
Cooperative Stabilisation 
& k-Pairs Communication 

Networks
Girish Nair
Dept. Electrical & Electronic Engineering
University of Melbourne, Australia

NecSys’09, Venice, Italy
25/9/09



Information Flows, Nair, U. Melbourne. 225/9, Necsys'09, Venice

Networked Control Systems

Communication 
Network Plant

Controller

Controller

EstimatorEstimate

Finite communication 
resources, e.g. transmission 
power, bandwidth, capacity, 

bit rates, buffer sizes



Information Flows, Nair, U. Melbourne. 325/9, Necsys'09, Venice

Single Loop
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Errorless Digital Channel, R bits/sample
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Q: Given no a priori coder-controller constraints but causality,
is stability possible given R? 
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The Data Rate Theorem
A coder-controller that stabilises the plant exists iff

2
( ),| | 1

: log | |   (bits/sample)
A

R H
λ σ λ

λ
∈ ≥
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Holds for different formulations & stability definitions!

Deterministic plant, bounded states: Baillieul (Proc. Stoch. The. Contr. 
Workshop’01), Hespanha et. al, MTNS ’02, Tatikonda & Mitter (TAC ‘04)

Noiseless plant w. unbounded random initial state, moment stability: N. & 
Evans (Automatica ’03)

Unbounded noise, mean sq. stability : Nair & Evans (SIAM J. Cont. Opt. ’04)
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Unstable Linear Plant
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Cooperative Networked 
Control: Plant Formulation
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 are mean-square bounded,
          with (0) having an absolutely continuous distribution.

:  The plant is controllable by all inputs together & 
        observable from all outputs together.

NB: Some a

X
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gents may have  and/or =0. i iB C
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Channel Formulation 
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Achievable Rate Region
( ) ( 1)

, 01
Let      :

 What is the region of rate tuples  for which there exists a 
cooperative scheme that mean-square stabilises the plant state,
 under no constraints but causali

N N
i j i j N

r r

r

−
≥≤ ≠ ≤
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Question :

ty on the agents? 
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Stabilisable
Rate Region

E.g.
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Previous Literature
Classical decentralised LTI control: 

- Wang & Davison, IEEE TAC ’73 : 
Stabilisability = No unstable 
decentralised fixed modes.

- Corfmat & Morse, Automatica’76:
Spectrum assignability = Completeness 
& strong connectedness.

- Kobayashi et. al., TAC’78: Decentralised 
controllability 
(2 controllers)

- Anderson & Moore, IEEE TAC `81 –
strong connectedness suffices for 
stabilisability with LTV controllers.

Bit-rate-constrained formulations:
Noiseless plant, multiple sensors & 
one controller
-Sufficient condition (Tatikonda & 
Mitter, Allerton `00)
-Necessary & sufficient condition 
(Matveev & Savkin, SIAM J. Cont. 
Opt. `06)
Noiseless plant, multiple sensors & 
controllers
-Separate necessary & sufficient 
conditions(N. et. al., CDC`04)
- Equivalence to multiterminal 
source coding (Matveev & Savkin, 
Birkhauser `09)

- Strong connectedness (Yuksel & 
Basar TAC`06)

( ) ( ) ( ).j j ju t K s y t=
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Marginal Information Demand
(0)

1

  By abs. cont.,   a sufficiently small hypercube  aligned with coordinate axes
                                  s.t. inf ( ) 0.

Mean-square stability maintained if (0) ~ U( ) U( ) U(
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Assume w.l.o.g. that (0), , (0) are mutually independent.

W.l.o.g., also assume plant is in real Jordan form.
1:  I (0); : lim I (0); (0), , ( ) log | |,

1

where =

h h h

n

n

h h ht

h

X X

X X t
t

Ψ Ψ Ψ λ

λ

+
∞ →∞

⇒

= ≥
+IN IN IN

H

Lemma

…

…

(D )

 plant eigenvalue governing 
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Marginal information about initial h-th mode must be received at 
this combined rate by all agents that can affect it.
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Communication Graph
( )

{ } { } { }1 1

Seek conditions allowing this demand to be met by inducing a capacitated signalling digraph 
                                            : , , , . 
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Arc e Signal Capacity 
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A ‘Relaxation’

,

 any agent directly affected by a mode with  knowledge of it
          & any agent which directly affects a mode,  transmission to it. 

1  if th row of input matrix  is 
Let : i

h i

Endow perfect
perfect

h B
d
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=

,

0
,

0  otherwise

1  if th column of output matrix  is 0
       : .

0  otherwise
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i h
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Agent-  receives noisy linear combination ( ) ( ) ( ) of modes.
Similarly, each ( ) "sees" a noisy linear combination of agents' control actions.

  communication channels. 
Capacity region 

i i i

h

i Y t C X t W t
X t

MIMO

= +

⇒
is major open problem in IT, even for 2x2...

    (see e.g. work of D. Tse. et al &  T.S. Han)
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Arc e Signal Capacity 
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2x2 Example

Sensor 1
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Capacitated Digraph
for Example
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n-Pairs Communication Network
If mean square stability achieved, then each destination    
receives marginal information over this capacitated digraph 
about corresponding source at rate 

n-Pairs communication problem. Rate region not generally known!
(see e.g. N. Harvey et. al.,M. Adler et al, Kramer & Savari 2006)

Some differences from standard formulation:

- Each source is a static, continuous rv with infinite information content, not 
an iid discrete sequence with finite entropy rate.

- Cycles present due to feedback.

See e.g. T.S. Han ’80, Ahlswede et al ’00, T.S. Han ’09 for solutions to certain 
other multiterminal network information problems.

2log | | .hλ
+≥

Dh
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h-Paths

( ) ( )
( )

1 1 2 1 1 3 4 2 2 1 2 1

2 1 2 1 1 3 4 2

Let a -path  := any simple path from S  to D
& the -bundle := set of all -paths. 

E.g., for the example, 
1-paths = S ,A , A , D  & S ,A , A , D , S , A , A , D .

2-path = S ,A , A , D ,S ,A , A , D

 Eac

h h h
h h

h -path = loopless route by which information about 
(0) may be conveyed from S  to D .h h h

h
X

These paths may involve signalling through the plant
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Multicommodity Fluid Flow?
Intuitively, we would  to believe that  (0)-information flows 
like an immiscible, incompressible fluid through the -bundle from  S  to D .

I.e., on each -path ,  we'd like there to  a -path f

h

h h

like X
h

h h∃p

all -paths  traversing 

2
-bundle

low 0 s.t.

1.  Arcs , ,

2. [1, , ],  log | | .

Conservation is implicitly satisfied at every vertex ,  
   since if  enters  on -path  it also lea

e
h e

h
h

e c

h n
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v h

ϕ
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ϕ λ

ϕ

+

∈

≥

∀ ≤

∀ ∈ ≥

∑

∑

p

p
p

p
p

p p

…

ves along the same -path. 

Unfortunately, this is not generally possible.

h
⎛ ⎞
⎜ ⎟
⎝ ⎠
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Counterexample
(after Ahlswede et. al., Trans. IT 2000)

1 2

Fluid view: flow on outer channels must be 0. 
Inner channel carries 0.5bits/sample from  &  each.

 Seems problem is infeasible.

X X

⇒
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∞ 1
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H { } 1

X t
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{ }2 2
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{ }1 1
ˆI ; 1?X X∞ ≥

( )
2
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X t
X∞ =
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Counterexample
(after Ahlswede et. al., Trans. IT 2000)
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Ahlswede et al:  let ,  ,   (mod 2 addition)

Then let ,

              .
Perfect reconstruction possible & problem is feasible.
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Triangularity
Nonetheless, being able to treat network as routing separate end-to-end streams of info. 
would be conceptually simple & practically useful.

:  For what class of networked control systems can this alwaQ⇒

( )

ys be done?

:  A capacitated -pairs digraph , ,  is  if
 an indexing 1, ,  of the source-destination pairs s.t. 

) Each source S  has a -path & 
) Each finite-capacity minimal 

h

n c triangular
h n

i h
ii

∃ =

Definition V E
…

1 1cut of a -bundle also cuts off D  from S , ,S ,
        [2, ].

h hh
h n

−

∀ ∈
…

…
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Example Triangular
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The only (minimal) finite-capacity cut of the 1-bundle also cuts source-2 from dest.-1. 
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Ahlswede Counterexample
Not Triangular!
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Tight Characterisation
of Rate Region
Under Assumptions 1-3 on the LTI plant, if mean square stability is achieved
& the induced capacitated digraph is triangular, then the digraph must
support a multicommodity flow. I.e., on each -path ,h p

all -paths  traversing 

2
-bundle

  0 s.t.

                   Arcs , ,

                     [1, , ],  log | | .    (*)

e
h e

h
h

e c

h n

ϕ

ϕ

ϕ λ+

∈

∃ ≥

∀ ≤

∀ ∈ ≥

∑

∑

p

p
p

p
p

…

( )If there does exist such a multicommodity flow with strict inequality in  (*) ,
the plant has distinct eigenvalues and the noise & initial state are bounded,
then a cooperative networked coding & control scheme can be constructed
to achieve (mean square) bounded states.
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Stabilisability Criterion 
for Example 

1,1 1,2 2,1

1,1 1,2 2,1 1 1,2 2,1 2

1,1 1,2 2 1 2,1 2 2

For stability to be possible, there must exist , , 0 s.t.
,     

          log | |,    log | | .
R R

ρ ρ ρ

ρ ρ ρ ρ ρ

ρ ρ λ ρ λ

≥

+ + ≤ + ≤

+ ≥ ≥

1 2 1 2 2 2 2 2 log | | log | |,  log | |R Rλ λ λ⇔ ≥ + ≥

1 2 2 1 2 2

1 2 2 1 2 2

                 log | | 2 log | | .
C.f. centralised condition,  log | | log | | .

R R
R R
λ λ

λ λ
⇒ + ≥ +⎛ ⎞

⎜ ⎟+ ≥ +⎝ ⎠
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Centralised Result Recovered
Every mode  has exactly one irreducible cycle, passing over 
the single rate  channel

 Stabilisability criterion reduces to the existence of  0  
for each  th mode, s.t.
                  ,

h

h

h
h

x
R

h
R

ρ

ρ

⇒ ≥

−

≥∑ 2

2

        log | |,     .

              Known criterion  log | |.

h h

h
h

h

R

ρ η

η

≥ ∀

≡ ≥∑
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Comparison with Decentralised 
LTV Control

In classical decentralised control, no channels between agents.

By joint controllability & observability,
every mode  affects some agent and is affected by another, possibly different agent. 
Combined 

hx
with strong connectedness  ,  a -path.   

Arcs all have  capacity  Can always choose  sufficiently large on each -path  

                                                to meet demand.

Decent

h h

hϕ

⇒∀ ∃

∞ ⇒

⇒

p p

ralised stability is possible,  agreeing with Anderson & Moore '81.
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Conclusions & Future Work

Information is not generally a flow!
However, certain nontrivial classes of networked 
control systems are stabilisable iff they support 
multicommodity-like information flows.

Noisy channels?
Unbounded plant noise? 
Generalisation to coordination problems (i.e. 
stabilisation to a subspace)?


	Cooperative Stabilisation �& k-Pairs Communication Networks 
	Communication Graph
	A ‘Relaxation’
	n-Pairs Communication Network
	Multicommodity Fluid Flow?
	Triangularity
	Ahlswede Counterexample�Not Triangular!
	Tight Characterisation �of Rate Region
	Comparison with Decentralised LTV Control
	Conclusions & Future Work

