

Cooperative Stabilisation & k-Pairs Communication Networks

Girish Nair Dept. Electrical & Electronic Engineering University of Melbourne, Australia

NecSys'09, Venice, Italy 25/9/09

Networked Control Systems

Single Loop

Q: Given no a priori coder-controller constraints but causality, is stability possible given R?

25/9, Necsys'09, Venice

The Data Rate Theorem

A coder-controller that stabilises the plant exists *iff* $R > H := \sum \log_2 |\lambda| \text{ (bits/sample)}$

Holds for different formulations & stability definitions!

 $\lambda \in \sigma(A), |\lambda| \geq 1$

Deterministic plant, bounded states: *Baillieul (Proc. Stoch. The. Contr. Workshop'01), Hespanha et. al, MTNS '02, Tatikonda & Mitter (TAC '04)*

Noiseless plant w. unbounded random initial state, moment stability: N. & Evans (Automatica '03)

Unbounded noise, mean sq. stability : Nair & Evans (SIAM J. Cont. Opt. '04)

Cooperative Networked Control

5

Cooperative Networked Control: Plant Formulation

$$X(t+1) = AX(t) + \sum_{i=1}^{N} B_{i}U_{i}(t) + V(t) \in \mathbf{R}^{n},$$

$$Y_{i}(t) = C_{i}X(t) + W_{i}(t) \in \mathbf{R}^{q_{i}}, \qquad i = 1, \dots, N$$

A1: $X(0), V(s) \& W_i(t) (s, t \ge 0, 1 \le i \le N)$ are mutually independent.

- A2: X(0), $\{V(t)\}$ and $\{W_i(t)\}$ are mean-square bounded, with X(0) having an absolutely continuous distribution.
- A3: The plant is controllable by all inputs together & observable from all outputs together.

NB: Some agents may have B_i and/or $C_i=0$.

25/9, Necsys'09, Venice

(Average) Channel Data Rate $r_{i,j} := \lim_{t \to \infty} \frac{1}{t} \sum_{k=0}^{t-1} \log_2 \left| \mathbf{S}_{i,j}(k) \right|$ (bits/sample)

No direct communication from $(i \rightarrow j) \Rightarrow \text{set } |\mathbf{S}_{i,j}(k)| = 1 \Rightarrow r_{i,j} = 0.$

Perfect communication from $(i \rightarrow j) \Rightarrow \text{set } |\mathbf{S}_{i,j}(k)| = \infty \Rightarrow r_{i,j} = \infty$.

25/9, Necsys'09, Venice

Achievable Rate Region

Let
$$r := \left(r_{i,j}\right)_{1 \le i \ne j \le N} \in \mathbf{R}_{\ge 0}^{N(N-1)}$$

Question : What is the region of rate tuples *r* for which there exists a cooperative scheme that mean-square stabilises the plant state, under no constraints but causality on the agents?

8

Previous Literature

Classical decentralised LTI control:

$$u_j(t) = K_j(s) y_j(t).$$

- Wang & Davison, IEEE TAC '73: Stabilisability = No unstable decentralised fixed modes.
- Corfmat & Morse, Automatica'76: Spectrum assignability = Completeness & strong connectedness.
- Kobayashi et. al., TAC'78: Decentralised controllability
 - (2 controllers)
- Anderson & Moore, IEEE TAC `81 strong connectedness suffices for stabilisability with LTV controllers.

Bit-rate-constrained formulations:

 Noiseless plant, multiple sensors & one controller

-Sufficient condition (Tatikonda & Mitter, Allerton `00)

-Necessary & sufficient condition (Matveev & Savkin, SIAM J. Cont. Opt. `06)

 Noiseless plant, multiple sensors & controllers

-Separate necessary & sufficient conditions(N. et. al., CDC`04)

- Equivalence to multiterminal source coding (Matveev & Savkin, Birkhauser `09)
- Strong connectedness (Yuksel & Basar TAC`06)

Marginal Information Demand

Fact : By abs. cont., \exists a sufficiently small hypercube **H** aligned with *X* – coordinate axes s.t. $\inf_{x \in \mathbf{H}} f_{X(0)}(x) > 0$.

 \Rightarrow Mean-square stability maintained if $X(0) \sim U(\mathbf{H}) = U(\mathbf{H}_1) \times \cdots \times U(\mathbf{H}_n)$.

 \Rightarrow Assume w.l.o.g. that $X_1(0), \dots, X_n(0)$ are mutually independent.

W.l.o.g., also assume plant is in real Jordan form.

Lemma: $\mathbf{I}_{\infty}\left\{X_{h}(0); \boldsymbol{\Psi}_{\mathbf{IN}(\mathbf{D}_{h})}\right\} \coloneqq \overline{\lim_{t \to \infty} \frac{1}{t+1}} \mathbf{I}\left\{X_{h}(0); \boldsymbol{\Psi}_{\mathbf{IN}(\mathbf{D}_{h})}(0), \dots, \boldsymbol{\Psi}_{\mathbf{IN}(\mathbf{D}_{h})}(t)\right\} \geq \log_{2}^{+} |\lambda_{h}|,$

where $\lambda_h =$ plant eigenvalue governing X_h

 $\Psi_{\mathbf{IN}(\mathbf{D}_h)} \coloneqq$ tuple of all signals available to agents that can directly affect X_h ,

 $I{X;Y} :=$ mutual information (in bits) between rv's X & Y.

Marginal information about initial h-th mode must be received at this combined rate by all agents that can affect it.

25/9, Necsys'09, Venice

Communication Graph

Seek conditions allowing this demand to be met by inducing a capacitated signalling digraph $G := (\mathbf{V}, \mathbf{E}, c, \Psi).$

 $\mathbf{V} \coloneqq \{ \text{Agents } 1, \dots, N \} \cup \{ \text{Sources } \mathbf{S}_1, \dots, \mathbf{S}_n \} \cup \{ \text{Destinations } \mathbf{D}_1, \dots, \mathbf{D}_n \}.$

 $\mathbf{E} := \text{set of directed edges (arcs) between certain ordered vertex pairs.}$ $\left(\begin{array}{c} \text{An arc representing a system output/exogeneous input} \\ \text{is allowed not to originate/terminate in a vertex.} \end{array}\right)$

$$\begin{split} c \coloneqq (c_e)_{e \in \mathbf{E}}, \text{ tuple of arc capacities} &\geq 0. \\ \mathcal{\Psi} \coloneqq (\mathcal{\Psi}_e)_{e \in \mathbf{E}}, \text{ tuple of signals carried on each arc s.t.} \\ &\forall v \in \mathbf{V}, \quad \mathcal{\Psi}_{\mathbf{OUT}(v)} = \text{causal functional of } \mathcal{\Psi}_{\mathbf{IN}(v)} \\ &\& \quad \forall e \in \mathbf{E}, \ \mathbf{I}_{\infty} \left\{ \mathcal{\Psi}_e; \mathcal{\Psi}_{\mathbf{IN}(G)} \right\} \leq c_e. \end{split}$$

25/9, Necsys'09, Venice

Arc e	Signal $\Psi_{e}(t)$	Capacity _{C_e}
$\left(\mathbf{A}_{i} \rightarrow \mathbf{A}_{j}\right)$	$S_{i,j}(t)$	r _{i,j}
$(D_h \rightarrow)$	$\hat{X}_h(0 \mid t)$	8
$(\rightarrow S_h)$	$X_h(0)$	8
$(A_i \rightarrow D_h)$??	??
$(\mathbf{S}_h \rightarrow \mathbf{A}_i)$??	??
$\left(\mathbf{D}_{h} \rightarrow \mathbf{S}_{h} \right)$??	??

28

A 'Relaxation'

Agent-*i* receives noisy linear combination $Y_i(t) = C_i X(t) + W_i(t)$ of modes. Similarly, each $X_h(t)$ "sees" a noisy linear combination of agents' control actions.

 \Rightarrow *MIMO* communication channels.

Capacity region is major open problem in IT, even for 2x2... (see e.g. work of D. Tse. et al & T.S. Han)

⇒ Endow any agent directly affected by a mode with *perfect* knowledge of it
 & any agent which directly affects a mode, *perfect* transmission to it.

Let $d_{h,i} \coloneqq \begin{cases} 1 \text{ if } h \text{th row of input matrix } B_i \text{ is } \neq 0 \\ 0 \text{ otherwise} \end{cases}$, $e_{i,h} \coloneqq \begin{cases} 1 \text{ if } h \text{th column of output matrix } C_i \text{ is } \neq 0 \\ 0 \text{ otherwise} \end{cases}$. 25/9, Necsys'09, Venice Information Flows, Nair, U. Melbourne.

Arc e	Signal $\Psi_{e}(t)$	Capacity _{C_e}
$\left(\mathbf{A}_{i} \rightarrow \mathbf{A}_{j}\right)$	$S_{i,j}(t)$	$r_{i,j}$
$(D_h \rightarrow)$	$\hat{X}_h(0 \mid t)$	∞
$(\rightarrow S_h)$	$\left(X_h(0), V_h(t-1)\right)$	8
$(A_i \rightarrow D_h), \text{ iff } e_{i,h} = 1$	$U_i(t)$	∞
$(\mathbf{S}_h \rightarrow \mathbf{A}_i), \text{ iff } d_{h,i} = 1$	$X_{h}(t)$	8
$(D_h \rightarrow S_h)$	$\left(U_i(t-1)\right)_{i:e_{i,h}=1}$	∞

28

Capacitated Digraph for Example

n-Pairs Communication Network

If mean square stability achieved, then each destination D_h receives marginal information over this capacitated digraph about corresponding source at rate $\geq \log_2^+ |\lambda_h|$.

→ n-Pairs communication problem. Rate region not generally known!
(see e.g. N. Harvey et. al., M. Adler et al, Kramer & Savari 2006)

Some differences from standard formulation:

- Each source is a static, continuous rv with infinite information content, not an iid discrete sequence with finite entropy rate.
- Cycles present due to feedback.
- See e.g. T.S. Han '80, Ahlswede et al '00, T.S. Han '09 for solutions to certain other multiterminal network information problems.

h-Paths

Let a *h*-path := any simple path from S_h to D_h & the *h*-bundle := set of all *h*-paths.

E.g., for the example,
1-paths =
$$(S_1, A_1, A_2, D_1) \& (S_1, A_3, A_4, D_2, S_2, A_1, A_2, D_1).$$

2-path = $(S_2, A_1, A_2, D_1, S_1, A_3, A_4, D_2)$

Each *h*-path = loopless route by which information about $X_h(0)$ may be conveyed from S_h to D_h .

These paths may involve signalling *through* the plant

25/9, Necsys'09, Venice

Multicommodity Fluid Flow?

Intuitively, we would *like* to believe that $X_h(0)$ -information flows like an immiscible, incompressible fluid through the *h*-bundle from S_h to D_h .

I.e., on each *h*-path **p**, we'd like there to \exists a *h*-path flow $\varphi_{\mathbf{p}} \ge 0$ s.t.

1. \forall Arcs e, $\sum_{\text{all }h\text{-paths }\mathbf{p} \text{ traversing }e} \varphi_{\mathbf{p}} \leq c_{e}$, 2. $\forall h \in [1, ..., n], \sum_{\mathbf{p} \in h\text{-bundle}} \varphi_{\mathbf{p}} \geq \log_{2}^{+} |\lambda_{h}|.$

Conservation is implicitly satisfied at every vertex v, since if φ_p enters v on h-path \mathbf{p} it also leaves along the same h-path.

Unfortunately, this is not generally possible.

25/9, Necsys'09, Venice

Counterexample

(after Ahlswede et. al., Trans. IT 2000)

Inner channel carries 0.5bits/sample from $X_1 \& X_2$ each.

⇒ Seems problem is infeasible. 25/9, Necsys'09, Venice Information Flows, Nair, U. Melbourne.

Counterexample

(after Ahlswede et. al., Trans. IT 2000)

Ahlswede et al: let $S_1 = X_1$, $S_2 = X_2$, $S_3 = X_1 \oplus X_2 \pmod{2}$ addition)

Then let
$$\widehat{X}_2 = S_1 \oplus S_3 = X_1 \oplus X_1 \oplus X_2 = X_2$$
,
 $\widehat{X}_1 = S_2 \oplus S_3 = X_2 \oplus X_1 \oplus X_2 = X_1$.

 \Rightarrow Perfect reconstruction possible & problem is feasible. 25/9, Necsys'09, Venice Information Flows, Nair, U. Melbourne.

Triangularity

Nonetheless, being able to treat network as routing separate end-to-end streams of info. would be conceptually simple & practically useful.

 \Rightarrow *Q*: For what class of networked control systems can this always be done?

Definition: A capacitated *n*-pairs digraph $(\mathbf{V}, \mathbf{E}, c)$ is *triangular* if \exists an indexing h = 1, ..., n of the source-destination pairs s.t.

- *i*) Each source S_h has a *h*-path &
- *ii*) Each finite-capacity minimal cut of a *h*-bundle also cuts off D_h from S_1, \ldots, S_{h-1} , $\forall h \in [2, \ldots n]$.

Example Triangular

The only (minimal) finite-capacity cut of the 1-bundle also cuts source-2 from dest.-1.25/9, Necsys'09, VeniceInformation Flows, Nair, U. Melbourne.23

Ahlswede Counterexample Not Triangular!

Tight Characterisation of Rate Region

Under Assumptions 1-3 on the LTI plant, if mean square stability is achieved & the induced capacitated digraph is triangular, then the digraph must support a multicommodity flow. I.e., on each *h*-path \mathbf{p} , $\exists \varphi_{\mathbf{p}} \ge 0$ s.t.

$$\forall \operatorname{Arcs} e, \sum_{\substack{\text{all } h \text{-paths } \mathbf{p} \text{ traversing } e}} \varphi_{\mathbf{p}} \leq c_{e},$$

$$\forall h \in [1, \dots, n], \sum_{\mathbf{p} \in h \text{-bundle}} \varphi_{\mathbf{p}} \geq \log_{2}^{+} |\lambda_{h}|. \quad (*)$$

If there does exist such a multicommodity flow (with strict inequality in (*)), the plant has distinct eigenvalues and the noise & initial state are bounded, then a cooperative networked coding & control scheme can be constructed to achieve (mean square) bounded states.

Stabilisability Criterion for Example

For stability to be possible, there must exist $\rho_{1,1}, \rho_{1,2}, \rho_{2,1} \ge 0$ s.t. $\rho_{1,1} + \rho_{1,2} + \rho_{2,1} \le R_1, \quad \rho_{1,2} + \rho_{2,1} \le R_2$ $\rho_{1,1} + \rho_{1,2} \ge \log_2 |\lambda_1|, \quad \rho_{2,1} \ge \log_2 |\lambda_2|.$

$$\Leftrightarrow R_1 \ge \log_2 |\lambda_1| + \log_2 |\lambda_2|, R_2 \ge \log_2 |\lambda_2|$$

$$\begin{pmatrix} \Rightarrow R_1 + R_2 \ge \log_2 |\lambda_1| + 2\log_2 |\lambda_2|. \\ C.f. \text{ centralised condition, } R_1 + R_2 \ge \log_2 |\lambda_1| + \log_2 |\lambda_2|. \end{pmatrix}$$
25/9, Necsys'09, Venice Information Flows, Nair, U. Melbourne.

Centralised Result Recovered

Every mode x_h has exactly one irreducible cycle, passing over the single rate *R* channel

⇒ Stabilisability criterion reduces to the existence of $\rho_h \ge 0$ for each *h*−th mode, s.t.

$$R \ge \sum_{h} \rho_{h}, \qquad \rho_{h} \ge \log_{2} |\eta_{h}|, \quad \forall h.$$

= Known criterion $R \ge \sum_{h} \log_{2} |\eta_{h}|.$

Comparison with Decentralised LTV Control

In classical decentralised control, no channels between agents.

By joint controllability & observability,

every mode x_h affects some agent and is affected by another, possibly different agent. Combined with strong connectedness $\Rightarrow \forall h, \exists a h$ -path.

Arcs all have ∞ capacity \Rightarrow Can always choose φ_p sufficiently large on each *h*-path **p** to meet demand.

 \Rightarrow Decentralised stability is possible, agreeing with Anderson & Moore '81.

Conclusions & Future Work

- Information is not generally a flow!
- However, certain nontrivial classes of networked control systems are stabilisable iff they support multicommodity-like information flows.
- Noisy channels?
- Unbounded plant noise?
- Generalisation to coordination problems (i.e. stabilisation to a subspace)?