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Distributed Algorithms
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Distributed Algorithms
x(t+1) = [1—ald)| x(t)+axtt) {E@ P (d,) [x(5) + ] + EOB (&) ful vit] }

= Average consensus:

x(t+ 1) = Px(t)
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High Dimensional Consensus (HDC)
(1) = [1 = 0(d)] x@)+a(d) {EOP @) [0 + v] +BOB @) fu'tve0)] |

= Average consensus:
x(t+ 1) = Px(¥)

= Deterministic High Dimensional Consensus (HDC):

u(t) = u(0)=u
x(t+1) = Px(t)+ Bu(f)
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High Dimensional Consensus (HDC)

= Kanchors and M sensors (K+M=N) in m dimensions:

U = [u@)---u™@)],U: Kxm
X(t) = [x"t)---x™(@)], X(¥): M xm
= Matrix HDC: Ul = U
X(t+1) = PX(t)+BU

[X(ttil)] - H" 3Hx‘é>]

lim X(¢t) =[I-P] 'BU
t—»00
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Convergence

Lemma 1 Let B # 0 and U(0) ¢ N(B), where N (B) is the null
space of B. If

p(P) <1,

then the limiting state of the sensors, X, s given by
Xoo £ lim X(¢+1) = (I- P) ' BU(0),
— 00

and the error, E(l) = X(t) — X, decays exponentially to O with
exponent In(p(P)), i.e.,

1
limsup ZIn|[E(t)]| < In(p(P)).
t— 00
Proof: .
X(t+1) = PHX(0)+ Y P*BU(0),

k=0
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Leader Follower

= 1 anchorin m dimensions: k=1, u= [u'(t)---u™(t)] A "
- / f \
A - o] L
" M sensors. X(t) = .. {!.9}‘ 'l {E}
1 m -~
i Ty(t) - Th(0) ] 1 e
= HDC: u _ |10 u
X(t+1) b P || X
. B e |
Jim X() =[L-P] 'bu o
= |n particular, for coordinate j: Jim x’(¢) = [I-P] " bw’
" Need: I-P)'b = 1, —
b+FPly = lu. = bl+zplivl:19'“,M

R. Olfati-Saber, J. A. Fax, and R. M. Murray. "Consensus and Cooperation in Networked Multi-Agent Systems,"
Proceedings of the IEEE, vol. 95, no. 1, pp. 215-233, Jan. 2007.
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Distributed Localization

= Localize M sensors with unknown
locations in m-dimensional Euclidean

space [1] A

= Minimal number, n=m+1, of anchors ®
with known locations

= Sensors only communicate in a
neighborhood A ® e 4

= Only local distances in the
neighborhood are known to the sensor m = 2-D plane

= There is no central fusion center

[1] Khan, Kar, Moura, “Distributed Sensor Localization in Random Environments using
(&) Electrical & Computer  inimal Number of Anchor Nodes,” IEEE Tr. on Sign. Pr., 57(5), pp. 2000-2016, May
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HDC: Distributed Sensor Localization

= Assumptions

= Sensors lie in convex hull of anchors

= Anchors not on a hyper-plane

= Sensors find m+1 neighbors so they lie in their

convex hull
= Only local distances available

= Distributed localization (DILOC) algorithm
= Sensor updates position estimate as convex l.c. of n=m+1 neighbors
= Weights of l.c. are barycentric coordinates

Carnegie Mellon

A

= Barycentric coordinates: ratio of generalized volumes

= Barycentric coordinates: Cayley-Menger determinants (local distances)
X;(t—l—l) = puX;(t)—I— Z p;ij(t)—F Z b;kllk((]).

Electrical & Computer
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. . Agioe,
= Barycentric coordinates: py = {’}ze \Uk} 1
e
= Example 2D: l
i3 = Aqp2
A123

= Cayley-Menger determinants:

1

Sm+1

0 1%,

2 __
A= 1,1 T

?

where I' = {dfj }, 1,7 € k, is the matrix of squared distances, d;;, among the
m + 1 points in ¥ and

2™ (m!)?

Sm:(_]_)TH’ m={0,1,2,...}.

Its first few terms are —1, 2, —16, 288, —9216, 460800, . . ..
{Ry) Electrical & Computer
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Set-up phase: Triangulation

= Test to find a triangulation set,
= Convex hull inclusion test: based on the following observation.

Apo + Ans + Az > A12s Ape + Aps + Ajes > Aqos

= The test becomes
l € C(6,), if Z Ae,u{i\{k} = Ae;,

kcO;

L ¢ C(61), if Z Aok > Ae,

kcOy
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Distributed Localization

= Distributed localization algorithm (DILOC)

X;(t—l—l) = puX;(t)—I— Z p;ij(t)—F Z b;kllk((]).
i€Ka(l) kcK (1)

= Convergence: > Apuupu =A4e, [€C(6)
ke,

Dke,Pik + Lker,bik = 1
Lemma 3: The underlying Markov chain with the transition
probability matrix given by the iteration matrix Y is absorbing.
Theorem I (DILOC Convergence): DILOC (10) converges to
the exact sensor coordinates, ¢;,[ € 2, i.e.,

lim ¢;(t+1)=¢; VIle. (36)

t—oo
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Distributed Localization: Simulations

= N=7 node network in 2-d plane

= M=4 sensors, K=m+1 = 3 anchors

< 4r

g

g3pf - =

3
27 - -
1 . . . . .
0 10 20 30 40 50

DILOC TIterations, t

= M =497 sensors

((3' Electrical & Computer A58 T T 14
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Random Network, Noisy Comm., Errors

" Link failures (packet drops):

= Links are modeled as Bernoulli random variables (temporally
independent, possibly spatially correlated) e;.(t),l € Q,n € &

= ep(t) = 0 (link failure) with probability 1 — gy,
= Communication is noisy:

yl () =z (t)+v] (), ne0\y,

= Noise is zero mean, finite 2" moment, no distributional assumptions

= Barycentric coordinates are noisy:

= |ntersensor distances are noisy induce perturbation of the
barycentric coordinates

= P(A) =P +Sp +8p(1) 2 (), B (@) =B(") + S5 +85() £ (B(0)
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Distributed Localization

* Theorem: Link failures, noisy comm., errors in intersensor
distances — Under noise model, persistence cond., and
connected on average

a(t) > 0,3, alt) =003, a(t) <

L(i)=T+ L), Vi>0, A (L)>0.
HDC for distance localization

ens ()b (1)

xi(t+1) = (1 —a(t)x(t)+alt) | > = (ZPEH{T) (xn(0) Fvim(0)) + D Qik

nellney kEekniey

(s + vie(t))

(1

converges
lim;_ . X(t+1)=(I-P — Sp)~'(B + Sg)U(0)
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Random Network
= Link failures (packet drops):

= Links are modeled as Bernoulli random variables (temporally
independent, possibly spatially correlated) e;.(t),l € Q,n € &,
= ep(t) = 0 (link failure) with probability 1 — gy,
. Communication IS noisy:
EH” t) = )—Hg”( ), nec e,
= Noise is zero mean, finite 2" moment, no distributional assumptions

= [ntersensor distances are noisy:

(B.3) Noisy distance measurements: Let {Z(f)};>0 be any sequence of inter-node distance measurements
collected over time. Then, there exists a sequence of estimates {d; }¢>0 such that, for all ¢, d; can be computed

efficiently from {X (s)}s<¢ and we have

P Llﬂn d, — d*} —1 (15)
-1 1~ _ ~
dan(t Zdab = ——du(t = 1)+ ~dap(t),  dun(0) = das(0)

ectrical & Computer
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Distributed Localization

= Theorem: Errors in intersensor dist. — Under noise model

P Lhm d, = d*} 1
Persistence cond.

aft) = 0, lim,_... a(t) =0, and 3, a(t) = oo, alt) = T 0<d<1
HDC for distance localization: X(t) = [x'(¢)---x™(¢)]
X (t+1) = (1—a®)x)(t)+a(t)|[P(d)x(t)+B(ds)) ], 1<j<m
converges
P Lgm:}{j{f) — (I—P(d*) "B ), vj=1,... ,m} — 1
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Proof
X' (t+1) = (1—a(t)x(t)+a(t) [P (d)x(t)+B(de) /], 1<j<m

Lemma 2 Consider the sequence of iterations in (16). We have

P [sup

t=0

x’ (t)

< oo, 1< i—'.'.m} = 1.

In other words, the sequence {x’(t)}:>0 remains bounded a.s. for all j.
Proof of Lemma 2:

X (t+1) =[(1—a®)])+a@P(d)]x(t) +alt) [P(A;) — P(d)] x*(t) + a(t)B(d:)u
[(1 —a®)I) +a(®)P(d")|p, =1 —alt) +alt) [P(d7)], =1 - A alt)

|P(d) ~P@)], <=, [|B@)], <)

peesnl, = a-ofeal, v o], +aone|],
— (1-(\" = 2)a(1) Hx\ Ol +alt)h(w Hu |-
t—1 t—1 t—1
Hx:(t}HF < ( [T Q-aa®) | Ixt2)l+ > K I (1—a1affjj) aga-{k)]
k=taw) k=tolw) I=k+1

t—1 [/ t—1
< x(t2(w))| p + Z ( H (1— (1.1&{5}}) ﬂg(w)cr{k]]

(w L \N=k4+1
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Proof (continued)
o < H (1—m<t}}j Ix(t2(w))]p + Z Kﬁu—mfm)mm]

k=taiw) k=taw) I=k+1

[/ t—1
< x(t @)+ Z (H {1—a-m{f}}) az(w)a{m]
}

\ k=tg(w I=k+1
i
Lemma 1 (Lemma 18, [9]) Let the sequences {ry(t)}¢=0 and {ra(t)}+>0 be given by
€lq o
t) = ——5-, 2t) = ———— 24
ri(t) {t—|—1]51 ral(t) (t—|—1]52 (24)

where a1,az,d2 = 0 and 0 < d; < 1. Then, if 4; = ds. there exists K > 0, such that, for non-negative integers, s < ft,

t—1 t—1
0<> { IT a- ?'1{!)]] ra(k) < K (25)

k=s Li=k+1

Moreover, the constant K can be chosen independently of s,t. Also. if 81 < d2. then, for arbitrary fixed s

t—1 t—1
lim [ 1T {1—m(s)}] ra(k) =0 (26)

t— oo
k== Li=k+1

) ?EISHKJWH = K(w |:> ]F’ supf GHK || < %] =1

[91 S. Kar, J. M. E Moura, and K. Ramanan, “Distributed parameter estimation in sensor networks: Nonlinear observation models and
imperfect communication,” Submitted for publication, see also http:/farxiv.org/abs/0809.0009, Aug. 2008
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Proof of Theorem

Proof Theorem: Cannot use standard stochastic approx. techniques because
P(af.)1 B{H;}

are a function of past measurements, so strongly time dependent, non Markovian

We use a comparison argument. To this end, consider the idealized update

(1) = (1 —a(t) () +alt) [PA)X() + B(.:r')u-?}

lim %7 (t) = (I — P(d")) "' B(d" ).

t— oo
el (t) =xI(t) — x?(t) }e=0
el (t +1) = (1 — at) & (t) + a(t)P(d")e’ (t) + a(t) (P(d:) — P(d")) x? () + a(t) (B(d:) — P(d*)) w’.

lim—. ||e~" () =0

M e
ectrical & Computer
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Localization: General Random, Noise, Errors

* Theorem: Random network, noisy comm., errors in
intersensor dist., connected on average

X (t+1) = (1—a(®)x (1) +a(t) [E P (@) () + v/ (1) + E© B (d) (0 +v/(1))]
Persistence cond. «af(t) = 0,3, a(t) =00,3 ", a(t) <

Connected L(i)=L+ L), vi=0, A(L)>0.

HDC for distance localization converges
Proof: comparison argument

%/ (t+1) = (1—a(t)F (1) +at) [P (d) ¥ (t) + B (d) ©]
() =x(t)-¥(t) —= {&(t)} == 0,a.s.
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Consensus: Random Network, Noisy Comm.
x(i+ 1) =x(i) — (i) [L{i)x(7) + n(i)]

= Laplacian indep. in time, noise iid: standard stoch. approx.
Limiting random variable ©: Ejg =

U .
( < A%ZHQHJ

i>0
M realizable links, identical prob. failures, noise iid var. o2

2 _
‘= h’rr 1 P) Z”

g0

Convergence rate of mean

|E [x(i)] — r1]| < (p—f’wifﬂiuw_l&W) |E [x(0)] — r1]]
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Consensus: Quantized and Random Network
x(i+ 1) =x(i) — afi) [L(i)x(i) + X(i) + ¥(i)]

= Dither and quantization noise
= No distributional assumption, only finite 2"9 order moment

" Proof:
= Characterize supremum over all sample paths of state of quantizer
= Use maximal inequalities for submartinglae and supermartingale seq.
= Derive prob. Bounds on excursions of sample paths

= MMSE:
_ ZAE(TJ . =1 i) i—1 _ EAE(I] =1
E |Ix(i) - r1f’] < L () Tk g (Il + = 2 | ¢ BB Zizhns0)
ML) Ao(L) =
i—1
AMI|AT =
+—3 J;tf'ﬂ (67)
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Distributed Nonlinear Estimation

X(1 +1) =x() = 6(2) (L(7) @ In) X(1) — ae) [x(7) — J(z(i))] — 8(2) (X(7) + ¥(i))

T

x(i) = | (b~ Ga(@) -

T}T

(fl_l (iﬁ; (E) })

= Nonlinear equivalent of observability condition
= Two time scales
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Conclusions

= High dimensional consensus:
= Extends consensus
= Large classes of distributed algorithms

= Random networks: Ink failures
= Noisy communications
= Errors in structural parameters

= Consensus with random links and noisy communications:
= Stochastic approximation

= Consensus with quantized data and random links:
= Stochastic approx not sufficient
= Comparison argumanets

Distributed estimation
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