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jpectacular Progress in nnderstanding
Networked Systems




Social and Economic Networks

» Epidemics and Pandemics

» Bubbles

» Bank Runs



 How can a group of moving agents collectively decide on
direction, based on nearest neighbor interaction?

How does global behavior (herding) emerge from local interactions?




The heading value updated (in discrete time)
as a weighted average of the value of its
neighbors: move one step alona updated

i i ar o SIin@i(k)) +siné; (k
direction g (4 4 1) =< ,(k) >,:— atan (s nr) 8 05 (F)) (k)
(Zjej\fé(k) cos 0;(k)) + cos 0;(k)

Locally:

Neighborhood relation depends on heading
value, resulting in change in topology

MAIN QUEST|ON . When do all

headings converge to the same value?

A network which changes as a result of
node dynamics




@ Bounded confidence opinion model

(Krause, 2000, Hendrix et al. 2008) ri(k) = Y Wik —1)
@ Nodes update their opinions as a JEN
weighted average of the opinion
value of their friends Wij(k) =20, > icn

@ Friends are those whose opinion

Is already close (e.g. within 1 unit)

@ When will there be fragmentation
and when will there be
convergence of opinions?

@ Node dynamics changes
topology
@ Vicsek model in 1d

@ Special case: Gossiping: each
node only talks to one neighbor at
a time

@ Simulations informative but not
enough




Y&}, Consensus in changing networks

Theorem (Jadbabaie et al. 2003, Tsitsiklis’84): If there is a
sequence of bounded, non-overlapping time intervals T,, such
that over any interval of length T,, the network of agents is
‘Jointly connected ”, then all agents will asymptotically reach
consensus.

@ Special case: network is connected “once in a while”

@ Similar result for continuous time, leader follower, ....




N Consensus literature:

an incomplete surve

Opinion Dynamics:
[DeGroot 1974, Chaterjee & Seneta 1974]

Parallel and Distributed Computation:
[Tsitsiklis 1984, Tsitsiklis et al. 1986]

Distributed Control and Optimization:

> distributed multi-agent optimization: [Nedi¢ & Ozdaglar 2008]
> velocity alignment of kinematic agents: [Jadbabaie et al. 2003]
» continuous time dynamics: [Olfati-Saber & Murray 2004]
> directed networks: [Ren & Beard 2004, Lin & Francis 2004]

» nonlinear updates: [Moreau 2004, Lin et al. 2005]
» random networks: [Hatano & Mesbahi 2005, Wu 2006]
> time delays: [Angeli & Bliman 2006]
» quantized values: [Savkin 2004]



Consensus over random networks

In the real world, network communication links are random.
(link failures, interference, physical obstacles, etc.)

» What are the conditions for consensus when the weight matrices
Wi are random?

Reaching consensus in probability: For all z(0), € >0, and i,j €V,
P(li(k) — x; (k)] > €) =0

Reaching consensus almost surely: For all (0) and 7,5 € V,

i (k) —x; (k)| — 0 almost surely



Consensus In Random Networks

The matrices W} are independent and identically distributed.
» Edges of the graph maybe dependent at one time-instant.

» The graphs are independent from one time step to another.

The graphs could even be correlated so long as they are stationary-ergodic.

Theorem

The agents reach consensus almost surely if and only if

Ao (EW)| < 1, that is, the expected graph contains a rooted
spanning tree.

D A. Tahbaz-Salehi and A. Jadbabaie,

A necessary and sufficient condition for consensus over random networks
IEEE Transactions on Automatic Control, April 2008.

Also Hatano & Mesbahi 2006; Wu 2006; Picci & Taylor 2007;

e



What about consensus value?

A random graph sequence means a random consensus value z*.

What is its distribution?

Open problem, but ...

> Ex* = ZC(O)T \'Al (EWk)
> var(z*) = [2(0) @ 2(0)]" vi(E [W), @ Wi]) — [2(0)T vi(EW}))?

» Degenerate distribution iff all matrices have same left eigenvector.

» Large-scale behavior | Can we say more? Almost Surely

[ Tahbaz-Salehi and Jadbabaie, TAC, 2009 (To Appear)]
[Preciado, Tahbaz-Salehi, and Jadbabaie 2009]



Switching Erdos-Renyi graphs

Consider a network with n nodes and a vector of initial values, x(0)
Repeated local averaging using a switching and directed graph

In each time step,Y« (72, P) is a realization of a random graph where
edges appear with probability, Pr(a;=1)=p, independently of each
other

Consensus dynamics
x(k +1) =W, x(k)
W, =D+ 1) (A+1,)
Stationary behavior

x(k) =U,x(0), withU, =W, _W,_,..W,,
lim,_,_U, =1v', wherev is a random vector,

X" =lim,__x (k) is a random variable.

We can find a close form expression for the mean & variance of x*




__ ﬂMean and variance in E-R graphs

@ Remember, for any IID graph sequence
Ez* = x(0)" vq (EW3)
; , 2
var (z*) = [x(0)@x(0)]" v1 (E[W).®Wi]) — [x (0)" v1 (Emﬂ

@ EXxpected weight matrix is symmetric! Therefore mean is just
average of initial condiitons!

@ Computing the variance of x* is more complicated
@ Involves the Perron vector of the matrix E[W, &W,] .
(it is not Kronecker product of two eigenvectors!)
@ Can derive a closed form expression of the left eigenvector of

E[W,&W,] for any network size n, link probability p, and initial
condition x(0).



What does E[W,&W,J look like?

@ E[W,&W,] Is Not E[W, ] ®E[W, ], but it almost is!
@ Only n of the n? entries are different!
1 (1) E(wsws) =¢""H(p.n)

T

(2) B(wiwj;) = (1—;;%)2,

(3) E(wiwis) = B (wijwi;) = B (w;wy) = q_ang%;ff;;ép:n)):

(4) E ('U_)m.u;ﬂ) - E (wz-z-wm) — (1—qn)(np_1_|_qn):

n2p2(n—1)

o\ g(np—3)+¢"(3—3p+2np H(p,n))
(5) B (wijwis) = L=t =2

(6) E(wiwy) = E(wiw;s) = E (wiw)

)\ 2
= B (wiw,;) = B (wijw,) = (1(;_1_5]0) !

g=1-p and H(p,n) can be written
In terms of a hypergeometric function




A surprising result

@ Theorem: var(z*) = 1—p 2:(0) = 2(0)2
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P(p,’n) n + (TZQ —n)P(p~n)

@ No Kronecker products or hyper-geometric functions

@ As network size grows, variance of consensus value goes to
zero!

@ What about other random graph models?



Other random graph models

@ Erdos-Renyi graphs are easier: no correlation between
entries of adjacency matrix

@ E-R graphs have Poisson degree distributions, whereas
many real large networks have heavy tailed degree
distributions

@ Note: degree distribution does not uniquely identify the
topology (not even close!)

@ Fixing degree distribution (and higher degree correlations)
will fix the moments of the Laplacian spectrum!
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. Random graph models with

prescribed degree distribution

e Degree distributions Do tell us something though
e Moments of spectra of graph Laplacians!

@ Generalized static models [Chung and Lu, 2003]:
@ Random graph with a prescribed expected degree sequence
@ We can impose an expected degree w, on the i-th node




A CLT for eigenvalues of Chung-Lu

Graph Laplacians

@ Main Problem: adjacency entries are correlated

e Numerical Experiment: Represent the histogram of eigenvalues for several
realizations of this random graph

100 nodes 500 nodes 1000 nodes

e Limiting Spectral Density: Analytical expression only possible for very
particular cases.

Contribution: Estimation of the shape of the bulk for a given expected




Symbolic Polynomials for Expected

Spectral Moments for larage graphs

. . . n K
e Our symbolic expressions are in terms of W, = w,

Blma(A)] = (L+o(1) = (W),

Bima(A)] = (L+o(L) = (2W7Ws),

Bims(A)] = (1+o(1) - (2WPWs + 3WIW3)

Elms(A,)] = (1+o(1))%(QWfW4+8Wf’W2W3+4W12W§’)

e Numerical verification: 500 nodes random power-law, =2.5

2s5+th order Analytical Expectation Numerical Realization Relative Error

ma(Ay) 2 8088¢+004 2 8024e-+004 023 %

ma(Ay) 1 63634009 1.6237e-+009 0.77 % Only one
me(As)  1207Pe+014 1.18706+014 160 % typical
ma(Ay) 1.0040e+019 0 7485e+018 200 % realization!

mio(Ay)  89738e+023 8 5881e+023 4.30 %




Other related work

@ Closed form solutions for moments of
adjacency/Laplacian matrices of random geometric

graphs (all moments in 1d, first 3 moments in 2d)
(Preciado & J., CDC 09)

@ Given the moments, we can estimated the shape of
eigenvalue distribution, and estimate the spread

@ Can predict synchronizability, speed of
convergence once we know the spread of
eigenvalues (Preciado & J., CDC 09)



When Is consensus a good thing?

Do consensus algorithms aggregate information correctly?

Sometimes.

» Computing the maximum likelihood estimator
Boyd, Xiao, and Lall 2006]

» Learning in large networks
Golub and Jackson 2008]

In many scenarios agreement is not sufficient.
Agents need to agree on the “right” value: learning.



Consensus and Naive Social learning

@ Need to make sure update converges to the correct
value

Agents initially receive a noisy signal about the true state of the world.
Update their beliefs as a weighted average of the neighbors’ beliefs.

In a connected network, people reach asymptotic consensus.

What is this value if the size of the network grows?

If no agent is overly influential, then the consensus value converges

to the true state of the world in probability, that is, everybody
learns the true state.

@ B. Golub and M. O. Jackson. W|Sd0m Of CrOWdS

Naive Learning in Social Networks: Convergence, Influence, and the Wisdom of Crowds
Unpublished Manuscript, December 2008.




Social learning

@ There is a (pay-off relevant) true state of the world, among
countably many (eg quality of a product, suitability of a
political candidate, ...)

@ We start from a prior distribution, would like to update the
distribution (or belief on the true state) with more
observations

@ Ideally we use Bayes rule to do the information aggregation

@ Works well when there is one agent (Blackwell, Dubin’1962),
becomes hard when more than 2!



Social Learning

Bayesian learning over social networks:
[Banerjee 1998]

[Smith and Sgrensen 1998]

[Acemoglu, Dahleh, Lobel, and Ozdaglar 2008]

Rule-of-thumb learning over networks (DeGroot's Model):
[DeMarzo, Vayanos, and Zwiebel 2003]

[Acemoglu, Nedi¢, and Ozdaglar 2008]

[Golub and Jackson 2008]

[Acemoglu, Ozdaglar, and ParandehGheibi 2009]

Non-Bayesian learning:
[Ellison and Fudenberg 1993, 1995]

[Bala and Goyal 1998, 2001]



H-i,t(m =P [9 = '9*|-Fz',t]
where
Fii = (H?_ e H; {}Ljﬁ 1] E .:"'u; k< 1"})

Is the Iinformation available to agent ¢ up to time *.

Agents need to make rational deductions about everybody’s beliefs based
on only observing neighbors’ beliefs:



Problem with Bayesian Social learning

Incomplete network information
Incomplete information about other agents’ signal structures

Higher order beliefs matter

=~ W o=

The source of each piece of information is not immediately clear




Naive vs. Rational learning

Naive learning

Bayesian

Social
*Learning

Consensus/
Flocking

Network
Complexity

Just average!

Asymptotically, as good
as rational learning

Boundedly Rational
Learmn {

Fuse info with Bayes Rule
Bayesian Learning/
Game Theory

naive Rationality




Locally Rational, Globally Naive:

Bayesian learning under peer pressure

Need a local and computationally tractable update, which hopefully
delivers asymptotic social learning.

Agent 7 is

» Bayesian when it comes to her observation

» non-Bayesian when incorporating others information

| Tahbaz-Salehi, Sandroni, and Jadbabaie 2009]



Model Description

N ={1,2,...,n} individuals in the society

G =(N,¢&) social network

© finite parameter space

0* € © the unobservable true state of the world

sp = (84,...,5") st is the signal observed by agent i at time ¢

S=51 x5y x---x5, signal space

((s|0) the likelihood function
(prob. of observing s if the true state is 0)

0:(st10) the marginal likelihood function



Model Description

i +(0) time t beliefs of agent i
(a probability measure on ©)

1io(0) agent i's prior belief

P* = @2 ,4(:|6*) the true probability measure

Agent i's time t forecasts of the next observation profile:

mis(si) = [ st )i 0)
O



What do we mean by learning?

Detinition
The Forecasts of agent ¢ are eventually correct on a path {s;}:2, if,
along that path,

mi(-) — 4;(-]07) as t— oo.

Definition
Agent i asymptotically learns the true parameter 8* on a path {s;}7, if,

along that path,
1 +(0°) —1 as t— oc.

» Asymptotic learning, in this setup, is stronger.

» Depends on the information structure.



Belief Update Rule

w1 (0) = aii BU (pig; st0)(0) + D aijpo(6)
JEN;

where ,
gi(siﬂ 0)
mi,t(5%+1)

ai; 20 Zaijzl

JEN;

BU (p;,45 141)(0) = pi,1(0)

» Individuals rationally update the beliefs after observing the signal

» exhibit a bias towards the average belief in the neighborhood



Why this update?

Hig1(6) = a@m@,t(ﬁ)ﬁl o110 + ) aiuef)  VOe®
it (St41) it
» Does not require knowledge about the network.
» Does not require deduction about the beliefs of others.
» Does not require knowledge about other agents’ signallings.
» The update is local and tractable.
» If the signals are uninformative, reduces to the consensus update.
» Reduces to the benchmark Bayesian case if agents assign weight

zero to the beliefs of their neighbors. [Blackwell and Dubins 1962]



Eventually correct forecasts

li(s14410)

mi,t(3%+1)

+ Y ayp0)  VOE®
oy

Ni,t+1(9) = &muz‘,t(g)

T heorem

Suppose that
1. the social network is strongly connected,

2. a; >0forallieN,

3. there exists an agent 7 such that p; 0(6") > 0.

Then the forecasts of all agents are eventually correct P*-almost surely,
that iS, m@-,t(-) — E@(‘Q*)



Why strong connectivity?

What if the network has a directed spanning tree but is not strongly
connected?

{61,02},{03}

» NV ={B,N}
> O = {0,005} {61}, {62}, {03}
> 0F = 92

EN(Sft\—iﬂQ)

0) = M, (0
H;N,i-f—l( ) HJN’t( )WZN,t(Sé\iLl)

+ (1= MNpupe(0) VOEO

@ No convergence if different people interpret signals differently
@ N is misled by listening to the less informed agent B



SN

In any strongly connected social network, forecasts of all agents are
correct on almost all sample paths.

{61,02},{603}

> N: {1~2}
> O = {01,0,03} {61}, {02,063}
> 0 =0,

One can actually learn from others



Convergence of beliefs and

consensus on correct value!

Theorem
Under the assumptions of the pervious theorem, the beliefs of all agents
converge with P*-probability one.

E@ Si v,
pr1(0) = Apue(6) + ding (am-[m:‘;;i‘ )) - 11) i (6)
LUATE+1 i=1,....n

qqqqq

Corollary

Under the assumptions of the theorem, all agents have asymptotically
equal beliefs P*-almost surely.

Consensus!




Learning from others

All agents have asymptotically equal forecasts. Therefore,

» Each agent can correctly forecast every other agent’s signals.

vijeN f@(-m)dw,t(e)—>ej(-\9*) P* —as.
©

Local information of any agent is revealed to every other agent.

» This does not mean that the agents can forecast the joint
distributions. They can only forecast the marginals correctly.

» To be expected: only marginals appear in the belief update scheme.



Information Aggregation

Theorem

Suppose that
(i) social network is strongly connected,
(i) all agents have strictly positive self-confidence,

(iii) there exists an agent with strictly positive prior on 6*.

Then,

1. Every agent can eventually forecast the signals of every other agent
correctly with P*-probability one.

2. If there exists a state 6 € © and an agent i such that
0;(s')0) # €;(s'|6*) for some s € S;, then p;(0) — 0 for all j € N



S

O =1{0,,6s,....0:)

0* = 6,

— if0=0,
l;(H[0) =

Zil otherwise

Local information of every agent is revealed to every other agent.




How information is aggregated over networks?

» from local information to inference about global uncertainties

{91a92}’{93}

Bayesian learning over networks:
{91}9{92a93}
» optimal but not tractable

Extends to changing graphs under some conditions on weights

No need to be Bayesian for asymptotic learning:
» a non-Bayesian model of learning which is local and tractable.

» asymptotically optimal, under independent observations.
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