Multi-Agent Optimization and Learning: Resilient and Adaptive Solutions

February 13-17 2023, University of Paris-Saclay, Paris, France

Abstract of the Course:

Recent technological advances have spawned a number of applications – ranging from decentralized learning to smart grids and IoT – in which the control of multi-agent decision-making systems is of central importance. In this context, many engineering problems can be cast as optimization and learning problems over networks of cooperating agents. The course will provide a thorough introduction to the solution methods that have been developed to tackle these challenging scenarios, as well as an overview of current trends and advanced topics. During the first part of the course, specific emphasis will be given to the challenging set-up of networks with asynchronous operations and faulty communications, leveraging both gradient- and non-expansive operator-based approaches. The second part will then discuss the application of these methods to learning in decentralized scenarios, and their translation to online problems, which are characterized by time-varying objectives and constraints.

Outline:

The Workshop in intended to provide to a wide and diverse audience interested in distributed optimization in large scale networks with an overview of the state-of-the-art from a control point of view. In particular, being the fist part of the workshop devoted to tutorial seminars, it is particularly suitable for **Ph.D. students and young researchers** who are willing to enter this new area of research and are not necessarily experts, since most relevant mathematical tools are references will be provided. However, it is also relevant for **practitioners and researchers in distributed optimization**, since the second part of the workshop will present some recent advances in this area and some industrial application of these tools.

Organizers:

Luca Schenato

Department of Information Engineering University of Padova Via Gradenigo 6/b, 35131 Padova, Italy

Ruggero Carli

Department of Information Engineering University of Padova tel. +39 049 827 7925 email: schenato@dei.unipd.it Via Gradenigo 6/b, 35131 Padova, Italy tel. +39 049 827 7925 email: carli@dei.unipd.it

Schedule:

MONDAY		
	14:00-15:30	Course Introduction: motivating examples from distributed learning, estimation and control, e.g map building, sensor calibration, clock synchronization, wireless power control
	15:30-16:00 16:00-17:30	Break The consensus algorithm: theory and results
TUESDAY		
	9:00-10:30	Advanced consensus algorithms: accelerated, PI consensus, push-sum consensus, push-sum w/ packet losses
	10:30-11:00 11:00-12:30	Break Consensus subgradient and average-tracking: gradient e Newton-Raphson
	12:30-14:00 14:00-15:30	Lunch Non-expansive operators: motivations (minimum as fixed point) and synchronous/linear examples and proximal-gradient
	15:30-16:00 16:00-17:30	Break on-expansive operators: asynchronous/random coordinate update
WEDNESDAY		
	9:00-10:30	ADMM for distributed optimization: theory are results
	10:30-11:00 11:00-12:30	Break Partition-based distributed

		optimization, consensus-tracking vs fixed-point, rate of convergence, resilience to noise and packet losses
THURSDAY		1
	9:00-10:30	Federated learning: motivations,
		state-of-the-art, trends
	10:30-11:00	Break
	11:00-12:30	Hessian-based Federated
		Learning
	12:30-14:00	Lunch
	14:00-15:30	On-line/time-varying distributed
		optimization: gradient based vs
		predictive
	15:30-16:00	Break
	16:00-17:30	Current trends and vistas in
		multi-agent distributed
		optimization: human-centered,
		model-based, learning for
		optimization
FRIDAY		I man
	9:00-10:30	MATLAB/PYTON: hands on
		implmentation of distributed
		optimization algorithm PART I
	10:30-11:00	Break
	11:00-12:30	MATLAB/PYTON: hands on
		implmentation of distributed
		optimization algorithm PART II