Abstract—Global asymptotic stabilization of quantum pure states is relevant to chemical process control, quantum cooling, state purification, and is crucial to the initialization of quantum information processing algorithms. We provide a linear-algebraic characterization of discrete-time Markovian dynamics leading to invariance and attractivity of a given quantum state. Assuming that the system is unitarily controllable, and accessible via a given quantum measurement, we provide a condition that characterizes the stabilizable target states. We also argue that if the control problem is feasible, then an effective control choice can be explicitly constructed. The result strongly relies on some remarkable properties of a canonical QR decomposition for complex matrices.

Index Terms—Quantum control, QR decomposition, invariance principle, quantum information.

I. INTRODUCTION

While open-loop, optimal and Lyapunov control design techniques for steering quantum systems are well established and provide effective tools for engineering Hamiltonian dynamics (see e.g. [7], [8], [14], [11], [10], [2], [25], [26]), their use for robust state-preparation, as well as the related state purification and cooling problems, is severely limited by the isospectral character of unitary evolutions. A natural choice is then trying to exploit the desirable features of feedback control: pure-state stabilization problems have been object of study in the quantum domain under a variety of modeling and control assumptions, with a rapidly growing body of work dealing with the Lyapunov approach, see e.g. [27], [24], [19], [22], [23] and references therein.

In this paper we discuss the potential of discrete-time quantum feedback control for the preparation of quantum pure states. A good review of the role of discrete-time models for quantum dynamics and control problems can be found in [5], to which we refer for a discussion of the relevant literature which is beyond the scope of this paper. The possible applications of our theoretic results include all situations in which the information about the system state can be gathered through a (generalized) measurement step in between different intervals of unitary control. In fact, we assume from the beginning that the system is unitary controllable, and that the outcomes of a certain generalized measurement are available to the controller.

This assumption implies quantum dynamics described by sequences of trace-preserving quantum operations in Kraus representation [15], [20], and hence the Markovian character of the evolution [16]. The control scheme we consider engineers the dynamics of the system by indirectly measuring it and applying unitary control actions, conditioned on the outcome of the measurement. If we average over the possible outcomes, we obtain a new semigroup evolution where the choice of the control can be used to achieve the desired stabilization.

The synthesis results of Section V include a simple characterization of the controlled dynamics that can be enacted, and an algorithm that builds unitary control actions stabilizing the desired state. If such controls cannot be found through this algorithm, it is proven that no choice of controls can achieve the control task for the same measurement. The main tools we employ come from the stability theory of dynamical systems, namely LaSalle’s Invariance principle [17], and linear algebra, namely the QR matrix decomposition [12]. We shall construct a “special form” of the QR decomposition: in particular, we prove that the upper triangular factor R can be rendered a canonical form with respect to the left action of the unitary matrix group. This result and the related discussion is presented in Section IV.

It is worth noticing how the stabilization problem in the discrete-time framework we consider actually requires a particular care with respect to its continuous-time counterpart: the interplay between the control and the measurement actions is more subtle, leading us both to the development of new technical tools (e.g. the use of a particular “control-invariant” representation through the canonical QR decomposition) and, as we shall see in Section V, to different conclusions about the stabilizable manifold.

II. DISCRETE–TIME QUANTUM DYNAMICAL SEMIGROUPS

Let I denote the physical quantum system of interest. Consider the associated separable Hilbert space H_I over the complex field \mathbb{C}. In what follows, we consider finite-dimensional quantum systems, i.e. $\dim(H_I) < \infty$. In Dirac’s notation, vectors are represented by a ket $|\psi\rangle \in H_I$, and linear functionals by a bra, $\langle \psi | \in H_I^\dagger$ (the adjoint of H_I), respectively. The inner product of $|\psi\rangle, |\varphi\rangle$ is then represented as $\langle \psi | \varphi \rangle$.

Let $\mathcal{B}(H_I)$ represent the set of linear bounded operators on H_I, $\mathcal{S}(H_I)$ denoting the real subspace of hermitian operators, with \mathbb{I} and $\mathbb{0}$ being the identity and the zero operator, respectively.
respectively. Our (possibly uncertain) knowledge of the state of the quantum system is condensed in a density operator, or state \(\rho \), with \(\rho \geq 0 \) and \(\text{Tr} \rho = 1 \). Density operators form a convex set \(\mathcal{D}(\mathcal{H}_I) \subset \mathcal{S}(\mathcal{H}_I) \), with one-dimensional projectors corresponding to extreme points (pure states, \(\rho_\psi = \vert \psi \rangle \langle \psi \vert \)). Given an \(X \in \mathcal{S}(\mathcal{H}_I) \), we indicate with \(\text{ker}(X) \) its kernel (0-eigenspace) and with \(\text{supp}(X) := \mathcal{H}_I \ominus \text{ker}(X) \) its range, or support.

An effective tool to describe these dynamical systems is given by quantum operations [20], [15]. The most general, linear and physically admissible evolutions which take into account interacting quantum systems and measurements, are described by Completely Positive (CP) maps, that via the Kraus-Stinespring theorem [15] admit a representation of the form

\[
T[\rho] = \sum_k M_k \rho M_k^\dagger
\]

(also known as operator-sum representation of \(T \)), where \(\rho \) is a density operator and \(\{M_k\} \) a family of operators such that the completeness relation

\[
\sum_k M_k^\dagger M_k = I
\]

is satisfied. Under this assumption the map is then Trace-Preserving and Completely-Positive (TPCP), and hence maps density operators to density operators. We refer the reader to e.g. [1], [20], [6], [9] for a detailed discussions of the properties of quantum operations and the physical meaning of the complete-positivity property.

One can then consider the discrete-time dynamical semigroup, acting on \(\mathcal{D}(\mathcal{H}_I) \), induced by iteration of a given TPCP map. The resulting discrete-time quantum system is described by

\[
\rho(t+1) = T[\rho(t)] = \sum_k M_k \rho(t) M_k^\dagger.
\]

Given the initial conditions \(\rho(0) \) for the system, we can then write \(\rho(t) = T^t[\rho(0)] \), \(t = 1, 2, \ldots \) where \(T^t[\cdot] \) indicates \(t \) applications of the TPCP map \(T[\cdot] \). Notice that while the dynamic map is linear, the “state space” \(\mathcal{D}(\mathcal{H}_I) \) is a convex, compact subset of the cone of the positive elements in \(\mathcal{S}(\mathcal{H}_I) \).

We now recall the relevant definitions of quantum dynamical invariance and attractivity. Consider an orthogonal decomposition of the system Hilbert space:

\[
\mathcal{H}_I = \mathcal{H}_S \oplus \mathcal{H}_R,
\]

Let \(n = \dim(\mathcal{H}_I), m = \dim(\mathcal{H}_S), \) and \(r = \dim(\mathcal{H}_R) \), and let \(\{\vert \phi \rangle \}_j^m \) and \(\{\vert \psi \rangle \}_k^r \) denote orthonormal bases for \(\mathcal{H}_S \) and \(\mathcal{H}_R \), respectively. The basis \(\{\phi_i \} \) is naturally associated with the following basis for \(\mathcal{H}_I \):

\[
\{ \vert \varphi \rangle \} = \{ \vert \phi_j \rangle \}_j^m \cup \{ \vert \psi_k \rangle \}_k^r.
\]

This basis induces a block structure for matrices representing operators acting on \(\mathcal{H}_I \):

\[
X = \begin{bmatrix} X_S & X_P \\ X_Q & X_R \end{bmatrix}.
\]

In the rest of the paper the subscripts \(S, P, Q \) and \(R \) will follow this convention. Let \(\Pi_S \) and \(\Pi_R \) be the projection operators over the subspaces \(\mathcal{H}_S \) and \(\mathcal{H}_R \), respectively.

In this work we consider the case of pure state stabilization, i.e. \(\dim(\mathcal{H}_S) = 1 \). The more general case of \(\dim(\mathcal{H}_S) = m \geq 1 \) has been studied in [4].

Definition 1 (Invariance): Let \(I \) evolve under iterations of a TPCP map. The pure state \(\rho_S = \Pi_S \) is invariant if

\[
\rho_S = T[\rho_S].
\]

Definition 2 (Attractivity): Let \(I \) evolve under iterations of a TPCP map \(T \). The pure state \(\rho_S = \Pi_S \) is attractively if \(\forall \rho \in \mathcal{D}(\mathcal{H}_I) \) we have:

\[
\lim_{t \to \infty} \| T^t[\rho] - \Pi_S T^t[\rho] \Pi_S \| = 0.
\]

Definition 3 (Global asymptotic stability): Let \(I \) evolve under iterations of a TPCP map \(T \). The pure state \(\rho_S = \Pi_S \) is Globally Asymptotically Stable (GAS) if it is invariant and attractive.

III. ANALYSIS RESULTS

This section is devoted to the derivation of necessary and sufficient conditions on the form of the TPCP map \(T \) for a given quantum subspace \(S \) to be GAS. We start by focusing on the invariance property.

A. Invariance of \(\rho_S \)

The following proposition gives a sufficient and necessary condition on \(T \) such that \(\rho_S \) is invariant.

Proposition 1: Let the TPCP transformation \(T \) be described by the Kraus map (1). Let the matrices \(M_k \) be expressed in their block form

\[
M_k = \begin{bmatrix} M_{k,S} & M_{k,P} \\ M_{k,Q} & M_{k,R} \end{bmatrix}
\]

according to the state space decomposition (4). Then the state \(\rho_S = \Pi_S \) is invariant if and only if

\[
M_{k,Q} = 0 \ \forall k.
\]

Proof: By exploiting the block form of the \(M_k \) matrices in (1) given by the decomposition (4), we have

\[
T \begin{bmatrix} \rho_S & 0 \\ 0 & 0 \end{bmatrix} = \sum_k \begin{bmatrix} M_{k,S} \rho_S M_{k,S}^\dagger & M_{k,S} \rho_S M_{k,Q}^\dagger \\ M_{k,Q} \rho_S M_{k,S}^\dagger & M_{k,Q} \rho_S M_{k,Q}^\dagger \end{bmatrix}
\]

Sufficiency of (5) is trivial. Necessity is given by the fact that the lower right blocks \(M_{k,Q} \rho_S M_{k,Q}^\dagger \) are positive semi-definite for all \(k \)’s, and therefore, for Definition 1 to hold, it has to be \(M_{k,Q} \rho_S M_{k,Q}^\dagger = 0 \ \forall k \). For \(M_{k,Q} \rho_S M_{k,Q}^\dagger = 0 \) to be zero for any state \(\rho_S \in \mathcal{D}(\mathcal{H}_S) \), it has then to be \(M_{k,Q} = 0 \).
B. Global asymptotic stability of ρ_S

The main tool we are going to use in deriving a characterization of TPCP maps that render a certain pure state GAS, is LaSalle’s invariance principle, which we recall here in its discrete time form [17].

Theorem 1 (La Salle’s theorem for discrete-time systems): Consider a discrete-time system $x(t+1) = T[x(t)]$. Suppose V is a C^1 function of $x \in \mathbb{R}^n$, bounded below and satisfying

$$
\Delta V(x) = V(T[x]) - V(x) \leq 0, \quad \forall x
$$

i.e. $V(x)$ is non-increasing along forward trajectories of the plant dynamics. Then any bounded trajectory converges to the largest invariant subset W contained in the locus $E = \{x|\Delta V(x) = 0\}$.

Being any TPCP map a map from the compact set of density operators to itself, any trajectory is bounded. Let us then consider the function

$$
V(\rho) = \text{Tr}(\Pi_R \rho) \geq 0.
$$

The function $V(\rho)$ is C^1 and bounded from below, and it is a natural candidate for a Lyapunov function for the system. In fact, it represents the probability of the event Π_R, that is, the probability that the system is found in the reminder subspace \mathcal{H}_R after a measurement.

The variation of $V(\rho)$ along forward trajectories of the system (3) is

$$
\Delta V(\rho) = \text{Tr}\left[\Pi_R \left(\sum_k M_k \rho M_k^\dagger - \rho\right)\right]
$$

Notice that $\text{Tr}(\sum_k M_k \rho M_k^\dagger - \rho) = 0$, and that $V(\rho_S) = 0$. By straightforward calculations one gets

$$
\Delta V(\rho) = \text{Tr}\left[\sum_k M_{k,R} \rho_R M_k^\dagger - \rho_R\right],
$$

so that in order to get $\Delta V \leq 0$ the map $\tilde{T}[\rho_R] := \sum_k M_{k,R} \rho_R M_k^\dagger$ has to be trace non-increasing. This condition is automatically verified, once T is a TPCP map.

This leaves us with determining when the pure state ρ_S is the largest invariant set in E. The following specialization of our result in [4] to pure states, provides a characterization of the dynamics that render a certain state GAS.

Theorem 2: Let the TPCP transformation T be described by the Kraus map (1). Consider an orthogonal subset decomposition $\mathcal{H}_S \oplus \mathcal{H}_R$, with the pure state $\rho_S = \Pi_S$ being invariant. Let the matrices M_k be expressed in their block form

$$
M_k = \begin{bmatrix}
M_{k,S} & M_{k,P} \\
0 & M_{k,R}
\end{bmatrix}
$$

according to the same state space decomposition. Then ρ_S is GAS if and only if there are no invariant states with support on $\bigcap_k \ker \left(M_{k,P}\right)$.

IV. A CANONICAL MATRIX FORM BASED ON THE QR DECOMPOSITION

In this section we will recall some technical results about QR decomposition that will allow us to develop a new algebraic tool, namely a canonical form with respect to the left action of the unitary matrix group. With this tool it will then be possible to move from the analysis results presented in the previous section to an algorithm for the synthesis of stabilizing control laws.

Definition 4 (QR decomposition [12]): A QR decomposition of a complex-valued square matrix A is a decomposition of A as

$$
A = QR,
$$

where Q is an orthogonal matrix (meaning that $Q^\dagger Q = I$) and R is an upper triangular matrix.

The QR decomposition of a given complex-valued square matrix A is not unique. In the case of non-singular matrix A, one can show that the upper triangular factors of any two QR decompositions of A differ only for the phase of their rows. When A is singular, on the other hand, this is not true.

However, introducing some conditions on the R matrix, it is possible to obtain a canonical form for the QR decomposition in a sense that will be explained later in this section. The following theorem characterize the canonical QR decomposition and guarantees its existence.

Theorem 3: Given any (complex) square matrix A of dimension n, it is possible to derive a QR decomposition $A = QR$ such that

$$
r_{ij} = 0 \quad \forall j \leq n, \forall i > \rho_j
$$

where ρ_j is the rank of the first j columns of A, and such that the first nonzero element of each row of R is real and positive.

The proof of this theorem is given in Appendix A, and it also provides a method to construct such a decomposition.

Moreover, we can prove that the R obtained in this way is a canonical form. We start by recalling what a matrix canonical form with respect to the action of some group action is. Let \mathcal{G} be a group acting on $\mathbb{C}^{n\times n}$. Let $A, B \in \mathbb{C}^{n\times n}$. If there exists a $g \in \mathcal{G}$ such that $g(A) = B$, we say that A and B are \mathcal{G}-equivalent, and we write $A \sim_{\mathcal{G}} B$.

Definition 5: A canonical form with respect to \mathcal{G} is a function $F : \mathbb{C}^{n\times n} \to \mathbb{C}^{n\times n}$ such that for every $A, B \in \mathbb{C}^{n\times n}$:

i. $F(A) \sim_{\mathcal{G}} A$;

ii. $F(A) = F(B)$ if and only if $A \sim_{\mathcal{G}} B$.

Let us consider the unitary matrix group $U(n) \subset \mathbb{C}^{n\times n}$ and consider its action on $\mathbb{C}^{n\times n}$ through left-multiplication, that is, for any $U \in U(n), M \in \mathbb{C}^{n\times n}$:

$$
U(M) = UM.
$$

The following result has been proven in [4].

Theorem 4: Define $F(A) = R$, with R the upper-triangular matrices obtained by the procedure described in the proof of Theorem 3. Then F is a canonical form with respect to $U(n)$ (and its action on $\mathbb{C}^{n\times n}$ by left multiplication).
V. STABILIZING PURE STATES VIA CLOSED-LOOP CONTROL

In this section we deal with the problem of stabilization of a given quantum subspace by discrete-time measurements and unitary control. The control scheme we employ follows the ideas of [18], [21], and is in fact an instance of the Markovian feedback models studied in e.g. [3], [13]. Suppose that a generalized measurement operation can be performed on the system at times \(t = 1, 2, \ldots \), resulting in an open system, discrete-time dynamics described by a given Kraus map, with the system at times \(t \) the system at times \(t \) and unitary control. The control scheme we employ follows of achieving global asymptotic stability of \(\bar{\lim} \) feedback unitary control policy is feasible if and only if there be the canonical

\[\rho_{\text{controlled}} = U \rho U^\dagger, \quad U \in \mathcal{U}(\mathcal{H}_I). \]

We shall assume that the control is fast with respect to the measurement time scale, or the measurement and the control acts in distinct time slots.

We can then implement a Markovian feedback control, consisting in a map from the set of measurement outcomes to the set of unitary matrices, \(U(k) : k \mapsto U_k \in \mathcal{U}(\mathcal{H}_I) \). The measurement-control loop is then iterated: If we average over the measurement results at each step, this yields a different TPCP map, which describes the evolution of the state immediately after each application of the controls:

\[\rho(t+1) = \sum_k U_k M_k \rho(t) M_k^\dagger U_k^\dagger. \]

Suppose that the operators \(\{M_k\} \) are given, corresponding to a measurement that is performed on the quantum system, with corresponding outcomes \(\{k\} \). We are then looking for a set of unitary transformations \(\{U_k\} \) such that, once they are applied to the system, the resulting semigroup generator makes a given pure state \(\rho_S \) GAS. Let us introduce a preliminary, technical result that employs in a nontrivial way the structure of the canonical QR, the proof of which is given in [4].

Lemma 1: Let \(R \) be the upper triangular factor of a canonical QR decomposition in the form

\[R = \begin{bmatrix} R_S & R_P \\ 0 & R_R \end{bmatrix} \]

(according to the block structure induced by (4)) and suppose \(R_P = 0 \). Consider the matrix \(N \) obtained by left multiplying \(R \) by a unitary matrix \(V \):

\[N = VR = \begin{bmatrix} V_S & V_P \\ V_Q & V_R \end{bmatrix} \begin{bmatrix} R_S & 0 \\ 0 & R_R \end{bmatrix} = \begin{bmatrix} N_S & N_P \\ N_Q & N_R \end{bmatrix}. \]

Then \(N_Q = 0 \) implies \(N_P = 0 \).

This result will be instrumental in proving the main theorem of the section, which provides an iterative control design procedure that renders the desired pure state asymptotically stable whenever it is possible.

Theorem 5: Consider a subspace orthogonal decomposition \(\mathcal{H}_I = \mathcal{H}_S \oplus \mathcal{H}_R, \dim(\mathcal{H}_S) = 1 \), and a given generalized measurement associated to Kraus operators \(\{M_k\} \). Let \(\{R_k\} \) be the canonical \(R \)-factors associated to \(\{M_k\} \). The task of achieving global asymptotic stability of \(\rho_S = \Pi_S \) by a feedback unitary control policy is feasible if and only if there exists a \(k \) such that:

\[[\rho_S, R_k] \neq 0. \quad (12) \]

Proof: Let us first consider the case in which all the \(R_{P,k} = 0 \). Recall that each \(R_k \) has been put in canonical form, so it follows from Lemma 1 that any control choice that ensures invariance of the desired subspace, that is \(N_k = U_k R_k \) with \(N_Q = 0 \), makes all \(N_k \)'s block diagonal, since \(N_{P,k} = 0 \). Hence an invariant state with support on \(\mathcal{H}_R \) always exists. This, via Theorem 2, precludes the existence of a control choice that renders \(\rho_S \) GAS. Hence, necessity of (12) is proven.

On the other hand, if \(R_{P,k} \neq 0 \) for some \(k \), one can devise a procedure to construct unitaries \(\{U_k\} \) that “destabilize” any state with support on \(\mathcal{H}_R \) only. This can be done in many different ways: an explicit algorithm is provided in Appendix B. The absence of stationary states with support in \(\mathcal{H}_R \), through Theorem 2, is then sufficient to prove that \(\rho_S \) is GAS.

While this condition resemble the one emerging from the study of the Markovian feedback master equation in continuous-time [23], a remarkable difference is apparent: the structure of the \(\mathcal{H}_I \)’s also depends on the choice of target state, rendering the determination of the stabilizable pure-state manifold non trivial. A particularly simple case is worth mentioning: When the \(M_k \) are rank one projectors, that is, represent a von Neumann’s measurement, the stabilization of any pure state can be achieved. In fact, being a canonical form:

\[\mathcal{F}(M_k) = \mathcal{F}((U \Pi_k U^\dagger) = \mathcal{F}(\Pi_k U^\dagger) = R_k, \]

where \(\Pi_k \) is the rank one projector on the \(k \)-th basis element, and hence \(\Pi_k U^\dagger \) is different from zero only in the \(k \)-th row, which is in turn the \(k \)-th column of \(U, u_k \). Thus each \(R_k \) has only the first row different from zero, and it is proportional to \(u_k^\dagger \). Being \(\{u_k\} \) a basis, some \(R_{P,k} \) has to be non-zero as it corresponds to the last \(n - 1 \) components of the \(u_k \)’s.

Physically, at any measurement step we obtain a known pure state, which can then be driven back to desired one. While the achieved “cyclic” stabilization may appear weak, the use of projective measurements renders it robust with respect unwanted noise effects.

VI. CONCLUSIONS

Theorem 2 provides a characterization of the semigroup dynamics that render a certain pure state attractive, by employing LaSalle’s invariance principle: in order to exploit this result in the design of stabilizing unitary feedback control strategies, we proved that a canonical QR decomposition can be derived, and that it allows us to establish the potential of the Markovian discrete-time feedback control scheme. This suggests how the introduction of a single measurement can overcome some intrinsic limitations that pure open-loop strategies present. We believe that these results also represent a mathematical standpoint from which more challenging control problems can be tackled. Future research directions involve the effectiveness of the control in presence of imperfect detection, and the applicability of the theory to experimental systems, with a particular focus on state-preparation for optical and solid-state systems.
A. Results on the QR decomposition

In order to provide a constructive proof for Theorem 3, we need the following lemma.

Lemma 2: Consider a QR decomposition of a square matrix A of dimension n, and an index j in $[1, n]$, such that

$$r_{ij} = 0 \quad \forall j \leq \tilde{j}, \forall i > p_j$$

where p_j is the rank of the first j columns of A. Let a_i and q_i, be the i-th column of A and Q respectively. Then

$$< a_1, \ldots, a_j > = < q_1, \ldots, q_{p_j} > \quad \forall j = 1, \ldots, \tilde{j}.$$

Proof: Consider the expression for the j-th column of A, $a_j = Qr_j$. By the hypothesis, the last $n - p_j$ elements of r_j are zeros, hence it results $a_j \in < q_1, \ldots, q_{p_j} > \quad \forall j = 1, \ldots, \tilde{j}$

and therefore $< a_1, \ldots, a_j > \subseteq < q_1, \ldots, q_{p_j} > \quad \forall j = 1, \ldots, \tilde{j}$. As the rank of the first j columns is p_j, which is also the dimension of $< q_1, \ldots, q_{p_j} >$, equality of the two subspaces holds.

Note that the hypothesis 13 of Lemma 2 with $\tilde{j} = n$ corresponds to the characterization 11 for the QR decomposition given in Theorem 3.

Proof of Theorem 3: We explicitly construct the QR decomposition through a Gram-Schmidt orthonormalization process, fixing the degrees of freedom of the upper-triangular factor R column by column. We denote by A, Q, R the matrices, with a_i, q_i, r_i their i-th columns and with $a_{i,j}, q_{j,i}, r_{i,j}$ their elements, respectively. Let us start from the first non zero column of $A \in \mathbb{C}^{n \times n}$, a_{i_0}, and define

$$q_1 = \frac{a_{i_0}}{||a_{i_0}||}, \quad r_{1,i_0} = ||a_{i_0}||, \quad r_{2,i_0} = \ldots = r_{n,i_0} = 0.$$ (14)

Also fix $r_{j,i} = 0$ for all $j < i_0$.

The next columns of Q, R are constructed by an iterative procedure. Define ρ_{i-1} as the rank of the first $i - 1$ columns of A. We can assume (by induction) to have the first ρ_{i-1} columns of Q and the first $i - 1$ columns of R constructed in such a way that $r_{k,j} = 0$ for $k > \rho_j$ and $j \leq i - 1$.

Consider the next column of A, a_i. Assume as a first case that a_i is linearly dependent with the previous columns of A, that is $\rho_i = \rho_{i-1}$. Since Lemma 2 applies, a_i can be written as

$$a_i = \sum_{j=1}^{i-1} a_j a_j = \sum_{j=1}^{i-1} a_j \sum_{k=1}^{\rho_j} r_{i,k} q_k$$

and therefore, being a_i a linear combination of the columns $\{q_1, \ldots, q_{\rho_{i-1}}\}$, the elements of r_i are defined as

$$r_{\ell,i} = q_i^\dagger a_i, \quad \text{for} \ell = 1, \ldots, \rho_i.$$

On the other hand, if the column a_i is linearly independent from the previous columns of A, then the rank $\rho_i = \rho_{i-1} + 1$. As before, the first ρ_{i-1} coefficients of r_i must be defined as

$$r_{\ell,i} = q_i^\dagger a_i, \quad \text{for} \ell = 1, \ldots, \rho_i - 1.$$

Let us also introduce $a_i := a_i - \sum_{\ell=1}^{\rho_i} r_{\ell,i} q_\ell \neq 0$ and define $q_{\rho_i} = \frac{a_i}{||a_i||}$, $r_{\rho_i,i} = ||a_i||$. In both cases, let us set $r_{\ell,i} = 0$ for $\ell = \rho_i + 1, \ldots, n$. It is immediate to verify that the obtained q_{ρ_i} is orthonormal to the columns $q_1, \ldots, q_{\rho_i-1}$, and that $a_i = Q^* p_{\rho_i}$.

After iterating until the last column of R is defined, we are left to choose the remaining columns of Q so that the set $\{q_1, \ldots, q_n\}$ is an orthonormal basis for $\mathbb{C}^{n \times n}$. By construction, $A = QR$. ■

B. Constructive Algorithm for the Control Design

Control design algorithm

<table>
<thead>
<tr>
<th>Define $V^{(0)} = I$, $Z^{(0)} = I$, and consider the following iterative procedure, starting from $i = 0$:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Define $H_R^{(i+1)} = \bigcap_k \ker R_{R,k}$;</td>
</tr>
<tr>
<td>If $H_R^{(i+1)} = {0}$ then the iteration is successfully completed. Go to step 8.</td>
</tr>
<tr>
<td>If $H_R^{(i+1)} \subsetneq H_R^{(i)}$, define $H_S^{(i+1)} = H_R^{(i)} \ominus H_R^{(i+1)}$ and $Y^{(i+1)} = I$.</td>
</tr>
<tr>
<td>If $H_R^{(i+1)} = H_R^{(i)}$ (i.e. $R_{R,k} = 0 \forall k$) then, if $\dim(H_R^{(i)}) \geq \dim(H_S^{(i)})$:</td>
</tr>
<tr>
<td>a) Choose a subspace $H_S^{(i+1)} \subseteq H_R^{(i)}$ of the same dimension of $H_S^{(i)}$. (Re)-define $H_R^{(i+1)} = H_R^{(i)} \ominus H_S^{(i+1)}$.</td>
</tr>
<tr>
<td>b) Let $H_T^{(i)} = \bigoplus_{j=0}^{i-1} H_S^{(j)}$. Construct a unitary matrix Y with the following block form, according to a Hilbert space decomposition $H_1 = H_T^{(i)} \oplus H_S^{(i)} \oplus H_S^{(i+1)} \oplus H_R^{(i+1)}$;</td>
</tr>
<tr>
<td>$Y^{(i+1)} = \begin{bmatrix} I & 0 & 0 & 0 \ 0 & 1/\sqrt{2}I & 1/\sqrt{2}I & 0 \ 0 & 1/\sqrt{2}I & -1/\sqrt{2}I & 0 \ 0 & 0 & 0 & I \end{bmatrix}$</td>
</tr>
<tr>
<td>If instead $\dim(H_R^{(i)}) < \dim(H_S^{(i)})$:</td>
</tr>
<tr>
<td>a) Choose a subspace $H_S^{(i+1)} \subseteq H_S^{(i)}$ of the same dimension of $H_R^{(i)}$.</td>
</tr>
<tr>
<td>b) Let $H_T^{(i)} = \bigoplus_{j=0}^{i-1} H_S^{(j)}$. Construct a unitary matrix Y with the following block form, according to a Hilbert space decomposition $H_1 = H_T^{(i)} \oplus H_S^{(i+1)} \oplus H_R^{(i+1)}$;</td>
</tr>
<tr>
<td>$Y^{(i+1)} = \begin{bmatrix} I & 0 & 0 & 0 \ 0 & 1/\sqrt{2}I & 1/\sqrt{2}I & 0 \ 0 & 1/\sqrt{2}I & -1/\sqrt{2}I & 0 \end{bmatrix}$</td>
</tr>
<tr>
<td>c) Define $Z^{(i+1)} = Z^{(i)} Y^{(i+1)}$ and go to step 8.</td>
</tr>
<tr>
<td>2) Define $Z^{(i+1)} = Z^{(i)} Y^{(i+1)}$ and go to step 8.</td>
</tr>
<tr>
<td>3) Rewrite $R_{R,k} = W^{(i+1)} R_{R,k} W^{(i+1)+1}$ in a basis according to the $H_R^{(i)} = H_S^{(i+1)} \oplus H_R^{(i+1)}$ decomposition.</td>
</tr>
</tbody>
</table>
4) Compute the canonical QR decomposition of
\[\tilde{R}_{R,k}^{(i)} = Q_{k}^{(i+1)} R_{k}^{(i+1)}. \]
Compute the matrix blocks \(R_{P,k}^{(i+1)}, R_{S,k}^{(i+1)} \) of \(R_{k}^{(i+1)} \), again according to the decomposition \(\mathcal{H}_{R}^{(i)} = \mathcal{H}_{S}^{(i+1)} \oplus \mathcal{H}_{R}^{(i+1)}. \)

5) Define
\[U^{(i+1)} = \begin{bmatrix} I & 0 \\ 0 & W^{(i+1)}(Q_{k}^{(i+1)}) W^{(i+1)}(Q_{k}^{(i+1)}) W^{(i+1)} \end{bmatrix} U^{(i)}. \]

6) Define
\[V^{(i+1)} = \begin{bmatrix} I & 0 \\ 0 & W^{(i+1)}(Q_{k}^{(i+1)}) W^{(i+1)}(Q_{k}^{(i+1)}) W^{(i+1)} \end{bmatrix} V^{(i)}. \]

7) Increment the counter and go back to step 1.

8) Return the unitary controls \(U_{K} = V^{(i)} Z^{(i)} V^{(i)} U^{(i)} \).

If the algorithm does not stop, then at each step of the iteration the dimension of \(\mathcal{H}_{R}^{(i)} \) is reduced by at least 1, hence the algorithm is completed in at most \(n \) steps. If the algorithm is successfully completed at a certain iteration \(j \), we have built unitary controls \(\{ U_{k}^{(j)} \} \) and a unitary \(V^{(j)} \) such that the controlled quantum operation element, under the change of basis \(V^{(j)} \), is of the form:

\[
\begin{bmatrix}
R_{0}^{(0)} & R_{0}^{(1)} & 0 & 0 \\
0 & R_{1}^{(0)} & \ddots & 0 \\
0 & 0 & \ddots & R_{n-1}^{(0)} \\
0 & 0 & 0 & R_{n}^{(0)}
\end{bmatrix}
\]

where the block structure is consistent with the decomposition \(\bigoplus_{i=1}^{j+1} \mathcal{H}_{S}^{(i)} \) (where to simplify the notation we set \(\mathcal{H}_{R}^{(j+1)} = \mathcal{H}_{S}^{(j+1)} \)). Let \(\tilde{R}_{k} \) be the block matrix above and consider its upper-triangular part. The rows have the form

\[
\begin{bmatrix}
R_{P,k}^{(i)} & 0 & \ldots & 0 \\
0 & R_{S,k}^{(i)} & \ddots & 0 \\
0 & 0 & \ddots & R_{1}^{(j-1),k} \\
0 & 0 & 0 & R_{0}^{(j),k}
\end{bmatrix}
\]

The upper-triangular form of each \(\tilde{R}_{k} \) and the form of \(Z^{(j)} \), both block-diagonal with respect to the orthogonal decomposition \(\mathcal{H}_{S} \oplus \mathcal{H}_{R} \), ensure invariance of \(\mathcal{H}_{S} \).

By construction, for all \(i = 0, \ldots, j \), either \(\bigcap_{k} \ker R_{P,k}^{(i)} = \{0\} \) and \(V^{(i)} = I \), or \(R_{P,k}^{(i)} = 0 \) for all \(k \) and \(Y^{(i)} \) differs from the identity matrix and has the form (15) or (16).

The fact that no invariant state can have support on \(\bigoplus_{i=1}^{j+1} \mathcal{H}_{S}^{(i)} \) can be proven by induction, following the reasoning in [4].

REFERENCES

