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Average consensus on networks with quantized
communication

Paolo Frasca, Ruggero Carli, Fabio Fagnani and Sandro Zampieri

Abstract

This work presents a contribution to the solution of the average agreement problem on a network with quantized links. Starting
from the well-known linear diffusion algorithm, we propose a simple and effective adaptation which is able to preserve the average
of states and to drive the system near to the consensus value, when a uniform quantization is applied to communication between
agents. The properties of this algorithm are investigated both by a worst case analysis and by a probabilistic analysis, and are
shown to depend on the spectral properties of the evolution matrix. A special attention is devoted to the issue of the dependence
of the performance on the number of agents, and several examples are given.

I. INTRODUCTION AND PROBLEM STATEMENT

In the last years, we have witnessed an increasing interest for studying control, estimation and algorithmic problems over
networks. A common feature of these problems is the fact that there is a fundamental constraint on the information flow: data
are distributed among a large number of nodes communicating among each other through some communication network. A
prototype of such problems is the so-called consensus problem.

Suppose we have a directed graph G with set of nodes V = {1, . . . , N} and a real quantity xi for every node i ∈ V . The
average consensus problem consists of computing the average xA = N−1

∑
i xi in an iterative and distributed way, exchanging

information among nodes exclusively along the available edges in G. This problem appears in a number of different contexts
since the early 80’s (decentralized computation [37], load balancing [10], [13], [14]) and, more recently, has attracted much
attention for possible applications to sensor networks (data fusion problems [22], [40], [39], clock synchronization [27]) and to
coordinated control of mobile autonomous agents [23], [28], [34], [30], [36], [8], [35]. Other places where consensus algorithms
have been studied are [4], [3], [29], [15].

Different algorithms for average consensus have been proposed in the literature. They can be distinguished on the basis of
the amount of communication and computation they require, of their scalability properties with respect to the number of nodes,
of their adaptability to time-varying graphs, and, finally, on the basis of their deterministic or randomized operating protocol.

Deterministic (time-invariant and time-varying) consensus algorithms have been studied in many papers. Starting from the
pioneering work [37], many variations can be found in the above cited literature. Most of the papers study the same kind of
schemes: every node runs a first order linear dynamical system to update its estimation and the systems are coupled through
the available communication edges. The overall system is a linear system whose state updating matrix is a stochastic matrix.
The problems typically considered in the literature concern necessary and sufficient conditions for convergence, speed of
convergence and optimization issues.

Most of the literature on the consensus problem assumes that the communication channel between the nodes allows to
transfer real numbers with no errors. In many practical applications this is not a realistic assumption: if we think, for instance,
of sensor networks communicating in a wireless fashion, it is evident that energy and bandwidth limitation yield a finite
capacity channel. This suggests that in many situations the communication channel should be rather considered as digital,
accepting messages taking values in some finite alphabet. This clearly forces a quantization on the real numbers that agents
have to transmit.

The effects of quantization in feedback control problems have been widely studied in the past [31], mainly in the stabilization
problem. Moreover granularity effects different from quantization in the consensus problems have been tackled in few papers,
especially in the load balancing applications [14], [25]. Our setting is however different: this paper studies the consensus problem
under the assumption that communications are quantized, and we assume an ideal noiseless digital channel. The consensus
problem under quantization transmission has first appeared in the final section of [39]. In principle, we could simply try to take
the usual linear algorithm which yields average consensus and try to apply it with quantization transmission. However, this
turns out not to be a good idea since in the new setting the algorithm leads in general to an approximate consensus which may
be far though from the average. This was noted in [5], [6], [7] where a new algorithm was proposed and partially analyzed.

Other works where other quantized algorithms have been considered are [25], [32], [1], [24]. In [25], the authors study
systems having (and transmitting) integer-valued states and propose a class of gossip1 algorithms which preserve the average
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of states and are guaranteed to converge up to one quantization bin. The recently appeared technical report [32] studies a
deterministic quantization scheme, not preserving the average, in which the agents can only store quantized data. Several
results are obtained on the error between the convergence value and the initial average, and on the speed of convergence. The
work [1] actually deals with quantized communication, and proposes to use a specific randomized quantizer together with a
time invariant communication topology. Such a scheme achieves almost surely a consensus at a quantization level, but only
the expectation of the average is preserved. Also [24] proposes to use a randomized quantizer, together with time dependent
weights.

This paper contains an extended analysis of the algorithm appeared in [5], [6], [7], which uses a deterministic uniform
quantization and a fixed time invariant communication topology.

In discrete time, if we have an ideal exchange of information, the typical approach is to set as dynamics the following
equations

xi(t + 1) =
N∑

j=1

Pijxj(t), (1)

where xi(t) ∈ R is the state of the i-th agent at the time t and Pij are coefficients belonging to a doubly stochastic matrix
P ∈ RN×N . More compactly we can write

x(t + 1) = Px(t),

where x(t) is the column vector whose entries xi(t) represent the agents states. In [33], [4] are provided conditions on P ,
ensuring that the previous algorithm solves the average consensus problem, namely

lim
t→+∞

xi(t) =
1
N




N∑

j=1

xj(0)


 ∀ i ∈ V. (2)

We will detail them in Section II.
In this work, we assume that the information exchanged between the agents is quantized so that the real numbers xi(t) can

not be exactly transmitted. Information is quantized by a uniform quantizer which is defined as follows.
Let q : R→ Z be the mapping sending z to its nearest integer, namely,

q(z) = n ∈ Z ⇔ z ∈ [n− 1/2, n + 1/2[, if z ≥ 0
z ∈ ]n− 1/2, n + 1/2], if z < 0.

(3)

In a first naive approach, one could assume that the agents apply to received data the same linear algorithm as in the ideal
case, so that the states evolve following

xi(t + 1) = Pii xi(t) +
∑

j 6=i

Pij q(xj(t)), (4)

This dynamical system is much more difficult to study than the original linear one, because quantization brings nonlinearity
into the evolution law. Moreover, there is an important shortcoming. Let xa(t) = N−1

∑N
i=1 xi(t) denote the average of states.

Then, for the map (4) it’s not always true that xa(t + 1) = xa(t), that is the average of the agents’ states is not necessarily
preserved. This problem, which has been remarked in [39], is due to the loss of symmetry between neighbors in the use
of information. Moreover, the dynamical system (4), besides not preserving the average of states, shows in simulations poor
convergence properties, in many cases of practical interest [5].

Because of these facts, we propose a variation of this algorithm which is able to overcome this problem. By remarking that
(1) can be rewritten as

xi(t + 1) = xi(t) +
N∑

j=1

Pij [xj(t)− xi(t)],

we propose the evolution scheme

xi(t + 1) = xi(t) +
N∑

j=1

Pij [q(xj(t))− q(xi(t))]. (5)

We will observe in the next section that the algorithm (5), differently from algorithm (4), preserves the average of the initial
conditions, that is xa(t) = xa(0), ∀ t ≥ 0.

Of course also the algorithm (5), because of the quantization effects, is not expected to converge in the sense (2). What we
can hope is that agents reach states which are close to each other and close to the average xa(0). To measure this asymptotic
disagreement, we introduce the quantity ∆i(t) := xi(t) − xa(t) = xi(t) − xa(0) which represents the distance, at time t, of
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the i-th agent from the average of the initials conditions. Defined ∆(t) = [∆1(t), . . . , ∆N (t)]∗, we are interested in evaluating
the quantity

d∞(P ) := sup
x(0)

lim sup
t→∞

1√
N
‖∆(t)‖,

where ‖ · ‖ is the 2-norm. A special attention is given to the dependence of this quantity on the number of the nodes N .
As preliminary examples we consider here two particular communication topologies: the random geometric graph and the

hypercube graph.
The random geometric graph is commonly used to model wireless networks [20]. It is constructed by randomly placing N

nodes in the unit square, and joining them with edges whenever their distance is below a threshold R = Θ(
√

log N/N) for
N →∞. Moreover we assume the weights of the matrix P are chosen by using the maximum-degree weights2.

The n-dimensional hypercube graph is the graph obtained drawing the edges of a n-dimensional hypercube. It has N = 2n

nodes which can be identified with the binary words of length n. Two nodes are neighbors if the corresponding binary words
differ in only one component. Thus every node exchanges information with other n nodes. In this case a matrix P can be
constructed by setting equal every non-zero entry of P . We will precise this in Section III.

In Figures 1 and 2 is depicted the behavior of d∞(P ), which is obtained as the average over several realizations of the
initial conditions, for sequences of graphs of both topologies with increasing size. It is worth noting that in both cases, d∞(P )
appears to be bounded uniformly in N , the size of the communication graph.
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Fig. 1. Performance of the random geometric graph. Since the graph itself is random, the plot of d∞(P ) comes from averaging over realizations of both
the graph and the initial condition.

Clearly d∞(P ) depends on the particular communication topology we are considering and on the weights assigned to the
matrix P . In general, assigned the communication topology, what one would like to do is finding the matrix of weights P
minimizing d∞(P ). In order to do so, it is important to provide some tools which permit to estimate d∞(P ).

In spite of the fact that the proposed algorithm is still intrinsically linear, the quantization effects introduce nonlinearities
which make the exact asymptotic analysis of the algorithm quite hard. Indeed, we are able to carry on such an analysis only
in very specific examples.

To overcome this limitations, in this paper we undertake a twofold analysis of the algorithm: worst case and probabilistic.
The basic idea is to study the system considering the communication errors induced by quantization as (unknown) bounded
disturbances. The worst case analysis is obtained by introducing a bounded error model and maximizing d∞(P ) with respect to
all possible realizations of the communication errors: of course in this way we obtain an upper bound to the performance of our
algorithm. This is done in Section III where we prove in general the convergence to a neighborhood of the average, obtaining
bounds on its size. These bounds are independent of the initial condition but depend on the diffusion matrix. However the
worst-case analysis is intrinsically conservative. In fact we will show, for the hypercube example cited above, that the worst-
case displacement grows logarithmically in N , behavior which is in disagreement with the experimental evidence displayed
by Figure 2.

For this reason, in Section IV we propose an alternative method and develop a probabilistic analysis, modeling the quantization
error as additive random noise affecting the received data. A classical mean squared analysis for the asymptotic error can be

2According to the definitions given at the end of the introduction, we denote by di the in-degree of node i, and by dM the maximal in-degree of the graph,

or an upper bound of it. Then the maximum-degree weights are Pij =





1
dM +1

if (i, j) ∈ E

1− di
dM

if i=j
0 otherwise.

See also [26].
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Fig. 2. Performance of the n-dimensional hypercube graph (of order N = 2n).

carried on in this case. A similar analysis is done in [38]. It comes out that, under mild assumptions on the diffusion matrix,
the expected behavior depends only on the assumed distribution of the errors and on the spectrum of the evolution matrix. Of
course, this probabilistic analysis, in principle, does not offer any rigorous bound on our system. However, simulations clearly
show that the probabilistic analysis is very close to the experimental evidence, contrarily to the worst case analysis which
instead is quite conservative. Finally in Section V we gather out our conclusions and potential developments of this research.

Mathematical Preliminaries

Before proceeding, we collect some definitions and notations which are used through the paper. The reader can refer to [19]
[18] for further readings.

The communications between agents are modeled by a directed graph G = (V,E) where V = {1, . . . , N} is the set of
vertices and E is the set of (directed) edges, i.e. a subset of V × V . If (j, i) ∈ E, it means that j can transmit information
about its state to i. Any (i, i) ∈ E is called a self loop. The adjacency matrix A of G is a {0, 1}-valued square matrix indexed
by the elements in V defined by letting Aij = 1 if and only if (j, i) ∈ E and j 6= i. Define the in-degree of a vertex i as∑

j Aij and the out-degree of a vertex j as
∑

i Aij . A graph is said to be undirected (or symmetric) if (i, j) ∈ E implies that
(j, i) ∈ E. A graph is strongly connected if for any given pair of vertices (i, j) there exists a path which connects i to j. A
path in G consists in a sequence of vertices (i1, i2, . . . , ir) such that (ij , ij+1) ∈ E for every j ∈ {1, . . . , r − 1}. A graph is
said to be fully connected or complete if E = V × V.

A matrix M is said to be nonnegative if Mij ≥ 0 for all i and j. A matrix M is said to be stochastic if it is nonnegative
and the sums along each row are equal to 1. Moreover a matrix M is said to be doubly stochastic if it is stochastic and also
the sums along each column are equal to 1. Given a nonnegative matrix M ∈ RN×N , we can define an induced graph GM by
taking N nodes and putting an edge (j, i) in E if Mij > 0. Given a graph G on V , M is said to be adapted or compatible
with G if GM ⊂ G.

An interesting class of graphs are the Cayley graphs defined on Abelian groups [2]. Let G be any finite Abelian group of
order |G| = N , whose operation is denoted by +, and let S be a subset of G. The Cayley graph G(G, S) is the directed graph
with vertex set G and arc set

E = {(g, h) ∈ G×G : h− g ∈ S} .

Most examples we are going to deal with belong to this class. If G = ZN , the cyclic group of order N , then the graph is said
to be circulant.

A notion of Cayley structure can also be introduced for matrices. Let G be any finite Abelian group of order |G| = N . A
matrix M ∈ RG×G is said to be a Cayley matrix over the group G if

Mi,j = Mi+h,j+h ∀ i, j, h ∈ G .

This means that a generating vector π ∈ RN exists such that Mi,j = π(i − j). If G = ZN then P is said circulant [11].
Cayley matrices enjoy many properties: among others, they are normal, that is, denoting with the star the conjugate transpose,
M∗M = MM∗. Moreover, it is possible to write their spectrum explicitly.

Now we give some notational conventions. Given v ∈ RN , we denote by ‖v‖ the Euclidean norm of v and by ‖v‖∞ the
sup norm of v. Given a matrix M , we denote by ‖M‖ its induced Euclidean norm. Given a set A, |A| denotes its cardinality.
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Given a matrix M ∈ RN×N , let σ(M) denote the set of eigenvalues of M and ρ(M) the spectral radius of M : ρ(M) =
max{|λ| : λ ∈ σ(M)}. When the matrix is stochastic, it is also worth to define the essential spectral radius as

ρess(M) =
{

1 if dim ker(M − I) > 1
max{|λ| : λ ∈ σ(M) \ {1}} if dim ker(M − I) = 1 ,

(6)

Finally, for f, g : N→ R, we say that f = o(g) if limn→∞
f(n)
g(n) = 0 and that f = Θ(g) if there exist N0 ∈ N and k1, k2

positive real numbers, such that k1|g(n)| ≤ |f(n)| ≤ k2|g(n)| for all n ≥ N0.

II. ALGORITHMS WITH UNIFORM QUANTIZED COMMUNICATIONS

Assume that we have a set V of N agents and a graph G on V describing the feasible communications among the agents.
For each agent i ∈ V we denote by xi(t) the state of agent i at time t. In the sequel we study the algorithm (5),

xi(t + 1) = xi(t) +
N∑

j=1

Pij [q(xj(t))− q(xi(t))] (7)

where Pij are the entries of a doubly stochastic matrix P compatible with G, and where q(·) denotes the quantizer defined in
(3). A more general uniform quantizer, with quantization step ε, can be defined from q by qε(x) = εq(x/ε). For the sake of
notational simplicity we will work only with the case ε = 1. The general case can be simply recovered by a suitable scaling.
If we have a vector x ∈ RN , with a slight abuse of notation, we use the notation q(x) ∈ RN to denote the vector such that
q(x) = [q(x1), . . . , q(xN )]∗. Hence more compactly we can write

x(t + 1) = x(t) + (P − I) q(x(t)). (8)

where x(t) is the column vector whose entries xi(t) represent the agents states. It is well known in the literature [33], [4] that,
if P is a doubly stochastic matrix with positive diagonal entries and such that GP strongly connected, then the algorithm with
exchange of perfect information (1) solves the average consensus problem, namely

lim
t→+∞

x(t) =
1
N

(
N∑

i=1

xi(0)

)
1, (9)

where 1 is the (column) vector of all ones. From now on we assume the following.

Assumption 1. P is a doubly stochastic matrix such that Pii > 0, i = 1, . . . , N , and GP is strongly connected.

We collect here some facts about such matrix P , which are consequences of the Perron-Frobenius theorem or straightforward
consequences [18], [4].

Lemma 1. Let P satisfy Assumption 1 and let Y = I −N−111∗. Then the following facts hold.
• The eigenvalues of P are bounded in modulus by 1.
• There is only one eigenvalue of modulus 1. It is simple (namely it has algebraic multiplicity 1), and it is equal to 1. The

corresponding eigenvector is 1.
• limt→∞ P t = N−111∗.
• Y P has the same spectrum and eigenvectors system as P , except that the eigenvalue 1 is replaced by 0. This implies that

lim
t→∞

Y P t = 0.

• PY = Y P and Y 2 = Y .
• ‖PY ‖ =

√
ρ ((PY )∗PY ). Since (PY )∗PY = P ∗PY , (P ∗P )ii > 0 and GP∗P is strongly connected. Therefore

σ(P ∗P ) = {1, λ1, . . . , λN−1}, where |λi| < 1, 1 ≤ i ≤ N − 1. Observe that σ(P ∗PY ) = {σ(P ∗P )− {1}} ∪ {0}.
Hence ‖PY ‖ < 1.

As already mentioned, we observe that the algorithm (8) preserves the average of the initial conditions, that is xa(t) = xa(0)
for all t ≥ 0. Indeed, since P is doubly stochastic we have that xa(t + 1) = N−11∗x(t + 1) = N−11∗x(t) + N−11∗ (P −
I) q(x(t)) = N−11∗x(t) = xa(t).

However, also the algorithm (8), because of the quantization effects, is not expected to converge in the sense (9). What we can
hope is for the agents to reach states which are close to each other and close to the average xa(0). To measure this asymptotic
disagreement, we introduce the following quantity ∆i(t) := xi(t)−xa(t) = xi(t)−xa(0) which represents the distance, at time
t, of the i-th agent from the average of the initials conditions. Let now Y = I −N−111∗ and ∆(t) = [∆1(t), . . . , ∆N (t)]∗.
Then, ∆(t) = Y x(t). Finally we define the performance index

d∞(P, x(0)) = lim sup
t→∞

1√
N
||∆(t)||. (10)
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We can get rid of the initial condition by considering d∞(P ) = sup
x(0)

d(P, x(0)).

The problem we would like to address is, given a matrix P , to evaluate how big d∞ is. In particular, we are interested in
evaluating how, for sequences of graphs of increasing size, this quantity depends on the number of the nodes N .
We start with a remark about the best achievable performance. It is clear that, when all states lie in the same quantization
interval, namely q(xi(T )) = Q for all i, differences are not perceivable and states do not evolve. Therefore the best the
algorithm can assure is that the system reaches such an equilibrium in which q(xi(t)) = Q for all i and for all t ≥ T . This
implies both that |∆i(t)| ≤ 1 for all i and for all t ≥ T , and that d∞ ≤ 1/2. This is the best result which can be guaranteed
by any algorithm. Obtaining such a performance is not trivial: simulations show that the error from the agreement can actually
be bigger. However, it is worth noting that the states of the agents subject to (8) are bounded. In particular one can see, by
convexity arguments, that for any node i ∈ V and for all t ≥ 0,

xi(t) ∈
[
min
j∈V

{q(xj(0))} − 1
2
, max

j∈V
{q(xj(0))}+

1
2

]
. (11)

Of course (11) is a very weak result since we can hope that in general the disagreement decreases as time goes on and that
the asymptotic disagreement does not depend on the initial conditions, but just possibly on P . We consider now two examples
in which the evolution of the system can be studied explicitly, the complete graph and the directed circuit graph.

Example 1 (Complete graph). If the communication graph is complete and the communication is exact, i.e. not quantized, the
average consensus problem can be solved in one step taking P = 1

N 11∗. We now compute the exact performance degradation
due to quantization. The system is in this case

x(t + 1) = x(t)− q(x(t)) + N−111∗q(x(t)). (12)

We have that, for t ≥ 1,

|∆i(t)| =
∣∣∣∣∣∣
xi(t)− 1

N

N∑

j=1

xj(0)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
xi(t)− 1

N

N∑

j=1

xj(t− 1)

∣∣∣∣∣∣

=

∣∣∣∣∣∣
xi(t− 1)− q (xi(t− 1)) +

1
N

N∑

j=1

q (xj(t− 1)− 1
N

N∑

j=1

xj(t− 1)

∣∣∣∣∣∣

≤ |xi(t− 1)− q (xi(t− 1))|+ 1
N

N∑

j=1

|q (xj(t− 1)− xj(t− 1)|

=
1
2

+
1
N

N

2
= 1.

This implies that
d∞(N−111∗) ≤ 1. (13)

Example 2 (Directed circuit). Now we consider a more interesting example, the directed circuit graph, which is described by
the Cayley graph G(ZN , {1}). In this case each agent communicates with only one neighbor and evolves following

xi(t + 1) = xi(t) +
1
2
[q(xi+1(t))− q(xi(t))] i = 1, . . . , N, (14)

where summation of the indexes is to be intended mod N . The evolution of (14) can be studied exactly by means of a
symbolic dynamics approach. This analysis is definitively not trivial, but permits us to characterize precisely the evolution of
(14) and to obtain a strong result. Indeed, it is possible to show (see Appendix) that there exists T ∈ N such that

|xi(t)− xj(t)| ≤ 1 ∀ i, j ∀ t > T.

It follows that
d∞(P ) ≤ 1/2.

III. BOUNDED ERROR MODEL-WORST CASE ANALYSIS

An exact analysis of the dynamics of system (8), as we did in the previous two examples, is not feasible for general graphs.
In this section we undertake a worst case analysis which can instead be applied to the general case. We start by observing that
(8) can be rewritten in the following way

x(t + 1) = Px(t) + (P − I)(q(x(t))− x(t)), (15)
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where q(x(t))− x(t) is such that ‖q(x(t))− x(t)‖∞ ≤ 1/2. In order to carry out a worst-case analysis of (15), we introduce
the following bounded error model

{
xw(t + 1) = Pxw(t) + (P − I)e(t), xw(0) = x(0)
∆w(t) = Y xw(t) (16)

where e(t) ∈ RN is such that ‖e(t)‖∞ ≤ 1/2 for all t ≥ 0. Notice that in this case e(t) is no more a quantization error, but
instead represents an unknown bounded disturbance. Clearly, when e(t) = q(x(t)) − x(t) it turns out that xw(t) = x(t) and
∆w(t) = ∆(t) for all t ≥ 0.

We define now a performance index for (16), considering the worst asymptotic disagreement, worst with respect to all the pos-
sible choices of the time sequence of the vectors e(t). To be more precise, let us introduce E∞ =

{{e(·)}∞t=0 |‖e(t)‖∞ ≤ 1
2 , ∀ t ≥ 0

}
,

namely the set of all the sequences of N -dimensional vectors having sup norm less than 1/2. Then, for the system (16), we
define

dw
∞(P, xw(0)) = sup

E∞
lim sup

t→∞
1√
N
||∆w(t)||. (17)

Note that limt→∞ Y P t = 0. This implies that the asymptotic behavior of ∆w(t) is independent of the initial condition xw(0)
and hence this is the case also for the quantity dw

∞(P, xw(0)). Thus, from now on we denote dw
∞(P, xw(0)) simply by dw

∞(P ).
As a preliminary remark, note that

d∞(P ) ≤ dw
∞(P ).

We start our analysis of dw
∞(P ) by the following example.

Example 3. In this example we consider the hypercube graph. Precisely, we consider the group Zn
2 where 2n = N and the

Cayley graph G (Zn
2 , S), where S = {e0, e1, . . . , en}, with e0 = [0, . . . , 0]∗ and ej the vector with all elements equal to 0

except a 1 in position j if j 6= 0. Clearly |S| = n + 1. We assume that the matrix P has the following structure

Pij =
{

1
n+1 if i− j = eh ∃ h : 0 ≤ h ≤ n,

0 otherwise
(18)

for all i and j belonging to Zn
2 . In other words we have that P = 1

n+1 (I + A) where A is the adjacency matrix of the Cayley
graph G (Zn

2 , S). We have the following result whose proof is presented in the Appendix.

Theorem 2. Let the communication graph be the hypercube graph and let P be as in Example 3. Then

dw
∞(P ) =

n

2
=

log2 N

2
.

This result shows immediately that there exists a discrepancy between the simulative evidence on d∞ and the estimate dw
∞.

Indeed, while d∞ seems to be uniformly bounded on N (see Figure 2), dw
∞ →∞ as N →∞.

Nevertheless, in the literature of the quantized control, the bounded error model is the only model which permits us to infer
some theoretical analysis on (8) and thus to provide some bound on d∞. There is an another model, the probabilistic model
that we propose in the next section, that seems to be more in accordance with the experimental results. But the fact that the
probabilistic model seems to capture the main features of (8) comes only from the experimental evidence: there is no theoretical
justification motivating this agreement. For this reason we proceed with the analysis of dw

∞.
We start from the following result that provides a general bound for dw

∞, valid for all schemes achieving average consensus
with perfect communication.

Proposition 3. Let P be a matrix satisfying Assumption 1. Then ‖PY ‖ < 1 and

dw
∞(P ) ≤ 1

1− ‖PY ‖ . (19)

Proof:
We know that ‖PY ‖ < 1 from Lemma 1. Consider now ∆w(t). From standard algebraic tools, and using Lemma 1, we

have that

∆w(t) = Y P tx(0) + Y

t−1∑
s=0

P s(I − P )e(t− s− 1)

= (PY )t∆(0) +
t−1∑
s=0

(PY )s(I − P )e(t− s− 1).
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Now we have that

‖∆w(t)‖ = ‖(PY )t∆w(0) +
t−1∑
s=0

(PY )s(I − P )e(t− s− 1)‖

≤ ‖(PY )t‖ ‖∆w(0)‖+ ‖I − P‖
t−1∑
s=0

‖(PY )‖s‖e(t− s− 1)‖

= ‖(PY )t‖ ‖∆w(0)‖+
√

N
1− ‖PY ‖t

1− ‖PY ‖
where in the last inequality we used the facts that ‖I − P‖ ≤ 2 and ‖e(t)‖ ≤ √

N/2 for all t ≥ 0. By letting t → ∞ we
obtain (19).

Note that, if P is normal we have that ‖PY ‖ = ρess(P ) and hence (19) becomes

dw(P ) ≤ 1
1− ρess(P )

.

However, when P is a normal matrix the bound on dw
∞(P ) can be improved as stated in the next proposition.

Proposition 4. If P is normal, then

dw
∞(P ) ≤ 1

2

∞∑
s=0

ρ(P s(I − P )). (20)

Proof: Starting from the expression of ∆w(t) provided along the proof of Proposition 3 we can write that

‖∆w(t)‖ ≤ ‖(PY )t∆w(0)‖+ ‖
t−1∑
s=0

(PY )s(I − P )e(t− s− 1)‖

≤ ‖(PY )t∆w(0)‖+
√

N

2
‖(PY )s(I − P )‖

Since P is normal we have that ‖(PY )s(I−P )‖ = ρ((PY )s(I−P )) = ρ(P s(I−P )). By letting t →∞ in the last inequality,
we obtain (20).

Remark 1. It is worth noting that, from the sub-multiplicative inequality ‖(PY )s(I − P )‖ ≤ ‖PY ‖s ‖I − P‖, it follows
immediately that 1

2

∑∞
s=0 ρ(P s(I −P )) ≤ 1

1−ρess(P ) which shows that the bound (19) is indeed an improvement of the bound
(20).

Example 4 (Complete graph). We recall that, in this case, we set P = 1
N 11∗. Hence PY = 0. Thus we have that 1

1−‖PY ‖ = 1.

This is an alternative way to prove (13). However, since
(

1
N 11∗

)k = 1
N 11∗ for all k > 0, it follows immediately that

1
2

∑∞
s=0 ρ(P s(I −P )) = 1

2 and this represents a refinement of (13). We conclude that for the complete graph, with the above
choice of weights, d∞(P ) ≤ 1

2 .

In general it is quite hard to evaluate (20). We provide two results which permit us to approximate (20) under some mild
assumptions. First a notational definition. Given c ∈ C and r ∈ R such that r ≥ 0, we denote

Bc,r := {z ∈ C | ‖z − c‖ ≤ r} ,

namely the closed ball of complex numbers of radius r and centered in c.
The first result is the most general, since it holds for normal matrices. Its proof is deferred to the Appendix.

Proposition 5. Let P be a normal matrix satisfying the Assumption 1. Let R be such that 0 < R < 1 and σ(P ) ⊆ B1−R,R

and let ρ̄ = ρess(P ) denote the essential spectral radius of P . Then

∞∑
s=0

ρ(P s(I − P )) ≤ 1
1−R

+

√
8R

(1−R)(1− ρ̄)
. (21)

Remark that the given bound depends on R and ρ̄ only, which are functions of the spectrum of P . Let us illustrate it with
an example.
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Example 5 (Directed circuit). Consider the directed circuit graph introduced in Example 2 and the evolution law given by
(14). In this case P is the circulant matrix

P =




1
2

1
2 0 0 · · · 0 0 0

0 1
2

1
2 0 · · · 0 0 0

0 0 1
2

1
2 · · · 0 0 0

...
...

...
... · · · ...

...
...

1
2 0 0 0 · · · 0 0 1

2




.

We have theoretically proved (see Corollary 13 in Appendix) that d∞ ≤ 1
2 . Instead we could not evaluate dw

∞ in this case.
Consider the bound introduced in Proposition 3. Since ρess = 1− π2

2
1

N2 + o
(

1
N2

)
(see [4]) and since each circulant matrix is

a normal matrix we have that 1
1−‖PY ‖ = 1

1−ρess(P ) = Θ
(
N2

)
. Observe now that all the eigenvalues of P are inside the ball

B 1
2 , 1

2
. Hence we obtain that 1

1−R +
√

8R
(1−R)(1−ρ̄) = Θ(N). This means that the bound (21) improves the bound proposed in

(19). Moreover, by numerical experiments one can see that 1
2

∑∞
s=0 ρ(P s(I − P )) = Θ(N) meaning, that for N → ∞, (21)

behaves as (20): in this sense the bound is tight.

If P is symmetric we can provide a stronger result, whose proof is given in the Appendix.

Proposition 6. Let P be a symmetric stochastic matrix satisfying Assumption 1. Let R be such that 0 < R < 1 and
σ(P ) ⊆ B1−R,R and let ρ̄ = ρess(P ) denote the essential spectral radius of P . Then,

+∞∑
s=0

ρ (P s(I − P )) ≤ 3
2

+
1

1−R
+

1
2

log
(

1
1− ρ̄

)
. (22)

The significance of the result can be seen with an example.

Example 6 (Undirected circuit). In this example we consider the circulant matrix

P =




1
3

1
3 0 0 · · · 0 0 1

3
1
3

1
3

1
3 0 · · · 0 0 0

0 1
3

1
3

1
3 · · · 0 0 0

...
...

...
... · · · ...

...
...

1
3 0 0 0 · · · 0 1

3
1
3




.

Simulations (analogous to Figure 1) suggest that d∞ is uniformly bounded on N . Also in this case we are not able to
evaluate dw

∞. By considering the bound (19), since ρess(P ) ∼= 1− 4
3

π2

N2 (see [4]) we obtain that 1
1−‖PY ‖ = 1

1−ρess
= Θ(N2).

Observe that all the eigenvalues of P are greater than − 1
3 . Hence it results, letting R = 2/3, that 3

2 + 1
1−R + 1

2 log
(

1
1−ρ̄

)
=

Θ(log N). Moreover, numerically it is possible to observe that also 1
2

∑∞
s=0 ρ(P s(I−P )) grows logarithmically, meaning that

asymptotically in N , we have that (22) behaves as (20).

Remark 2. It is worth noting that this improvement is more general. Consider a sequence of symmetric Cayley matrices
P , having the elements on the diagonal uniformly lower bounded on N and supported on Cayley graphs having in-degree
uniformly upper bounded on N . Then the above arguments can be applied to argue that, for this class of graphs, we can
not obtain from (20) a bound for dw

∞(P ) stronger than a logarithmic dependence on N . In the next example we show that a
logarithmic bound can be proved to be tight, that is dw

∞(P ) = Θ(log N).

Example 7 (Hypercube). Consider the hypercube graph and the matrix P compatible with the hypercube graph as defined in
Example 3. We have already seen, that, by simulations, d∞(P ) seems to be a uniformly bounded quantity on N , while we have
analytically proved that dw

∞ = log2 N
2 (see Example 3). It is possible to see that also 1

2

∑∞
s=0 ρ(P s(I−P )) = log2 N

2 . This fact
is stated in Lemma 14 (see Appendix). Moreover, since the eigenvalues of P are 1− 2k

n+1 for k = 0, . . . , n we have that all the

eigenvalues of P different from 1 are inside the interval
[

1−n
n+1 , n−1

n+1

]
. This implies that 3

2 + 1
1−R + 1

2 log
(

1
1−ρ̄

)
= Θ(log2(N)).

IV. PROBABILISTIC MODEL

In the previous section we have shown that the bounded error model does not seem to really capture the behavior of the
quantized model. In particular the upper bound to the performance we have found seems to be quite conservative. In this
section we undertake a probabilistic approach, modeling the quantization error as a random variable. We carry on a classical
mean square analysis and we show that it gets quite close to simulations of the real quantized model. This suggests that the
probabilistic approach is more appropriate to describe quantization errors even though we have no theoretical evidence of this
fact: the probabilistic model, differently from the worst case analysis, does not provide any bound to the performance.
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For i ∈ V and t ∈ N, let ni(t) be random variables of zero mean and variance σ2, which have their supports inside
[−1/2, 1/2] and are uncorrelated and identically distributed in both i and t, i.e., E [ni(t)nj(τ)] = 0 if i 6= j or t 6= τ . Define
n(t) as the random vector whose components are ni(t) and consider the stochastic model

{
xr(t + 1) = Pxr(t) + (P − I)n(t), xr(0) = x(0)
∆r(t) = Y xr(t).

(23)

We define

dr
∞(P, xr(0)) = lim sup

t→∞

√
1
N
E[‖∆r(t)‖2].

Like for the model in Section III, we have that dr
∞(P, xr(0)) is independent of the initial condition xr(0). Hence, in the

sequel we denote dr
∞(P, xr(0)) with the symbol dr

∞(P ). It is worth to point out that this index, as the previously defined
dw
∞(P ), expresses the asymptotic error induced by quantization, but gives no information about diverse issues like speed of

convergence or finite time behavior.
We start our analysis of the probabilistic model with the following result.

Theorem 7. Let P be a matrix satisfying Assumption 1. Then

[dr
∞(P )]2 =

σ2

N
tr

[
(I − P )(I − P̃ P̃ ∗)−1(I − P )∗

]
.

where P̃ = PY . In particular, if P is normal, and σ(P ) = {1, λ1, . . . , λN−1} denotes the spectrum of P , we have that

[dr
∞(P )]2 =

σ2

N

N−1∑

i=1

|1− λi|2
1− |λi|2 . (24)

Proof: Define Q(t) = E[∆r(t)∆r(t)∗], and remark that 1
NE[||∆r(t)||2] = 1

N tr Q(t). Using the facts that Y k = Y for all
positive integer k and Y (P − I) = P − I , it is easy to see that ∆r satisfies the following recursive equation

∆r(t + 1) = P̃∆r(t) + (P − I)n(t).

Now, thanks to the hypotheses on ni(t),

Q(t + 1) = E[∆r(t + 1)∆r(t + 1)∗]

= E[P̃∆r(t)∆r(t)∗P̃ ∗] + (I − P )E[n(t)n(t)∗](I − P )∗

= P̃ Q(t) P̃ ∗ + σ2(I − P )(I − P )∗,

and by a simple recursion

Q(t) = P̃ t Q(0) (P̃ ∗)t + σ2
t−1∑
s=0

P̃ s(I − P )(I − P )∗(P̃ ∗)s.

Since P satisfies Assumption 1, from Lemma 1, ρess(P ∗P ) < 1. Moreover we have that ρ(P̃ ) = ρess(P ) < 1 and ρ(P̃ ∗P̃ ) =
ρess(P ∗P ) < 1. Using the linearity and cyclic property of the trace,

tr Q(t) = tr
[
P̃ t Q(0) (P̃ ∗)t

]
+ tr

[
σ2

t−1∑
s=0

(PP ∗ − (P + P ∗) + I)(P̃ P̃ ∗)s

]

= tr
[
P̃ t Q(0) (P̃ ∗)t

]
+ σ2tr

[
(PP ∗ − (P + P ∗) + I)(I − (P̃ P̃ ∗)t)(I − P̃ P̃ ∗)−1

]
.

and hence

lim
t→∞

tr Q(t) = σ2tr
[
(PP ∗ − (P + P ∗) + I)(I − P̃ P̃ ∗)−1

]
.

If moreover P is normal, we can find a unitary matrix O of eigenvectors and a diagonal matrix of eigenvalues Λ, such that
P = OΛO∗. This implies

tr
[
(PP ∗ − (P + P ∗) + I)(1− P̃ P̃ ∗)−1

]
=

N−1∑

i=1

|1− λi|2
1− |λi|2 .

From now on we restrict to the case in which P is normal. Note that the expression for the mean square error of formula
(24) is the product of two terms, dr

∞(P ) = σ2Φ(P ) where

Φ(P ) :=
1
N

N−1∑

i=1

|1− λi|2
1− |λi|2 ,
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is a functional3 of the matrix P , depending only on its spectral structure.
As in the previous section, we are mainly interested in sequences of matrices of increasing size. We will see that the above

functional scales well with N in the following examples.

Example 8 (Complete graph). In this case it is easy to compute Φ(P ). We have that Φ(P ) = N−1
N .

Example 9 (Directed circuit). Consider the matrix P defines in Example 5. In this case Φ(P ) can be exactly computed. We
have

Φ(PN ) =
1
N

N−1∑

h=1

(1− λh)(1− λ∗h)
1− λhλ∗h

=
1
N

N−1∑

h=1

(1− (1/2 + 1/2 ei 2π
N h))(1− (1/2 + 1/2 e−i 2π

N h))
1− (1/2 + 1/2 ei 2π

N h)(1/2 + 1/2 e−i 2π
N h)

=
1
N

N−1∑

h=1

1/2(1− cos( 2π
N h))

1/2(1− cos( 2π
N h))

=
N − 1

N
.

Example 10 (Undirected graph). Consider the undirected undirected circuit graph and the matrix P introduced in Example 6.
The eigenvalues of P are

λh =
1
3

+
2
3

cos (
2π

N
h) h = 0, . . . , N − 1,

and we have

Φ(PN ) =
1
N

N−1∑

h=1

1− λh

1 + λh
=

1
N

N−1∑

h=1

1− cos ( 2π
N h)

2 + cos ( 2π
N h)

.

In this case it is difficult to work out the computation explicitly. However, it is possible to compute the limit for N → ∞,

since the summation can be interpreted as Riemann sum relative to the function f(x) =
1− cos(x)
2 + cos(x)

. We thus obtain

lim
N→∞

Φ(PN ) =
1
2π

∫ 2π

0

1− cos(x)
2 + cos(x)

dx =
√

3− 1. (25)

Example 11 (Hypercube). Consider the hypercube graph and the matrix P defined in (18). We have that

Φ(P ) =
1
N

N−1∑

i=1

|1− λi|2
1− |λi|2 =

1
2n

n∑

k=1

(
2k

n+1

)2

1−
(

n+1−2k
n+1

)2

(
n

k

)
=

=
1
2n

n∑

k=1

k

n + 1− k

(
n

k

)
=

1
2n

n∑

k=1

(
n

k − 1

)
=

2n − 1
2n

=
N − 1

N
.

Then
Φ(P ) =

N − 1
N

.

While in the previous section the hypercube provided the negative example for the worst case behavior, the probabilistic
analysis is in agreement with the evidence showed in the simulations. This highlights the differences between the bounded
error model and the probabilistic model: with the same assumptions on P the two worst-case analysis and the mean-square
analysis give different results.

Example 12 (Random geometric graph). For the random geometric graph, as defined in the introduction, we have no explicit
formula for the eigenvalues. However, dr

∞ can be numerically evaluated, and compared with d∞. The results are shown in
Figure 3 where dr

∞ seems to describe well the qualitative behavior of d∞.

In all the above examples we have that Φ(P ) scales well with N . We provide now some general conditions ensuring that
the functional P for a given sequence of matrices of increasing size is uniformly bounded on N .
We start by observing that, if ρess(P ) ≤ B < 1 then Φ(P ) ≤ N−1

N
4

1−B2 . This implies that, given a sequence of matrices of
increasing size, if the essential spectral radius of the sequence is uniformly bounded away from 1 then the functional cost Φ is
uniformly bounded in N . This fact is true also for dw

∞ as can be easily seen by recalling the expression of the bound provided

3Remarkably, the functional Φ(P ) also arises, with a rather different meaning, in [12], as a cost functional describing the transient of the diffusion methods
for average consensus over graphs with ideal communication.
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0.5

N

Geometric graph

d∞

dr
∞

Fig. 3. dr∞ and d∞ for random geometric graphs, averaged over 25 realizations of the initial condition and 18 of the graphs, for each N . The plot assumes
σ2 = 1/12.

by Proposition 3. The interesting fact is that the performance index dr
∞ can exhibit the same behavior even when the essential

spectral radius is not bounded away from 1, as the following proposition shows.

Proposition 8. Let Bc,r ⊂ C denote the closed ball of complex numbers with center the point of coordinates (c, 0) and radius
r. If there exists 0 < R < 1 such that σ(P ) ⊆ B1−R,R then

Φ(P ) ≤ R

1−R
. (26)

Proof: The inequality 0 < R < 1 is clear from Assumption 1. It means that the spectrum is contained in a disc of radius
R internally tangent in 1 to the unit disc of the complex plane.

Then, we need to prove (26). For all i, the eigenvalue λi ∈ B1−R,R, so

λi = (1− r) + r eiθ

with θ ∈ [0, 2π[ and 0 ≤ r ≤ R. Moreover, if i ≥ 1, then θ > 0. Hence,

|1− λi|2
1− |λi|2 =

|r − reiθ|2
1− |1− r + r eiθ|2 =

=
r2|1− eiθ|2

1− (1− r)2 − 2r(1− r) cos θ − r2
=

=
r22(1− cos θ)

2r(1− r)(1− cos θ)
=

r

1− r
≤ R

1−R
∀ i.

This yields the result.
Note that the above bound depends only on R and does not depend on the essential spectral radius of the matrix P , while

the worst case bounds provided in Proposition 21 and in Proposition 6 did. This is why (26) is bounded in all the cases we
considered.

Many of them are covered by the following corollary.

Corollary 9. Let p = mini Pii and R as above. Then, R ≤ 1− p, and

Φ(P ) ≤ 1− p

p
. (27)

Proof: By Gershgorin theorem, σ(P ) ⊆ ⋃
i BPii,1−Pii ⊆ Bp,1−p.

The above result has the following interpretation. If in a family of matrices PN we have that mini (PN )ii is lower bounded
uniformly in N , then (27) gives a finite bound, uniform in N , on the asymptotic displacement. This is a useful hint to construct
sequences of matrices whose performance scales well with N . It would be enough to prescribe that the agents assign a minimum
weight to their own values.



13

V. OUR CONTRIBUTION AND FUTURE WORK

In this work we studied the effects of a uniform quantization on the average consensus problem, and, starting from the
well-known linear diffusion algorithm, we proposed a simple and effective adaptation which is able to preserve the average of
states and to drive the system reasonably near to the consensus.

The exact asymptotic analysis of the truly nonlinear quantized system has been performed in one special case, while general
convergence results have been obtained by a worst case analysis and by a probabilistic model. An interesting open question is
how and why the results of the probabilistic analysis are closer to experimental results.

A special attention has been given to the scalability in N of the performance, which is a crucial issue for applications in
which the number of agents is huge. In this direction we obtained several favorable results, which we applied to sequences of
Cayley graphs. In particular, we showed how the convergence properties of the algorithm depend on the spectrum of a matrix
defining the system: this gives deep theoretical insights, and also leads to useful design suggestions, as in Corollary 9.

Potential further developments include the extension to random geometric graphs of the analysis we performed on Cayley
examples, and the application of the scheme (8) to time varying topologies. One important case are randomly varying
communication topologies, like the gossip algorithm discussed in [17].
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[14] Robert Elsässer, Burkhard Monien, and Stefan Schamberger. Distributing unit size workload packages in heterogeneous networks. J. Graph Algorithms

Appl., 10(1):51–68 (electronic), 2006.
[15] F. Fagnani and S. Zampieri. Average consensus with packet drop communication. SIAM J. Control Optim., 2006. to appear.
[16] Fabio Fagnani and Sandro Zampieri. Randomized consensus algorithms over large scale networks. IEEE Journal on Selected Areas in Communications,

26(4):634–649, May 2008.
[17] Paolo Frasca, Ruggero Carli, Fabio Fagnani, and Sandro Zampieri. Average consensus by gossip algorithms with quantized communication. In Conf.

Decision and Control, Dec 2008. to be presented.
[18] F. R. Gantmacher. The theory of matrices. New York : Chelsea publ., 1959.
[19] Chris Godsil and Gordon Royle. Algebraic graph theory, volume 207 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2001.
[20] P. Gupta and P.R. Kumar. The capacity of wireless networks. Information Theory, IEEE Transactions on, 46(2):388–404, Mar 2000.
[21] Frank Harary, John P. Hayes, and Horng-Jyh Wu. A survey of the theory of hypercube graphs. Comput. Math. Applic., 15(4):277–289, 1988.
[22] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: a scalable and robust communication paradigm for sensor networks. In Proceedings

ACM/IEEE Conf. Mobile Computing and Networking, pages 56–67, 2000.
[23] A. Jadbabaie, J. Lin, and A. S. Morse. Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Transactions on

Automatic Control, 48(6):988–1001, 2003.
[24] Soummya Kar and Jose M. F. Moura. Distributed consensus algorithms in sensor networks: Quantized data. submitted, Dec 2007.
[25] A. Kashyap, T. Basar, and R Srikant. Quantized consensus. Automatica, 43:1192–1203, 2007.
[26] S. Lall L. Xiao, S. Boyd. A scheme for robust distributed sensor fusion based on average consensus. In Proc. Int. Conf. Information Processing in

Sensor Networks, 2005.
[27] Q. Li and D. Rus. Global clock syncronization in sensor networks. IEEE Transaction on Computers, 55(2):214– 226, 2006.
[28] J. Lin, A. S. Morse, and B. D. O. Anderson. The multi-agent rendezvous problem: an extended summary. In V. Kumar, N. E. Leonard, and A. S. Morse,

editors, Proceedings of the 2003 Block Island Workshop on Cooperative Control, volume 309 of Lecture Notes in Control and Information Sciences,
pages 257–282. New York: Springer Verlag, 2004.

[29] C.C. Moallemi and B. Van Roy. Consensus propagation. IEEE Transactions on Information Theory, 52(11):4753–4766, 2006.
[30] L. Moreau. Stability of multiagent systems with time-dependent communication links. IEEE Transactions on Automatic Control, 50:169–182, 2005.
[31] G.N. Nair, F. Fagnani, S. Zampieri, and R.J. Evans. Feedback control under data rate constraints: An overview. Proceedings of the IEEE, 95(1):108–137,

Jan. 2007.
[32] Angelia Nedic, Alex Olshevsky, Asuman Ozdaglar, and John N. Tsitsiklis. On distributed averaging algorithms and quantization effects. Technical

Report 2778, LIDS-MIT, Nov. 2007.
[33] R. Olfati-Saber, J.A. Fax, and R.M. Murray. Consensus and cooperation in netorked multi-agent systems. Proc. of the IEEE, 95(1):215–233, Jan. 2007.
[34] R. Olfati-Saber and R. M. Murray. Consensus problems in networks of agents with switching topology and time-delays. IEEE Transactions on Automatic

Control, 49(9):1520–1533, 2004.
[35] Wei Ren and Ella Atkins. Distributed multi-vehicle coordinated control via local information exchange. Internat. J. Robust Nonlinear Control, 17(10-

11):1002–1033, 2007.
[36] S. L. Smith, M. E. Broucke, and B. A. Francis. A hierarchical cyclic pursuit scheme for vehicle networks. Automatica, 41(6):1045–1053, 2005.
[37] J. Tsitsiklis. Problems in decentralized decision making and computation. PhD thesis, Department of EECs, MIT, 1984.



14

[38] L. Xiao, S. Boyd, and S.-J. Kim. Distributed average consensus with least-mean-square deviation. Journal of Parallel and Distributed Computing,
67((1)):33–46, 2007.

[39] L. Xiao, S. Boyd, and S. Lall. A scheme for robust distributed sensor fusion based on average consensus. In IPSN’05, Los Angeles, pp. 63-70, 2005.
[40] J. Zhao, R. Govindan, and D. Estrin. Computing aggregates for monitoring wireless sensor networks. In Proc. Int. Workshop on Sensor Net Protocols

and Applications, pages 139–148, 2003.

APPENDIX

THEORETICAL ANALYSIS OF THE EXAMPLE 2

Here we construct and study the symbolic dynamics underlying the system (14). To start, we need the following technical
lemma. Let b·c and d·e denote the floor and ceiling operators from R to Z.

Lemma 10. Given α, β ∈ N and x ∈ R, it holds

bxc =
⌊bαxc

α

⌋
(28)

q(x) = bx + 1/2c =
⌈

1
2

⌊b2βxc
β

⌋⌉
. (29)

Proof: We first prove (28). Let m = bxc. So

m ≤ x < m + 1
αm ≤ αx < αm + α.

Hence, we can find s ∈ N, 0 ≤ s ≤ α−1 such that αm+s ≤ αx < αm+s+1. This yields bαxc = αm+s and
⌊
bαxc

α

⌋
= m.

Then we prove equation (29). The equality q(x) = bx + 1/2c is clear from the definition of q(x). To prove the second
equality, let h = b2xc. Then h ≤ 2x < h + 1, from which follows that

h

2
+

1
2

=
h + 1

2
≤ x + 1/2 <

h + 2
2

=
h

2
+ 1.

From this inequality it follows that bx + 1/2c = dh
2 e. This, with (28), implies (29).

We define ni(t) = b2xi(t)c. Simple properties of floor and ceiling operators, together with the above lemma, allow us to
remark that q(xi(t)) =

⌈
ni(t)

2

⌉
and to derive from (14) that

b2xi(t + 1)c = b2xi(t)c+ q(xi+1(t))− q(xi(t))

ni(t + 1) = ni(t) +
⌈

ni+1(t)
2

⌉
−

⌈
ni(t)

2

⌉

ni(t + 1) =
⌊

ni(t)
2

⌋
+

⌈
ni+1(t)

2

⌉
.

We have thus found an iterative system involving only the symbolic signals ni(t):

ni(t + 1) = g(ni(t), ni+1(t)) (30)

where g(h, k) =
⌊

h

2

⌋
+

⌈
k

2

⌉
.

The asymptotic analysis of (30) will then allow us to obtain information about the asymptotic of xi(t) (since ni(t) = b2xi(t)c)
up to quantization errors equal to 1.

We now start the analysis of system (30). Define the following quantities: m(t) = min1≤i≤N ni(t), M(t) = max1≤i≤N ni(t),
D(t) = M(t) −m(t). From the form of (30) one can easily remark that m(t) can not decrease and M(t) can not increase.
Hence D(t) is not increasing. A much stronger result about the monotonicity of D(t) is the content of the following lemma.

Lemma 11. If D(t0) ≥ 2, there exists T ∈ N such that D(t0 + T ) < D(t0).

Proof: Let Im(t) = {j ∈ ZN s.t. nj(t) = m(t)}. The idea of the proof is to show that the set Im(t) eventually decreases
if we are in the range D(t) ≥ 2.

Notice first that, for h, k ∈ Z, g(h + 2, k + 2) = g(h, k) + 2. Hence, by an appropriate translation of the initial condition,
we can always restrict ourselves to the case m(0) ∈ {0, 1}.

Case m(t0) = 0. Notice that
g(h, k) > 0 ∀h ≥ 0, k > 0, g(h, 0) > 0 ∀h ≥ 2 . (31)
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This easily implies that Im(t) is not increasing. Now, since D(t0) ≥ 2, we can find j0 ∈ Im(t0) and two integers U > 0 and
W ≥ 0 such that

nj0−W−1(t0) > 1
nj0−v(t0) = 1 0 < v ≤ W

nj0+u(t0) = 0 0 ≤ u < U

nj0+U (t0) > 0.

After W instants step, we then obtain,

nj0−W−1(t0 + W ) > 1
nj0−u(t0 + W ) = 0 W − U + 1 ≤ u ≤ W

nj0+W−U (t0 + W ) > 0.

At the following time step, one 0 will then disappear

nj0−W−1(t0 + W + 1) > 0
nj0−u(t0 + W + 1) = 0 W − U + 2 ≤ u ≤ W

nj0+W−U−1(t0 + W + 1) > 0.

This implies that |Im(t0 + W + 1)| < |Im(t0)|.
Case m(t0) = 1 . Notice that

g(h, k) > 1 ∀h ≥ 2, k ≥ 1, g(1, k) > 1 ∀k ≥ 3 . (32)

This easily implies that Im(t) is again not increasing. Now, since D(t0) ≥ 2, we can find j0 ∈ Im(t0) and an integer W ≥ 0
such that

nj0(t0) = 1
nj0+w(t0) = 2 1 ≤ w ≤ W

nj0+W+1(t0) > 2.

The evolution of the above configuration yields, after W instant steps

nj0(t0 + W ) = 1
nj0+1(t0 + W ) > 2.

The next step, we obtain nj0(t0 + W + 1) > 1. Therefore, |Im(t0 + W + 1)| < |Im(t0)|.
In both cases we have proven that |Im(t)| strictly decreases in finite number of steps. A straightforward induction principle

then implies that a finite T ∈ N exists such that m(t0 + T ) > m(t0). This proves the result.
The interesting consequence of this lemma is the following result.

Theorem 12. There exist T ∈ N and h ∈ Z such that, for all t > T , D(t) < 2 and, moreover, one of the following condition
holds

1) ni(t) = h, ∀i;
2) {ni(t) : i = 0, . . . N} = {h, h + 1} and each ni(t) is constant in time;
3) {ni(t) : i = 0, . . . N} = {h, h + 1} and each ni(t) is periodic in time of period N .

Proof: From Lemma 11, it follows that a finite T ∈ N can be found, such that D(t) < 2 for all t > T . Once we reach
his condition, there are two possibilities: either the ni(t) are all equal or they differ by 1. In the first case, the system remains
constant (condition 1.). In the second case, it follows from the way g is defined that if the lowest state is odd, the evolution
is constant (condition 2.), while if the lowest one is even, the state evolution is a leftward shift (condition 3.). Such evolution
is periodic of period N (and possibly of some divisor of N ).

We can now go back to the original system

Corollary 13. For system (14), there exists T ∈ N such that

|xi(t)− xj(t)| ≤ 1 ∀ i, j ∀ t > T, (33)

and hence d∞(P ) ≤ 1/2.

Proof: Immediate consequence of Theorem 12, considering the relation ni(t) = b2xi(t)c.
Remark that (33) is satisfied while the system has reached a non consensus fixed point or a periodic point.
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PROOF OF THEOREM 2

Consider the hypercube graph and the matrix P as defined in Example 3.
First we give the following preliminary result.

Lemma 14. Let P be as above. Then ∞∑
s=0

ρ(P s(I − P )) = n = log2 N. (34)

Proof: The eigenvalues of P are λk = 1− 2k
n+1 k = 0 . . . n, with multiplicities pk =

(
n
k

)
(see [9]). Then,

∞∑
s=0

ρ(P s(I − P )) =
∞∑

s=0

ρess(P s)ρ(I − P ) =
∞∑

s=0

(1− 2
n + 1

)s(2− 2
n + 1

) = n.

We are able now to provide the proof of Theorem 2.
Proof: First we rewrite the expression of dw

∞(P ). Since P is symmetric, it is diagonalizable by an orthogonal matrix. We
can write that P =

∑N−1
h=0 λhqhq∗h where qh are orthonormal. These facts are true also for P s(I −P ). Moreover we have that

ρ (P s(I − P )) = ||P s(I − P )||. Let

∆(f)
w (t) :=

t−1∑
s=0

P s(I − P )e(t− s− 1).

Then,

‖∆(f)
w (t)‖2 = ‖

t−1∑
s=0

P s(I − P )e(t− s− 1)‖2 = ‖
t−1∑
s=0

N−1∑

h=0

λs
h(1− λh)qhq∗he(t− s− 1)‖2

= ‖
N−1∑

h=0

qh(1− λh)
t−1∑
s=0

λs
hq∗he(t− s− 1)‖2 =

N−1∑

h=0

[
(1− λh)

t−1∑
s=0

λs
hq∗he(t− s− 1)

]2

.

Hence, [dw
∞(P )]2 = maxE∞ lim supt→∞

1
N ‖∆

(f)
w (t)‖2.

Now we start using combinatorial tools. Indeed the vertices of the hypercube, as well as the eigenvalues and eigenvectors
of P , can be indexed by the subsets of {1 . . . , n} (see [21]). With this indexing, for each I ⊆ {1 . . . n} the corresponding
eigenvalue is λI = 1− 2|I|

n+1 and the eigenvector is the 2n−dimensional vector q(I), such that its J−th component is equal to
q
(I)
J = 2−n/2(−1)|I∩J|.

Let T be any positive integer and consider the sequence of vectors e(0), e(1), . . . , e(t), . . . such that J-th component of the
vector e(t) is equal to 1

2 (−1)T−1−r(−1)|J|, where r is the remainder in the Euclidean division of t over T . Observe that
e(t + T ) = e(t) for all t ≥ 0. Observe, moreover, that e(t) is an eigenvector of P corresponding to the eigenvalue 1−n

1+n for
all t ≥ 0. Hence we have that

1
N
‖∆(f)

w (T )‖2 =
1
N

N−1∑

h=0

[
(1− λh)

T−1∑
s=0

λs
hq∗he(T − s− 1)

]2

=

=
1
2n


(1− 1− n

n + 1
)

T−1∑
s=0

(
1− n

n + 1

)s

2−
n
2

∑

J⊆{1,...,n}
(−1)|J|

1
2
(−1)s(−1)|J|




2

=
1
4n

[
n

n + 1

T−1∑
s=0

(
n− 1
n + 1

)s

2n

]2

=
n2

(n + 1)2




1−
(

n−1
n+1

)T

1− n−1
n+1




2

=
n2

4

[
1−

(
n− 1
n + 1

)T
]2

.

Assume now that T is an even positive integer. By recalling that e(t + T ) = e(t) for all t ≥ 0, for t = kT where k ∈ N it
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turns out that

1
N
‖∆(f)

w (kT )‖2 =
n2

4

[
1−

(
n− 1
n + 1

)T
]2 k−1∑

u=0

(
1− n

n + 1

)uT

=

=
n2

4

[
1−

(
n− 1
n + 1

)T
]2




1−
(

n−1
n+1

)kT

1−
(

n−1
n+1

)T




2

=
n2

4

[
1−

(
n− 1
n + 1

)kT
]2

.

Letting k →∞ we obtain that, for the particular sequence considered

lim
k→∞

1
N
‖∆(f)

w (kT )‖2 =
n2

4
Therefore we have proved that

lim sup
t→∞

1
N
‖∆(f)

w (kT )‖2 ≥ n2

4

and hence [dw
∞(P )]2 ≥ n2

4 . Now, Lemma 14 implies that [dw
∞(P )]2 ≤ n2

4 , and then the claim follows.

PROOF OF PROPOSITION 5

Proof: We want to upper bound ρ(P s(I − P )) = maxN−1
k=1 |λs

k(1 − λk)|. In order to do so we consider the function
f : C → R defined as f(z) = zs(1 − z). Let us consider the closed balls B1−R,R and B0,ρ̄. By Gershgorin’s Theorem we
have that σ(P ) ⊆ B1−R,R. By the definition of essential spectral radius it holds that σ(P ) \ {1} ⊆ B0,ρ̄. Hence σ(P ) \ {1} ⊆
B0,ρ̄ ∩B1−R,R. Let A := B1−R,R ∩B0,ρ̄. Clearly

N−1
max
k=1

|λs
k(1− λk)| ≤ max

z ∈A
|f(z)|.

Since f is an analytic function and A is a compact set, from the Maximum Modulus Principle it follows that
N−1
max
k=1

|λs
k(1− λk)| ≤ max

z ∈ ∂A
|f(z)|,

where ∂A denotes the boundary of A.
Consider now the curves γ : [0, 2π] → C,

γ(t) = 1−R + Rejt,

and θ : [0, 2π] → C,
θ(t) = ρ̄ejt,

which represent, respectively, the boundaries of B1−R,R and of B0,ρ̄. In the following, since |f(z)| = |f(z∗)|, will consider
γ and θ only on the interval [0, π].
By calculating the intersection between γ and θ one can see that ∂A = γ̃ ∪ θ̃ where

γ̃ :=
{

z = zx + izy ∈ γ : zx ≤ 1− 2R + ρ̄2

2(1−R)

}

and
θ̃ :=

{
z = zx + izy ∈ θ : zx ≥ 1− 2R + ρ̄2

2(1−R)

}
.

We consider now |f(z)| on γ̃. By straightforward calculations one can show that

|f(γ(t))|2 = 2R2(1− cos t) [1− 2R(1−R)(1− cos t)]s .

Now let x = R cos t + 1−R. In order to analyze the behavior of |f(γ(t))|2 we introduce the following auxiliary function

F (x) = 2R(1− x) [1− 2(1−R)(1− x)]s .

A straightforward calculation shows that studying |f(z)|2 on γ̃ is equivalent to study F on
[
1− 2R, 1−2R+ρ̄2

2(1−R)

]
. By taking the

first derivative of F we obtain
∂F

∂x
= 2R [1− 2(1−R)(1− x)]s−1 [−1 + 2(1−R)(s + 1)(1− x)]

We have that ∂F
∂x = 0 for x := x1 = 1 − 1

2(1−R) and x := x2 = 1 − 1
2(1−R)(s+1) . Note that 1 − 1

2(1−R) ≤ 1 − 2R for all
R > 0. Moreover note that F is monotone increasing in [x1, x2] and monotone decreasing for [x2, +∞). Hence F reached
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its maximum value inside the interval
[
1− 2R, 1−2R+ρ̄2

2(1−R)

]
on 1− 2R if x2 ≤ 1− 2R, on x2 if 1− 2R ≤ x2 ≤ 1−2R+ρ̄2

2(1−R) , on
1−ρ̄2

2R(1−R) if x2 ≥ 1−ρ̄2

2R(1−R) . We have that x2 ≤ 1 − 2R ⇔ s ≤ (1−2R)2

4R(1−R) , 1 − 2R ≤ x2 ≤ 1−2R+ρ̄2

2(1−R) ⇔ (1−2R)2

4R(1−R) < s < ρ̄2

1−ρ̄2 ,

x2 ≥ 1−ρ̄2

2R(1−R) ⇔ s ≥ ρ̄2

1−ρ̄2 . Let s̄ = b (1−2R)2

4R(1−R)c and s∗ = b ρ̄2

1−ρ̄2 c. Therefore

max
1−2R≤x≤ 1−2R+ρ̄2

2(1−R)

F (x) =





4R2 (1− 2R)2s if s ≤ s̄
R

1−R
ss

(s+1)s+1 if s̄ + 1 ≤ s ≤ s∗
R

1−R ρ̄2s
(
1− ρ̄2

)
if s ≥ s∗ + 1.

Consider now |f(z)|2 on θ̃. By simple algebraic manipulations one can see that

|f(θ(t))|2 = ρ̄2s
(
1 + ρ̄2 − 2ρ̄ cos t

)

Note that |f(θ(t))|2 is monotone increasing for t ∈ [0, π] and hence it reaches its maximum on θ̃ when cos t = 1−2R+ρ̄2

2(1−R)
Therefore we can conclude that

N−1
max
k=1

|λs
k(1− λk)| ≤





2R |1− 2R|s if s ≤ s̄√
R

1−R
ss

(s+1)s+1 if s̄ + 1 ≤ s ≤ s∗√
R

1−R ρ̄2s (1− ρ̄2) if s ≥ s∗ + 1.

Hence we can write
t−1∑
s=0

ρ(P s(I − P )) ≤
s̄∑

s=0

2R |1− 2R|s +
s∗∑

s=s̄+1

√
R

1−R

ss

(s + 1)s+1
+

t−1∑
s=s∗+1

√
R

1−R
ρ̄2s (1− ρ̄2).

Notice now that
s̄∑

s=0

2R |1− 2R|s ≤ 2R

1− |1− 2R| ≤
1

1−R
.

and that
t−1∑

s=s∗+1

√
R

1−R
ρ̄2s (1− ρ̄2) ≤

√
R

1−R

√
1− ρ̄2

∞∑
s=0

ρ̄s

=

√
R(1− ρ̄2)

(1−R)(1− ρ̄)2
≤

√
2R

(1−R)(1− ρ̄)
.

Notice finally that, since
∑m

i=1

√
1

i+1 ≤ 2
√

m + 1, we can argue that

s∗∑
s=s̄+1

√
R

1−R

ss

(s + 1)s+1
≤

√
R

1−R

s∗∑
s=1

√
1
2

√
1

1 + s

≤
√

4R

2(1−R)(1− ρ̄2)
≤

√
2R

(1−R)(1− ρ̄)
.

Putting together these three inequalities we obtain (21).

PROOF OF PROPOSITION 6

Proof: Assume that σ(P ) = {λ0 = 1, λ1, . . . , λN−1}. Note that σ(P ) \ {1} ⊆ [1 − 2R, ρ̄]. We want to upper bound
ρ(P s(I − P )) = maxN−1

k=1 |λs
k(1 − λk)|. To do this, consider the function f(x) = |xs(1 − x)|. It is continuous in [−1, 1],

positive and decreasing in [−1, 0], it vanishes in x = 0 and in x = 1 and has a local maximum in x = xM = s
1+s , with

f(xM ) = ( s
1+s )s( 1

1+s ). We need to evaluate maxx∈[1−2R,ρ̄] f(x).
First observe that there exists s̄, only depending on the value 1−2R, such that for all s > s̄ we have f(1−2R) < ( s

1+s )s( 1
1+s )

and then the global maximum of f(x) is assumed at x = xM if xM ≤ ρ̄. Since xM tends to 1 as s goes to infinity, it happens
that, when s > ρ̄

1−ρ̄ , xM (s) > ρ̄. In conclusion we have that

max
x∈[1−2R,ρ̄]

f(x) =





2R|1− 2R|s, if 0 ≤ s ≤ s̄;
( s
1+s )s( 1

1+s ), if s̄ < s ≤ s∗;
ρ̄s(1− ρ̄), if s∗ < s < ∞.
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where s∗ := b ρ̄
1−ρ̄c. Hence we can write

t−1∑
s=0

ρ(P s(I − P )) ≤
s̄∑

s=0

2R|1− 2R|s +
s∗∑

s=s̄+1

(
s

1 + s

)s (
1

1 + s

)
+

t−1∑
s=s∗+1

ρ̄s(1− ρ̄).

Notice now that
s̄∑

s=0

2R|1− 2R|s ≤ 1
1−R

,

and that
t−1∑

s=s∗+1

ρ̄s(1− ρ̄) = ρ̄s∗+1 − ρ̄t ≤ 1.

Notice finally that, since
∑m

i=1 1/i ≤ 1 + ln m we can argue that

s∗∑
s=s̄+1

(
s

1 + s

)s (
1

1 + s

)
≤

s∗∑
s=0

(
1
2

)(
1

1 + s

)
≤ 1

2
(1 + log(s∗ + 1))

≤ 1
2

+
1
2

log
(

ρ̄

1− ρ̄
+ 1

)
=

1
2

+
1
2

log
(

1
1− ρ̄

)
.

Putting together these three inequalities we obtain (22).


