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Abstract. Average-consensus algorithms allow to compute the average of some agents’ data in
a distributed way, and they are used as a basic building block in many algorithms for distributed
estimation, load balancing, formation and distributed control.

Traditional analysis of such algorithms studies, for a given communication graph, the convergence
rate (second largest eigenvalue of the transition matrix) and predicts that, for many graph families,
performance degrades when the number of agents grows, because of the longer time required to
spread information. However, in estimation problems, a growing number of sensor nodes improves
the quality of the estimate. To understand whether such an improvement is possible also with
distributed algorithms, it is important to specify a suitable performance metric, depending on the
specific estimation problem in which the consensus algorithm is used, and to study how performance
scales when both the number of iterations and the number of agents grow to infinity.

Here, we propose a simple example of a distributed estimation problem solved by average-
consensus, and a performance index naturally arising in this context (mean square estimation error,
MSE). To understand the performance limitations of sensor networks with limited-range communi-
cations, we consider graphs describing local interactions. We give analytic results for some families
of such graphs whose symmetries allow the use of suitable mathematical tools. However, simulations
indicate that a similar behavior occurs also for random geometric graphs. This suggests that the
performance limitations of regular lattices are mainly due to the geometrically local interactions and
not to the symmetries.
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1. Introduction. In recent years, the analysis of the coordination mechanisms
of multi-agent systems is attracting a large attention in the engineering community.
This is mainly due to the intrinsic robustness and to the degree of adaptation ex-
hibited in nature by such systems, which makes their structure very attractive as
an inspiring design paradigm for many engineering systems. This paradigm consists
in the possibility of obtaining high performance levels through the cooperation of
numerous simple and cheap local units.

The information dynamics which permit these systems to work properly is a
challenging problem for the information engineering community; in fact, despite the
variety of cooperating systems of different nature without a common underlying fea-
ture, it is clear that cooperation needs communication and so efficient cooperation
has to be related to efficient information diffusion.

One of the simplest instances of coordinated task is averaging, i.e., computing the
average of values initially separately known to the agents. One way to achieve this
goal is given by the linear average-consensus algorithm [24, 28, 31, 27, 30, 9]; although

∗The research leading to these results has received funding from the European Community’s
Seventh Framework Programme under agreement n. FP7-ICT-223866-FeedNetBack. Part of the
results in this paper were presented at the 4th ITA Workhop, San Diego, CA [10] and at the 10th

European Control Conference (ECC ’09), Budapest, Hungary [21]
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not being the most efficient method to compute the average in a distributed way [4],
this technique is attracting a lot of attention mainly because of its simplicity, which
makes it intrinsically robust to node or to communication failures [29, 7, 16].

This algorithm has been proposed in many contexts in which it is necessary to
compute averages in a distributed way, namely in distributed estimation [26] and
in sensor calibration for sensor networks [20, 8], in load balancing for distributed
computing systems [12], and in mobile multi-vehicles coordination [11], as well as in
distributed optimization and learning [25]. Linear average-consensus algorithm is a
linear iterative algorithm in which a sequence of vectors is obtained by construct-
ing the new vector from the previous one by multiplying it by a doubly-stochastic
matrix. Through the theory of Markov chains it is possible to prove, under rather
weak assumptions on the matrix, that the vector sequence converges to a vector with
entries all equal to the average of the components of the initial vector. Traditionally,
the index which is considered for determining the performance of a specific average-
consensus algorithm is given by the exponential rate of convergence to the limit vector;
this is given by the second largest eigenvalue of the matrix which is called the essen-
tial spectral radius. In the literature devoted to Markov chains and to the so-called
‘spectral graph theory’, this index has been deeply studied, and many bounds have
been proposed in the different cases of matrices with symmetries [15], of randomly
generated matrices [6], and of general matrices [15]. However, when this algorithm is
used for specific applications requiring the distributed computation of averages, dif-
ferent performance indices become more natural instruments for comparing different
choices of matrices. Literature along this research line is not very developed; some
contributions have considered the effects of robustness to delays [28], noise on the
communication links [30] and quantization [18], and a more recent work deals with a
mobile vehicle coordination problem [1].

In the present paper, we consider a very simple example of a distributed estima-
tion problem, solved by the average-consensus problem, and we propose as a natural
performance metric the mean square estimation error (Section 2 describes the prob-
lem setting and the relevant cost function). Such a cost depends on all the eigenvalues
of the consensus update matrix, and we show by a simple example that using it for
performance evaluation can lead to significantly different results from looking at the
essential spectral radius (see Section 3). Moreover, the study of performance indices
different from convergence rate is essential in large-scale networks, namely in networks
formed by a large number of cooperating agents. In fact, in this case a trade-off can
be expected, since on the one hand, a larger number of sensors should give a better
estimate, while on the other hand the more difficult communication between a larger
number of agents will decrease this advantage. While this trade-off becomes quite
clear when choosing correct performance indices, it is not highlighted by the essen-
tial spectral radius, which often simply underlines that the larger is the network, the
slower is the convergence. Our analysis allows to correctly highlight this trade-off,
as shown first in a simple example (Section 3), and then in our general results. Our
main contribution (Sections 4 and 5) is the characterization of the asymptotic scaling
of the estimation cost, both with the number of agents and with computation time,
for families of lattice-like communication graphs, where the symmetries in the graph,
and the associated algebraic structure, allow the use of analytical tools to get rigorous
bounds. We consider grids over multi-dimensional tori, and over hyper-cubes. Such
graphs have been largely studied in the recent literature devoted to distributed esti-
mation and control, see e.g. [2], [13] and [9], because of the ease of analysis allowed by
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their structure, as well as because they are a prototypical example of geometrically
local communication. Then, simulation results, presented in Section 6, show that con-
nected realizations of random geometric graphs with a comparable number of nodes
and of average number of neighbors exhibit a behavior very similar to the correspond-
ing regular grids, thus suggesting that the behavior of the graphs that we analyzed
is mainly due to the geometrically local interactions, and not to the symmetries and
the regular structure.

Notation and preliminaries. Throughout this paper, we will use the following
notational conventions. Vectors will be denoted with boldface letters, and matrices
(equivalently, linear maps) with capital letters. Given a vector v ∈ R

N and a matrix
M ∈ R

N×N , we let vT and MT respectively denote the transpose of v and of M . We
let Λ(M) denote the set of eigenvalues of M , counted with their multiplicities. With
the symbol 1 we denote the N -dimensional vector having all the entries equal to 1.
We will denote by |v| the vector obtained by taking the modulus of each entry of a
given vector v, and we will write w � v and w < v to denote that all entries satisfy
wk > vk and wk ≥ vk respectively.

Given any set A with finite cardinality |A|, RA will denote the vector space isomor-
phic to R

|A|, made of vectors where indices are elements of A instead of {1, 2, . . . , |A|}.
Analogously, RA×A will denote the vector space of all linear maps from R

A to R
A.

We use the convention that a summation over an empty set of indices is equal to
zero, while a product over an empty set gives one. We also introduce the short-hand
notation [d] = {1, 2, . . . , d}.

A directed graph G is a pair (V,E) where V is a set, called the set of vertices, and
E ⊆ V × V . A directed graph G is strongly connected if, for all u, v ∈ V , there exists
a path connecting u to v. It is weakly connected if, disregarding edge orientations,
for any for pair of vertices u, v, there exists an undirected path connecting u to v.
The graph is aperiodic if the greatest common divisor of the lengths of all cycles is
one. The presence of a self-loop implies aperiodicity.

A matrix P ∈ R
V×V is said to be stochastic if it has non-negative entries and if

P1 = 1. A stochastic matrix P is said to be doubly-stochastic if PT is stochastic so
that P1 = 1 and 1TP = 1T . Given a stochastic matrix P , the graph GP associated
with P ∈ R

V×V is a directed graph GP = (V,E), with (u, v) ∈ E if and only if
Puv 6= 0. A stochastic matrix P is primitive if there exists a positive integer m
such that (Pm)uv 6= 0 for all u, v ∈ V , or, equivalently, if the graph GP associated
with P is strongly connected and aperiodic. From the Perron-Frobenius theorem (see
e.g. [3]) it follows that a primitive stochastic matrix P has an eigenvalue equal to 1,
which has algebraic multiplicity one and is the dominant eigenvalue, i.e., all the other
eigenvalues have absolute value smaller than one. The maximum absolute value of
non-dominant eigenvalues is called the essential spectral radius of P and is denoted
with the symbol ρess(P ). A matrix P is normal if it commutes with its transpose,
namely PTP = PPT . Symmetric matrices are normal.

2. Problem formulation and performance measure. We consider the fol-
lowing simple problem of distributed estimation: N sensors measure the same real
value θ plus i.i.d. noises. Clearly, the best estimate for θ is the average of such mea-
surements, but sensors need to compute it in a distributed way. A directed graph
G = (V,E) describes the allowed communications: the vertices v ∈ V are the sensors,
and a pair (u, v) belongs to E if and only if u can communicate with v. We will
assume that G is strongly connected and aperiodic

The sensors’ measurements form a vector x(0) ∈ R
V , with xk(0) = θ+wk, where
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the noises w1, . . . , wN are i.i.d. random variables with zero mean and finite variance
(without loss of generality we will also assume variance is one).

Then we consider a linear average-consensus algorithm: x(t + 1) = Px(t) for
some matrix P ∈ R

V×V consistent with the communication graph G, i.e., such that
the graph GP associated with P is a subgraph of G. We assume that P is doubly-
stochastic and primitive. Under these assumptions, P has dominant eigenvalue 1 with
multiplicity 1 and

∀k, lim
t→∞

xk(t) =
1
N

∑

h xh(0) .

The speed of convergence is given by the essential spectral radius of P , ρess(P ). For
non-expander families of graphs, such as for example Cayley graphs on Abelian groups,
when N → ∞, ρess(P ) → 1 (see e.g. [9]). Clearly, this means that convergence to the
average needs longer time as N grows, but this does not necessarily imply that larger
N deteriorates performance in our specific application.

As our problem is estimating θ, a very natural performance measure is the mean
quadratic error

J(P, t) := 1
NE

[

eT (t)e(t)
]

,

where e(t) := x(t) − θ1, so that J(P, t) = 1
N

∑

k E
[

(xk(t)− θ)2
]

. For our problem,
we can easily show that the cost J(P, t) can be re-written as

J(P, t) = 1
N trace

(

(P t)TP t
)

. (2.1)

Indeed, J(P, t) = 1
NE

[

(P tx(0)− θ1)T (P tx(0)− θ1)
]

= 1
NE

[

(P tw)T (P tw)
]

, where
w is the measurement noise. Using linearity of expectation and of trace, plus the
observation that for any scalar a we have a = trace a, and the property trace(ABC) =
trace(CAB) where A,B,C are matrices of suitable size, we find the following equality:

1
NE

[

(P tw)T (P tw)
]

= 1
NE

[

trace(wT (P t)TP tw)
]

= 1
N trace

(

(P t)TP t
E(wwT )

)

,

which proves Eq. (2.1) because w has zero mean and identity covariance matrix.
If P is normal, then Eq. (2.1) is equivalent to the following:

J(P, t) = 1
N

∑

λ∈Λ(P )

|λ|2t . (2.2)

3. Motivating examples.

3.1. Three examples motivating the study of the proposed cost. In this
section we present three simple examples of families of graphs. Our first aim is to
show that the cost J(P, t) allows to study the trade-off between the two effects of a
large number of nodes N , which improves performance after infinite time, but slows
down computation. Moreover, we show that studying this cost can give performance
results significantly different from traditional analysis of the speed of convergence via
the essential spectral radius, although the two different performance measures are not
completely unrelated.

Example 1: the circle. This first example is the simplest case of local communi-
cation, where N agents are disposed on a circle, and each agent communicates with
its first neighbor on each side (left and right). For simplicity, we assume that each
received message, as well as the agent’s own state, is weighted 1/3. Figure 3.1 shows
the circle graph and the corresponding circulant symmetric matrix PN . As the eigen-
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Fig. 3.1: The circle graph and circulant matrix considered in Example 1.

values of such a circulant matrix can be explicitly computed [14], it is easy to see that
ρess(PN ) ∼ 1−π2/N2. This shows that, as N grows, the convergence of the algorithm
tends to be very slow. Nonetheless we expect that, in case of distributed estimation,
the presence of more sensors should instead improve performance. Figure 3.2 depicts
J(PN , t) as a function of t, for various values of N . For any fixed N , we have evo-
lutions which exponentially converge (with rate ∼ (1 − π2/N2)) to a constant value
1/N . The different curves become lower as N grows, and their envelope, which cor-
responds to the limit for N → ∞, converges to zero for t → ∞. In Section 3.2 we will
study the asymptotic behavior of J(PN , t) for circle graphs, and show that it scales as

max
{

1
N , 1√

t

}

. In particular, limN→∞ J(PN , t) converges to zero as 1/
√
t. This result

shows that increasing N does not have the disadvantages predicted by observing that
limN→∞ ρess(PN ) = 1. Also, it can be formally proven that, in this example, J(PN , t)
is monotonic non-increasing w.r.t. N , for any fixed t (Coroll. 5.3). Nevertheless, a fur-
ther look at Figure 3.2, together with the results in Coroll. 3.2, gives a caveat against
the choice of too large values of N : when the number of iterations is not unlimited,
there is a bound on the number of nodes being truly useful, after which there is no
improvement in adding new nodes, since J(PN , t) = J(P2t+1, t) for all N ≥ 2t + 1.
This is very intuitive to understand, because at time t it is impossible for a node to
use information coming from other agents located further than t steps apart.

Example 2: two (almost) disconnected cliques. We would like to show by two
simple examples that the performance index J(P, t) can behave very differently from
the essential spectral radius. We start from an extreme case, an example of graph
which is disconnected and thus the convergence to the average consensus does not
occur. Nevertheless the estimation error can be quite small. Let N be an even
number, and consider a graph consisting of two disconnected cliques, each with N/2
nodes; Fig. 3.3a depicts the case N = 10. Associate with each edge a coefficient 2/N ,
so that PN has the following form:

PN =

[

2
N 11T 0
0 2

N 11T

]

.

The eigenvalues of PN are easily computed: 1 with multiplicity 2 and 0 with multi-
plicity N − 2. Therefore, the essential spectral radius is 1, which describes the fact
that, the graph being disconnected, no convergence to the average consensus is pos-
sible. However, for all t ≥ 1, J(PN , t) = 2

N , which is almost as good as the best
possible error (the error variance in the case of centralized estimation is 1

N ), and, for
large N and small t, is much better than the error obtained with the circle graph in
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Fig. 3.2: The time evolution of J(PN , t) for the matrix PN introduced in Example 1,
for various values of N .

(a) Two disconnected cliques with N/2
nodes each.

(b) Modified connected graph.

Fig. 3.3: Communication graphs considered in Example 2.

Example 1.

The intuitive explanation is that, with the two cliques, the estimation error is
very good for large N because, even if it is not possible to compute the average of all
the measurements, it is possible to compute very quickly (in one iteration) the average
of N/2 measurements. On the contrary, in the circle the average consensus can be
reached asymptotically, as described by the essential spectral radius smaller than one,
but the convergence is very slow for large N , and a reasonably good estimation error
is achieved only after a long time.

The above example can be modified to obtain a slightly different matrix, whose
associated graph is connected, so that the matrix is primitive. In this example, the
average-consensus algorithm converges but slowly, while the estimation error is small.
Indeed, consider the matrix

P̃N = PN +





−2/N 2/N

2/N −2/N



 .

The graph associated with P̃N is shown in Figure 3.3b. All eigenvalues of P̃N can be
computed explicitly [5, Prop. 5.1]. There is one eigenvalue in 1 with multiplicity 1, one
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eigenvalue in 0 with multiplicity N−3 and two eigenvalues in 1
2 − 2

N ± 1
2

√

1 + 8
N − 16

N2 ,

each with multiplicity 1. Here the single edge connecting the two cliques is a bottleneck
resulting in a quite slow convergence rate, since ρess(P̃N ) ∼ 1− 8

N2 . Nevertheless, the

estimation error becomes good already from the first iteration, since J(P̃N , t) ≤ 3
N

for all t ≥ 1.

Example 3: regular expander graphs. Example 2 shows that the MSE cost J(P, t)
and the second largest eigenvalue ρess are two performance measures that can be very
different for some families of graphs. However, they are not completely unrelated. In
fact, it is easy to see that J(P, t) = 1

N + 1
N

∑

λ 6=1 |λ|2t ≤ 1
N + ρ2tess. Hence, if ρess

is small, then the cost J(P, t) converges quickly to the asymptotic value 1
N when t

grows. This means that graphs yielding good essential spectral radius also yield good
MSE cost.

The study of the second largest eigenvalue of the adjacency matrix has been
developed in a rich literature in spectral graph theory. In particular it has been
shown that this index is strictly related to a property of the graph called expansion.
Expander graphs are graphs with high expansion. For a survey on expander graphs
see e.g. [23]. An example of a family of expander graphs is given by random regular
graphs with N nodes and degree d. In fact, a theorem by Friedman [19] (see e.g. [23,
Thm. 7.10]) ensures that, for any ε > 0, asymptotically almost surely1 random regular
graphs with N nodes and fixed degree d have adjacency matrices AN satisfying

ρess(
1
dAN ) ≤ 2

√
d− 1

d
+ ε .

From this result, we can construct a family of matrices PN = 1
d+1 (I + AN ), so that,

for all ε > 0, asymptotically almost surely

ρess(PN ) ≤ 1 + 2
√
d− 1

d+ 1
+ ε .

This shows that random regular graphs, with high probability, yield an essential
spectral radius which does not converge to one as the number of nodes tends to
infinity, although they have bounded degree. This is in contrast with the behavior of
the circle graphs presented in Example 1, and of other graph families which yield an
essential spectral radius converging to one, such as the grids which will be presented
in Section 4 and the random geometric graphs which will be described in Section 6
and whose essential spectral radius is studied in [6].

3.2. The circle graph. The aim of the paper is to analyze the MSE perfor-
mance for geometric graphs, namely for graphs which are generated by placing nodes
in a metric space and by connecting nodes which are within a given distance. Un-
fortunately we have been unable to obtain results for general graphs of this kind.
We will instead restrict to graphs possessing some symmetries, which enable an eas-
ier characterization of the spectral properties of the associated matrices P . In this
subsection, we consider the simplest case, i.e., a circle, so as to show without cum-
bersome notation the main results and the main tools used in the proofs. Then, in
Sections 4 and 5 we will extend these results to more general families of structured
graphs. In the final section we will show through simulations that the performance

1i.e., with probability that tends to one when the number of vertices N tends to infinity.
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for general geometric graphs presents similar behaviors to the ones which are proven
mathematically in case of geometric graphs with symmetries.

In this subsection, we consider circular graphs similar to the one presented in
Example 1, except that we allow connections not only to the two nearest neighbors,
but also to the 2δ nearest ones, for some fixed positive integer δ. Also, we do not
impose that all coefficients are the same. Thus, PN is a circulant matrix, with first
row given by (p0, p1, . . . , pδ, 0, . . . , 0, p−δ, . . . , p−1). We introduce now two Laurent

polynomials p(z) :=
∑δ

k=−δ pkz
k and q(z) := p(z)p(z−1).

The circulant structure of PN implies that PN is normal, and that its eigenvalues
λ0, . . . , λN−1 are

λh = p(e−i 2π
N h), h = 0, . . . , N−1 ,

where i =
√
−1. Notice that |λh|2 = q(ei

2π
N h). Another consequence of the choice

of a circulant matrix PN is that the MSE is the same for all nodes, i.e., E(eh(t)
2) =

E(ek(t)
2) = J(PN , t) for all vertices h, k. In particular, J(PN , t) = E(e0(t)

2).
For a family of graphs with such a regular structure, it makes sense to consider

also the infinite version of the graph and of the linear map P , with the same local
neighborhoods and coefficients, i.e., the graph is an infinite line (nodes are labelled
by integers in Z) and the map P∞ is linear banded-Toeplitz, with diagonal band
(p−δ, . . . , p−1, p0, p1, . . . , pδ). Thanks to the remark that the MSE is the same for all
nodes, it makes sense to define the cost to be the MSE of a reference node J(P∞, t) =
E(e0(t)

2). We will show that J(P∞, t) is the envelope of all the J(PN , t) as it was
observed in Example 1.

We make the following assumptions on the coefficients p−δ, . . . , p−1, p0, p1, . . . , pδ:
• p0 6= 0, i.e., the associated graphs have self-loops.
• ph ≥ 0 for all h, and

∑δ
k=−δ pk = 1. This ensures that P is doubly stochastic.

• p1 6= 0 or p−1 6= 0. It is easy to see that this condition ensures that, for all
N , the circle graph associated with PN is strongly connected. This condition
ensures also that the infinite line graph associated with P∞ is weakly con-
nected. It will turn out (Lemma 4.1) that it is also a necessary condition,
and not only a sufficient one.

The first result that we obtain is the following characterization of the cost, involv-

ing only the coefficients of the polynomial
(

q(z)
)t
. We will use the notation p

(t)
h and

q
(t)
h denote the h-th coefficient of the polynomials (p(z))t and (q(z))t, respectively.

Proposition 3.1. With the above notation,

• J(P∞, t) = q
(t)
0 ;

• J(PN , t) =
∑

−2tδ≤h≤2tδ
h=0 mod N

q
(t)
h .

Proof. For the infinite line, notice that J(P∞, t) = E
[(

(P t
∞w)0

)2]
, where w is

the noise in the initial measurements. Also notice that (P t
∞w)k =

∑

h∈Z
p
(t)
h wk−h.

Therefore,

E
[(

(P t
∞w)0

)2]
= E

[

∑

h,k∈Z

p
(t)
h p

(t)
k w−hw−k

]

=
∑

h∈Z

(

p
(t)
h

)2
= q

(t)
0 .

For the circle, from Eq. (2.2), substituting |λh|2 = q(ei
2π
N h) gives:

J(PN , t) =
1

N

N−1
∑

h=0

2tδ
∑

k=−2tδ

q
(t)
k ei

2π
N hk ,
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which ends the proof, because

1

N

N−1
∑

h=0

ei
2π
N hk =

{

1 if k = 0 mod N ,

0 otherwise.

An immediate consequence of Prop. 3.1 is the following.
Corollary 3.2.

lim
N→∞

J(PN , t) = J(P∞, t)

and, more precisely, for all N > 2tδ, J(PN , t) = J(P∞, t).
We will discuss later (Coroll. 5.3) some sufficient conditions under which J(PN , t)

is a decreasing function of N . The following result gives the asymptotic behavior of
the cost whith respect to large t and N .

Theorem 3.3. With the above notation and assumptions,
• for the infinite line, there exist positive constants C,C ′, depending p(z) only,
such that, for all t > 0,

C
1√
t
≤ J(P∞, t) ≤ C ′ 1√

t
;

• for the circle, there exist positive constants C,C ′, depending p(z) only, such
that, for all N > 2δ and t > 0,

Cmax
{

1
N , 1√

t

}

≤ J(Pn, t) ≤ C ′ max
{

1
N , 1√

t

}

.

Proof. The proof is based on some simple remarks about the function f : R →
[0,+∞) defined by

f(x) = |p(eix)|2 .

Notice that f(x) = q(eix) =
∑δ

`=−2δ q` cos(`x). Clearly f is a trigonometric polyno-
mial, with f(0) = 1 and 0 ≤ f(x) ≤ 1 for all x. The assumption that p0 and that at
least one between p−1 and p1 are non-zero ensures that the same applies also to q0, q−1

and q1, and thus that f(x) < 1 for all x ∈ (−2π, 2π)\{0}. The derivatives of f in zero

are f ′(0) = 0 and f ′′(0) = −∑δ
`=−2δ `

2q` < 0. Thus, we can choose α and β satisfying
0 < α < −f ′′(0) < β, and we can find a neighborhood of 0, say (−a, a) ⊆ (−π, π),

such that e−βx2 ≤ f(x) ≤ e−αx2

for any x in such neighborhood. Moreover, we can
find a constant c ∈ (0, 1) such that f(x) < c for all x ∈ [−π, π] \ (−a, a). We define
the functions

fU(x) =

{

e−αx2

for x ∈ (−a, a)

c otherwise ,
fL(x) =

{

e−β x2

for x ∈ (−a, a)

0 otherwise .

so that we can write

fL(x) ≤ f(x) ≤ fU(x) , ∀x ∈ [−π, π] .

Now we can use such bounds on f to obtain bounds on the MSE cost. For the infinite
line, Prop. 3.1 and the definition of the polynomial q(z) give

J(P∞, t) = q
(t)
0 =

∑

h∈Z

|p(t)h |2 .



10 F. GARIN AND S. ZAMPIERI

By Parseval’s identity applied to the function (p(z))t, this expression can be re-written
as follows

J(P∞, t) = 1
2π

∫ π

−π

∣

∣(p(eix))t
∣

∣

2
dx = 1

2π

∫ π

−π

(f(x))
t
dx .

Using the upper bound f(x) ≤ fU(x) we get

J(P∞, t) ≤ 1
2π

∫ π

−π

(fU(x))
t
dx = 1

2π

∫ a

−a

e−αtx2

dx+ 1
2π (2π − 2a)ct ≤ 1

2
√
π α t

+ ct ,

where the last inequality comes from calculating
∫

R
e−α tx2

=
√

π
α t (see Lemma A.2).

Similarly, for the lower bound,

J(P∞, t) ≥ 1
2π

∫

[−π,π]

(fL(x))
t
dx = 1

2π

∫

[−a,a]

e−βtx2

dx ≥ 1

2
√
π α t

(

1− e−βa2t
)

,

where the last inequality comes from a well-known property of the the tail of the Gaus-
sian distribution (see Lemma A.2 for more details). Finally notice that 1− e−βa2t ≥
1− e−βa2

for all t ≥ 1.

Now we consider the circle. From Eq. (2.2),

J(PN , t) =
1

N

N
∑

h=0

|λh|2 =
1

N

N
∑

h=0

(

f
(

2π
N h
))t

=
1

N

bN/2c
∑

h=−b(N−1)/2c

(

f
(

2π
N h
))t

,

where the last equality comes from the fact that the trigonometric polynomial f(x)
has period 2π. Then, we can use the upper bound f(x) ≤ fU(x) and obtain

J(PN , t) ≤ 1

N

bN/2c
∑

h=−b(N−1)/2c

(

fU
(

2π
N h
))t ≤ ct +

1

N

b aN
2π c
∑

h=−b aN
2π c

e−α( 2π
N h)

2
t .

The proof of the upper bound is concluded by noting that the latter sum is bounded
by a suitable integral, as follows:

1

N

b aN
2π c
∑

h=−b aN
2π c

e−α( 2π
N h)

2
t =

1

N
+

2

N

b aN
2π c
∑

h=1

e−α( 2π
N h)

2
t ≤ 1

N
+

1

π

∫ 2π
N b aN

2π c

0

e−αx2 t dx

(3.1)
and finally

1

π

∫ 2π
N b aN

2π c

0

e−αx2 t dx ≤ 1

2π

∫ ∞

−∞
e−αx2 t dx =

1

2
√
παt

,

so that

J(PN , t) ≤ ct +
1

N
+

1

2
√
παt

≤ 1

N
+

(

c+
1

2
√
πα

)

1√
t
≤ 3max

{

1

N
,
1√
t

}

.

The lower bound is obtained thanks to the following two simple remarks. First,

J(PN , t) =
1

N

N
∑

h=0

|λh|2 ≥ 1

N
|λ0|2 =

1

N
.
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Then, by Prop. 3.1,

J(PN , t) =
∑

−2tδ≤h≤2tδ
h=0 mod N

q
(t)
h ≥ q

(t)
0 = J(P∞, t) ,

so that we can apply the result proved above for the infinite line and obtain:

J(PN , t) ≥ J(P∞, t) ≥ C√
t
.

The asymptotic behavior predicted by Theorem 3.3 is well illustrated by Fig-
ure 6.1, already described in Example 1. In the next sections, we will show how the
results presented here for the simple case of the circle can be generalized.

4. Regular geometric graphs. In this section we present the families of graphs
and of the associated matrices that are the main object of our study. The idea is to
consider graphs with enough structure so as to be able to obtain analytic results about
the MSE cost, and which capture some interesting aspects of the geometrically local
interactions. They are generalizations of the circle considered in Sect. 3.2. The circle
is an example of one-dimensional local interaction, in the sense that nodes are aligned
along some line, and can communicate only with a few neighbors on their right and
on their left. We can consider a circle as a line except for the border conditions,
which are periodic. The particular structure of the circle allows to associate with it
some matrices which are circulant, and this allows to study the eigenvalues of such
matrices. Our first generalization will be to consider the same kind of structure, both
on graphs and on matrices, but in higher dimension. For example, dimension two
corresponds to a grid on a torus. In Sect. 4.1 we will describe the notion of Cayley
graph and of Cayley matrix on the Abelian group Zn1

×· · ·×Znd
and we will recall a

result which generalizes to such graphs the well-known expression for the eigenvalues
of circulant matrices.

Our second generalization will be to consider different border conditions, without
imposing the unrealistic condition that the end-points of the line communicate closing
the circle. For a particular choice of the coefficients corresponding to few nodes
near the border, it is possible to obtain an explicit expression for the eigenvalues [5],
and thus to study the MSE cost. Also this family of graphs and matrices can be
constructed for any dimension, as we will describe in Sect. 4.3.

4.1. Grids on tori (Abelian Cayley graphs). This is an extension to general
dimension d of the circle graph and circulant matrices, which can be seen as a par-
ticular case with d = 1. As an example, with dimension d = 2 the graph is a grid on
a torus, as depicted in Figure 4.1a, and it is convenient to label vertices with double
indices (h1, h2) in such a way that adding one to h1 or to h2 means considering the
nearest vertex moving ‘to the right’ or ‘up’ respectively. More formally, the structure
of such graphs is described by Cayley graphs over suitable groups, e.g., Zn1

×Zn2
for

the 2-dimensional case.
We recall the definition of Cayley graphs: given a group (Γ,+) and a set S ⊆ Γ,

the Cayley graph G(Γ, S) is a directed graph with vertex set Γ and edge set E =
{(g, h) : h − g ∈ S}. We will consider finite graphs, with |Γ| = N , and matrices
associated with such graphs, which respect the strong symmetries of the graph: we
say that a matrix P ∈ R

Γ×Γ (i.e. with entries labeled by indexes belonging to Γ) is
Cayley if Pg,h = Pg+k,h+k for all g, h, k ∈ Γ. This is equivalent to saying that there
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(a) Grid on a torus (Cayley graph). (b) Grid on a cube.

Fig. 4.1: 2-dimensional grids.

exists a map π : Γ → R such that Ph,k = π(h − k); such a function is called the
generator of the Cayley matrix P . Notice that a stochastic Cayley matrix is also
doubly-stochastic. Also notice that Cayley matrices are normal.

In this paper, we limit our attention to Abelian groups, and we let Γn1,...,nd
:=

Zn1
× · · · ×Znd

. We will use the notation n := (n1, . . . , nd), so that Γn = Zn1
× · · · ×

Znd
, and we will write N := |Γn| =

∏d
j=1 nj .

When P is a Cayley matrix associated with Γn, its eigenvalues have the following
simple expression [3]: for any h = (h1, . . . , hd) ∈ Γn,

λh =
∑

k∈Γn

π(k)e
−i( 2π

n1
h1k1+···+ 2π

nd
hdkd) .

Note that, with a slight abuse of notation, we write ei
2π
nr

hr with hr ∈ Znr
, meaning

that we can substitute hr with any integer which is equal to hr mod nr. In the sequel,
we will need the specific choice of hr ∈ {0, 1, . . . , nr − 1}, which we will denote by
h ∈ Vn, Vn := {0, . . . , n1 − 1} × · · · × {0, . . . , nd − 1}. When needed, we will actually
identify the set of vertices of the graph with Vn rather than Γn.

In our analysis we want to consider families of Cayley graphs, with a growing
number of vertices, but with constant degree, and with the same algebraic structure
and same values for the entries of P . More precisely, we fix d, while we let n1, . . . , nd

grow. In order to define the neighbors and weights, we fix a positive integer δ, we define
the setDδ = {−δ,−δ+1, . . . ,+δ}d and we fix |Dδ| real numbers ph, h = (h1, . . . , hd) ∈
Dδ such that ph ≥ 0∀h and

∑

h∈Dδ
ph = 1. Then, for any n � 2δ1 (namely

nj > 2δ for all j) we construct the Cayley matrix Pn ∈ R
Γn×Γn with generator

πn : Γn → R defined by πn(g) = ph if there is an h ∈ Dδ such that, for all ` = 1, . . . , d
g` = h` mod n`, and πn(g) = 0 otherwise. Note that, for any n � 2δ1, πn is well-
defined. The matrix Pn defined in this way can be seen as a map R

Γn → R
Γn mapping

x ∈ R
Γn to P − nx ∈ R

Γn as follows: for all h ∈ Γn,

(Px)h =
∑

k∈Dδ

pkxh−k .

We introduce another useful notation, defining the Laurent polynomial

p(z1, . . . , zd) =
∑

k∈Dδ

pkz
k1
1 . . . zkd

d .
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We will refer to the above construction of a family of Cayley matrices for all n � 2δ1
as the Cayley matrix family associated with p(z1, . . . , zd). With this notation, the
eigenvalues of Pn are

λh = p(e−i 2π
n1

h1 , . . . , e
−i 2π

nd
hd), h ∈ Γn .

An interesting remark is that, for Cayley matrices, thanks to the symmetries (the
graph ‘looks the same’ from any vertex’s perspective), the mean square error is the
same for every node, so that J(Pn, t) = E

[

(eh(t))
2
]

for any node h, and we can take
for example node 0 as the reference node

J(Pn, t) = E
[

(e0(t))
2
]

.

4.2. Infinite lattices. Similarly to the infinite line that was introduced for the
1-dimensional case, it makes sense to consider a lattice with the same local neighbor-
hoods as the above-described grid on a torus, but with infinitely many nodes, namely

the case when the group is Γ = Z
d. We introduce the linear map P∞ : RZ

d → R
Z
d

defined, for each x ∈ R
Z
d

and h ∈ Z
d, as

(P∞x)h :=
∑

k∈Dδ

pkxh−k . (4.1)

Notice that

(P t
∞w)k =

∑

h∈Zd

p
(t)
h wk−h

where p
(t)
h are the coefficients of the polynomial p(z1, . . . , zd)

t.
If we consider the distributed estimation problem presented in Section 2 for an

infinite lattice graph, and we solve it by updating the nodes’ estimates with the linear
map P described in Eq. (4.1), then the expectation of the quadratic error is the same
for any vertex, and thus it makes sense to fix our attention on an arbitrarily chosen
one, say vertex 0, and to define the MSE cost as follows:

J(P∞, t) = E[(e0(t))
2] . (4.2)

4.3. Grids on cubes. The families of Cayley graphs on the group Γn = Zn1
×

· · ·×Znd
presented in Sect. 4.1 can be seen as regular grids on multi-dimensional tori.

An interesting result by Boyd et al. [5] on reversible Markov chains with symmetries
allows to compute the eigenvalues and eigenvectors also of regular grids on a cube in
R

d (for example, with d = 1 a line, with d = 2 a planar finite grid as in Fig. 4.1b). The
graphs and the coefficients coincide with those of the regular grid on a torus except
that they are suitably modified at the borders. This is particularly relevant because
it allows to consider graphs which are still with a regular and idealized structure,
but nevertheless are closer than the tori to represent realistic deployments of sensor
networks in the Euclidean space.

Roughly speaking, the grids on cubes are obtained by considering an infinite lat-
tice with suitable symmetries, by selecting a portion of the lattice, and then arranging
the borders by ‘folding back’ the edges which are stranded because in the lattice they
were connecting a selected vertex to a discarded vertex, then replacing the parallel
edges resulting from the folding with a single edge labeled with the sum of the labels
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N

2N−1 1

0

N−1

Fig. 4.2: Circle with 2N vertices and reflection axis corresponding to the map ` 7→
2N − 1− `, used in the construction of a line with N vertices.

of the parallel edges. However, the construction of the grid matrices can be more
precisely defined by considering a Cayley graph with suitable symmetries, and by
identifying into a single node the orbits of the action of such symmetries, as described
below in detail following [5].

Let P2n be a Cayley matrix on Γ2n = Z2n1
×· · ·×Z2nd

associated with p(z1, . . . , zd),
and assume that the coefficients ph satisfy the following quadrantal symmetry

∀h, ph = p|h|. (4.3)

This assumption implies that P is symmetric and thus the associated Markov chain
is reversible. Moreover, define for each r = 1, . . . , d the reflection σr on Γ2n by letting
σr(h) = k with k` = h` if ` 6= r and kr = 2nr−1−hr. It is convenient here to identify
Γ2n with the set V2n, and consider σr : V2n → V2n. For example, Fig. 4.2 shows the
axis of reflection of σ1 for the case d = 1, as in Example 1. In higher dimension, every
σr simply keeps all coordinates invariant except for the r-th, where it is the reflection
depicted for the one-dimensional case.

Notice that every σr is a symmetry of the labeled graph on the torus. Now
denote by H the group generated by all reflections σ1, . . . , σd and consider, for all
g ∈ Vn ⊆ V2n, the orbit Og = {η(g) : η ∈ H} ⊆ V2n. For example, if d = 1
there are N orbits, each containing two points: for g = 0, . . . , N − 1, the orbit
Og contains the point labeled with g and its reflection σ1(g) = 2N − 1 − g. For
higher dimension, there are N orbits, each containing 2d points, for example with
d = 2, for all g ∈ Vn = {0, . . . , n1 − 1} × {0, . . . , n2 − 1}, the corresponding orbit Og

contains the four points g, σ1(g) = (2n1 − 1− g1, g2), σ2(g) = (g1, 2n2 − 1− g2) and
σ2 ◦ σ1(g) = (2n1 − 1− g1, 2n2 − 1− g2).

Finally, define Pn : RVn → R
Vn , for all h,k ∈ Vn, by

(Pn)h,k :=
∑

`∈Ok

(P2n)h,` =
∑

η∈H

(P2n)h,η(k) . (4.4)

Notice that the entries of Pn are actually equal to those of Pn, except at the
‘borders’. In fact, if the index k ∈ Vn is such that δ < kr < nr − δ is satisfied
for all r = 1, . . . , d, then for all h ∈ Vn all the terms in the sum in Eq. (4.4) with
` 6= k are zero, so that (Pn)h,k = (P2n)h,k. Also notice that, for this choice of k,
(P2n)h,k = (Pn)h,k. Moreover, an analogous equality (Pn)h,k = (P2n)h,k = (Pn)h,k

holds true whenever h and k are such that, for all r = 1, . . . , d, at least one of the
two following conditions is satisfied: δ < hr < nr − δ or δ < kr < nr − δ.
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For example, in the one-dimensional case, PN shares with PN the banded-diagonal
central part of the matrix, and is different only in the initial and final part of the first δ
and the last δ rows, for a total of at most 4δ2 different entries. The circulant structure
is substituted by modified rows, so that the corresponding graph is a line instead of
a circle, and the weight of the edges removed in the construction of the line from
the circle is suitably re-distributed along border edges of the line. As an illustrating
example, consider the one-dimensional case with δ = 2, where the matrices PN and
PN are the following

PN =





















p0 p1 p2 p2 p1

p1 p0 p1 p2 p2

p2 p1 p0 p1 p2

. . .
. . .

. . .
. . .

. . .

p2 p1 p0 p1 p2

p2 p2 p1 p0 p1

p2 p1 p2 p1 p0





















and

PN =





















p0+p1 p1+p2 p2

p1+p2 p0 p1 p2

p2 p1 p0 p1 p2

. . .
. . .

. . .
. . .

. . .

p2 p1 p0 p1 p2

p2 p1 p0 p1+p2

p2 p1+p2 p0+p1





















.

We will refer to the above construction of a family of matrices Pn for all n � 2δ1
as the grid matrix family associated with p(z1, . . . , zd). Note that such a construction
ensures that we can apply [5, Prop. 3.3], because both P2n and Pn are symmetric
(and thus the corresponding Markov chain is reversible) and the latter is the lumped
chain of the former, as defined in [5, Sect. 3]. Thus, the explicit expression for the
eigenvalues of Pn is the following

λ̄h = p(ei
π
n1

h1 , . . . , e
i π
nd

hd), h ∈ Vn .

4.4. Assumptions ensuring primitivity. In Section 3.2, a simple assumption
on the coefficients (that either p−1, or p1, or both were non-zero) was introduced, in
order to ensure that, for any N , the associated circle graph was strongly connected,
and that the infinite line graph was weakly connected. The generalization to the d-
dimensional case is a requirement on the positions of the non-zero coefficients ph, as
stated in the following Lemma.

Lemma 4.1. With the above notation, define S = {h ∈ Dδ : ph 6= 0}. The
following conditions are equivalent:

1. the infinite Cayley graph associated with p(z) and with the group Z
d is weakly

connected;
2. S generates Z

d;
3. for all n � 2δ1, the Cayley graph associated with p(z) and Γn is strongly

connected;
4. for all n � 2δ1, S generates Γn.
Proof. We start by proving 1. ⇐⇒ 2. By definition, the graph associated

with p(z1, . . . , zd) is weakly connected if and only if for any pair of vertices u, v ∈ Z
d

there exists a sequence of vertices u = u0, u1, . . . , u`−1, u` = v such that, for all i,
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(ui, ui+1) or (ui+1, ui) is an edge of the directed Cayley graph. This means that
ui+1−ui ∈ S ∪ (−S) for all i so that finally condition 1. turns out to be equivalent to
the fact that for all u, v ∈ Z

d, there exists ` ≥ 1 and s1, . . . , s` ∈ S ∪ (−S) such that
v − u = s1 + · · ·+ s`. This is clearly equivalent to condition 2., which states that for
all g ∈ Z

d, there exists ` ≥ 1 and s1, . . . , s` ∈ S ∪ (−S) such that g = s1 + · · ·+ s`.
We omit the proof that 3. ⇐⇒ 4., because it follows exactly the same lines.
We will conclude by proving that 2. ⇐⇒ 4. For ease of notation, let S =

{s1, . . . , sr}. Now notice that 4. can be equivalently re-stated as follows. For all
n � 2δ1, ∃X ∈ Z

r×d and ∃Y ∈ Z
d×d such that I = AX + MY , where I is the

d × d identity matrix, A is a d × r matrix whose columns are s1, . . . , sr, and M
is a diagonal matrix with diagonal elements n1, . . . , nd. On the other hand, 2. is
equivalent to the fact that I = AZ for some Z ∈ Z

r×d. This shows that 2. implies
4. To see that also the converse holds true, first notice that 4. implies that A is a
full row-rank matrix. Indeed, if ∃z ∈ Z

d such that zTA = 0, then zT = zTMY .
Taking in particular M = bI with b > 2δ, we have that zT = bzTY , which implies
that the entries of z are multiple of b. Since this holds for all b > 2δ, this implies
that z = 0. Now from the fact that A is a full row-rank matrix it follows that there
exists X̄ ∈ Z

r×d such that AX̄ = aI, where we can choose a > 2δ. Now observe that
4. implies that there exist X ∈ Z

r×d and Y ∈ Z
d×d such that I = AX + aY and so

I = AX + aY = AX +AX̄Y = A(X + X̄Y ) which is equivalent to 2.
Notice that the second condition in Lemma 4.1 (S generates Z

d) implies that
S contains a basis of Rd, and so it states that the connectivity requirement implies
that the graph is truly d-dimensional, and not with a lower dimension. Moreover it
provides a very easy way to check whether the assumption is satisfied; for example, if
S contains all vectors of the canonical basis of Rd the condition is surely satisfied.

Similarly to the case of the circle, we also assume that the graphs have self-loops,
namely that p0 6= 0. This assumption, together with the connectivity assumption
above, ensures that the Cayley matrices Pn are primitive; also recall that such ma-
trices are doubly-stochastic and normal.

For the grid matrices, notice that the construction ensures that the associated
graph is strongly connected when the initial Cayley matrix had this property. Thus,
under the connectivity assumption above and with p0 6= 0, the grid matrices are
primitive. Moreover, grid matrices are doubly-stochastic and symmetric.

5. Main results. In this section, we give our results on the asymptotics of
J(PN , t) for the graph families introduced in Sect. 4. They are generalizations of
the results presented for the circle in Sect. 3.2, and the proofs use the same ideas,
although they require a few technicalities.

5.1. Behavior for increasing N . In this section, we give a characterization of
the cost which generalizes Prop. 3.1, and from which it is possible to derive corollaries
describing the behavior of the MSE cost when the number of nodes increases.

Given a Laurent polynomial p(z1, . . . , zd) =
∑

h∈Dδ
phz

h1
1 . . . zhd

d , we define the

polynomial q(z1, . . . , zd) := p(z1, . . . , zd)p(z
−1
1 , . . . , z−1

d ) and we denote by {p(t)h }h∈Dtδ

and {q(t)h }h∈D2tδ
the coefficients of (p(z1, . . . , zd))

t
and (q(z1, . . . , zd))

t
, respectively.

With this notation it is possible to characterize the cost J(P, t) in a way that involves

the coefficients q
(t)
h only.

Proposition 5.1. With the above notation, given a polynomial p(z1, . . . , zd) and
n = (n1, . . . , nd) � 2δ1,
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• if P∞ is the infinite map associated with p(z1, . . . , zd), then

J(P∞, t) = q
(t)
0

• if Pn is a Cayley matrix associated with p(z1, . . . , zd), then

J(Pn, t) =
∑

h∈Fn

q
(t)
h ,

where Fn := {h : hr = 0 mod nr ∀r}.
• if p(z1, . . . , zd) satisfies the quadrantal symmetries (4.3) and Pn is a grid

matrix associated with p(z1, . . . , zd), then

J(Pn, t) =
∑

K⊆[d]

1
∏

r∈K nr

∑

h∈FK,n

q
(t)
h ,

where the first summation is over all subsets K ⊆ [d] := {1, . . . , d}, including
K = ∅ and K = [d], and where

FK,n := {(h1, . . . , hd) : hr is odd ∀r ∈ K and hr = 0 mod 2nr ∀r /∈ K} .

Proof. We consider separately the three families of graphs.
Infinite lattice. From Eq. (4.2) it follows that

J(P∞, t) = E
[(

(P t
∞w)0

)2]
.

Now notice that (P t
∞w)k =

∑

h∈Zd p
(t)
h wk−h. Therefore,

E
[(

(P t
∞w)0

)2]
= E

[

∑

h,k∈Zd

p
(t)
h p

(t)
k w−hw−k

]

=
∑

h∈Zd

(

p
(t)
h

)2
= q

(t)
0 .

Cayley matrix. In this case,

J(Pn, t) =
1

N

n1−1
∑

h1=0

· · ·
nd−1
∑

hd=0

∑

k∈D2tδ

q
(t)
k e

i( 2π
n1

h1k1+···+ 2π
nd

hdkd)

=
∑

k∈D2tδ

q
(t)
k

d
∏

r=1

1

nr

nr−1
∑

hr=0

ei
2π
nr

hrkr ,

which ends the proof, because

1

nr

nr−1
∑

hr=0

ei
2π
nr

hrkr =

{

1 if kr = 0 mod nr,

0 otherwise.

Grid matrix. For the grid matrix,

J(Pn, t) =
1

N

∑

k∈D2tδ

q
(t)
k

n1−1
∑

h1=0

· · ·
nd−1
∑

hd=0

e
i( π

n1
h1k1+···+ π

nd
hdkd) . (5.1)

Now we use the assumption of quadrantal symmetries: denoting by � the entrywise
product of two vectors, we have qk = qω�k for all ω ∈ {−1, 1}d, and so

qk =
1

2d

∑

ω∈{−1,1}d

q
(t)
ω�k .
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By plugging this into Eq. (5.1), we get

J(Pn, t) =
∑

k∈D2tδ

∑

ω∈{−1,1}d

q
(t)
ω�k

d
∏

r=1

1

2nr

nr−1
∑

hr=0

ei
π
nr

hrkr ,

from which, by exchanging the order of summations and letting k′ := ω�k, we obtain

J(Pn, t) =
∑

ω∈{−1,1}d

∑

k′∈D2tδ

q
(t)
k′

d
∏

r=1

1

2nr

nr−1
∑

hr=0

ei
π
nr

hrk
′
rωr

=
∑

k′∈D2tδ

q
(t)
k′

d
∏

r=1

1

2nr

nr−1
∑

hr=0

∑

ωr∈{−1,1}
ei

π
nr

hrk
′
rωr .

The proof ends by computing

nr−1
∑

hr=0

(

ei
π
nr

hrk
′
r + e−i π

nr
hrk

′
r

)

=











2nr if k′r = 0 mod 2nr,

2 if k′r is odd,

0 otherwise.

The following corollary (generalizing Coroll. 3.2) shows that the behavior of large
Cayley or grid matrices with a large number of nodes, at a fixed iteration time t tends
to the cost of the corresponding infinite lattice.

Corollary 5.2. Under the assumptions of Proposition 5.1, if Pn is a Cayley
matrix, then in the limit when nr → ∞ for all r = 1, . . . , d, J(Pn, t) → J(P∞, t) and
moreover J(Pn, t) = J(P∞, t) for all n � 2tδ1. In the case of a grid matrix Pn, only
the limit result holds true.

Proof. For the Cayley matrix Pn, in the expression for J(Pn, t) given in Prop. 5.1,

notice that the only coefficients q
(t)
h in the summation which can be non-zero are those

where h ∈ D2tδ, namely −2tδ ≤ hr ≤ 2tδ for all r = 1, . . . , d. If n � 2δ1, then

D2tδ ∩ Fn = {0}, so that J(Pn, t) = q
(t)
0 = J(P∞, t).

For the grid matrix Pn, the expression for J(Pn, t) given in Prop. 5.1 can be
re-written as

J(Pn, t) =
∑

h∈F∅,n

q
(t)
h +

∑

K⊆[d]
K 6=∅

1
∏

r∈K nr

∑

h∈FK,n

q
(t)
h .

For the first summation, we can conclude analogously to the Cayley case that if n � δ1

then the only non-zero term is q
(t)
0 = J(P∞, t). Finally, all summations corresponding

to a non-empty K go to zero when nr → ∞ for all r.
Under some assumptions, Proposition 5.1 also implies that the MSE cost is a

monotone function of the number of nodes (for fixed t).
Corollary 5.3. Under the assumptions of Proposition 5.1, if p(z1, . . . , zd) satis-

fies the quadrantal symmetries (4.3) and satisfies the following monotonicity assump-
tion

|h| < |k| ⇒ ph ≤ pk ,

then, for the family of Cayley matrices Pn associated with p(z1, . . . , zd), the cost
J(Pn, t) is monotonic non-increasing w.r.t. n1, . . . , nd, namely

m 4 n ⇒ J(Pm, t) ≥ J(Pn, t), ∀t .



PERFORMANCE OF CONSENSUS-BASED ESTIMATION 19

The same property holds true for the family of grid matrices Pn associated with
p(z1, . . . , zd).

Proof. This property is a consequence of Proposition 5.1 and of Lemma A.1, whose
proof is postponed to the Appendix, which ensures that, if p(z1, . . . , zd) satisfies the
assumptions of Coroll. 5.3, then also (q(z1, . . . , zd))

t
satisfies them.

We want to prove that, under the assumptions of Coroll. 5.3, n < m implies
J(Pn, t) ≤ J(Pm, t) and J(Pn, t) ≤ J(Pm, t). For ease of notation, without loss
of generality, we will consider the case where n = (n1,n

′) and m = (m1,n
′), with

n1 ≥ m1. The key point we will exploit is that, by the assumptions and by Lemma A.1,

for all h1, k1 ∈ Z and for all h′ ∈ Z
d−1, |h1| ≥ |k1| implies that q

(t)
h1,h′ ≤ q

(t)
k1,h′ .

For the Cayley case, by Prop. 5.1,

J(Pn, t) =
∑

h∈Fn

q
(t)
h ,

where Fn := {h : hr = 0 mod nr ∀r}. We only need to re-write this summation high-
lighting the first component n1 of n, and to compare it with the analogous expression
for J(Pm, t), as follows

J(Pn, t) =
∑

`∈Z

∑

h′∈F
n′

q
(t)
`n1,h′ ≤

∑

`∈Z

∑

h′∈F
n′

q
(t)
`m1,h′ = J(Pm, t) .

For the grid case, by Prop. 5.1,

J(Pn, t) =
∑

K⊆[d]

1
∏

r∈K nr

∑

h∈FK,n

q
(t)
h ,

where FK,n := {(h1, . . . , hd) : hr is odd ∀r ∈ K and hr = 0 mod 2nr ∀r /∈ K} . Now
we can consider separately each term corresponding to a set K ⊆ [d], and compare it
with the corresponding term in the analogous expression for J(Pm, t). If 1 /∈ K, then

1
∏

r∈K nr
=

1
∏

r∈K mr

and, defining K ′ := {r − 1 : r ∈ K},
∑

h∈FK,n

q
(t)
h =

∑

`∈Z

∑

h′∈FK′,n′

q
(t)
`n1,h′ ≤

∑

`∈Z

∑

h′∈FK′,n′

q
(t)
`m1,h′ =

∑

h∈FK,m

q
(t)
h .

If 1 ∈ K, then

1
∏

r∈K nr
≤ 1
∏

r∈K mr

and FK,n = FK,m, which ends the proof.

Note that the assumptions on the polynomial p in Coroll. 5.3 are not necessary:
for example, with d = 1, p(z) = 1

3z
−2+ 1

18z
−1+ 1

9+
1
6z+

1
3z

2 violates both assumptions
and nevertheless gives a monotonic cost J(Pn, t). However, monotonicity of J(Pn, t)
is not always true, for example, p(z) = 2

5z
−2 + 1

25z
−1 + 3

10 + 1
4z + 1

100z
2 gives a

non-monotonic cost.
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5.2. Behavior for increasing N and t. A further step in the analysis is to
understand the exact scaling of J(PN , t) when both t and N grow to infinity. Such an
asymptotic behavior is given in the following theorem, which generalizes Theorem 3.3.

Theorem 5.4. Given a polynomial p(z) =
∑

h∈Dδ
phz

h1
1 . . . zhd

d such that the
corresponding infinite graph is weakly connected and has self-loops and given n1 ≥
n2 ≥ · · · ≥ nd > 2δ, then

• if P∞ is the infinite map associated with p(z1, . . . , zd), then there exist positive
constants c, c′, depending on d and p(z1, . . . , zd) only, such that, for all t > 0

c
1

(
√
t)d

≤ J(P∞, t) ≤ c′
1

(
√
t)d

;

• if Pn is a Cayley matrix associated with p(z1, . . . , zd), then there exist positive
constants C,C ′, depending on d and p(z1, . . . , zd) only, such that, for all
n � 2δ1 and t > 0

C max
0≤k≤d

∏

1≤r≤k nr

N

1

(
√
t)k

≤ J(Pn, t) ≤ C ′ max
0≤k≤d

∏

1≤r≤k nr

N

1

(
√
t)k

;

• if p(z1, . . . , zd) satisfies the quadrantal symmetries (4.3) and Pn is a grid ma-

trix associated with p(z1, . . . , zd), then there exist constants C,C
′
, depending

on d and p(z) only, such that, for all n � 2δ1 and t > 0

C max
0≤k≤d

∏

1≤r≤k nr

N

1

(
√
t)k

≤ J(Pn, t) ≤ C
′
max
0≤k≤d

∏

1≤r≤k nr

N

1

(
√
t)k

.

The rest of this section is devoted to the proof of this result, but before going
through the proof it is interesting to see that, in the case when n1 = · · · = nd, the
statement can be re-written in the following simpler way.

Corollary 5.5. If nr = n for all r = 1, . . . , d, under the assumptions of
Theorem 5.4, if Pn is a Cayley matrix associated with p(z1, . . . , zd), then there exist
C,C ′ > 0 (depending on d and and p(z1, . . . , zd) only) such that

Cmax
{

1
N , 1

(
√
t)d

}

≤ J(Pn, t) ≤ C ′ max
{

1
N , 1

(
√
t)d

}

An analogous bound holds true for the grid matrix Pn associated with p(z1, . . . , zd).
The proof of Theorem 5.4 follows the lines of the proof of Theorem 3.3, and is

based on the study of the function f : Rd → [0,+∞) defined by

f(x) = |p(eix1 , . . . , eixd)|2 .

Notice that f(x) = q(eix1 , . . . , eixd) =
∑

`∈D2δ
q` cos

(

`1x1 + · · · + `dxd

)

, where

q(z1, . . . , zd) = p(z1, . . . , zd)p(z
−1
1 , . . . , z−1

d ).
Clearly f is a trigonometric polynomial, with f(0) = 1 and 0 ≤ f(x) ≤ 1 for all x.

Under the assumptions of Theorem 5.4 we can also guarantee that the maximum in
x = 0 is unique in the region (−2π, 2π)d. To this aim, notice that, by Lemma 4.1,
the assumption that the infinite Cayley graph on Z

d associated with p(z1, . . . , zd) is
weakly connected and has self-loops is equivalent to the assumption that the support
set of p(z1, . . . , zd), defined as S(p) := {k ∈ Dδ : pk 6= 0}, contains the origin and
generates Z

d. Under such assumption, we can prove the following properties of the
maximum of f in the origin.
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Lemma 5.6. With the above notation and assumptions,

f(x) < 1 for all x ∈ (−2π, 2π)d \ {0}

and moreover the Hessian matrix of f in x = 0 is negative definite.
Proof. Let S(q) be the support of q(z1, . . . , zd). Assume that S(q) = {`(1), . . . , `(s)}

and let L ∈ Z
d×s be the matrix whose columns are `(1), . . . , `(s). Since S(q) ⊇ S(p),

the assumptions ensure that `(1), . . . , `(s) generate Z
d and so there exists Y ∈ Z

s×d

such that LY = I. Assume now that x ∈ (−2π, 2π)d is such that f(x) = 1. It
follows that, for all i = 1, . . . , s, (`(i))Tx = 2πbi where bi ∈ Z. This implies that
LTx = 2πb where b ∈ Z

s. Consequently x = Y TLTx = 2πY T b which, recalling that
x ∈ (−2π, 2π)d, implies that x = 0.

For the second claim, denote by H the Hessian matrix of f in 0, which is given

by Hr,s := ∂2f
∂xr∂xs

= −∑h∈S(q) qhhrhs. Our aim is to prove that −H is positive

definite. First observe that H = −∑h∈S(q) qhhh
T = −LDLT where L is the matrix

defined in the first part of the proof and where D is a s × s diagonal matrix with
diagonal entries equal to q`(1) , . . . , q`(s) . Since D is positive definite, and since L has
full rank, LDLT is positive definite.

The following bound on f(x) is an immediate consequence of Lemma 5.6.
Lemma 5.7. Under the assumptions of Lemma 5.6, there exists a ∈ (0, π), α, β >

0, and c ∈ (0, 1), depending only on p(z) and d, such that, for all x ∈ [−π, π]d,

fL(x) ≤ f(x) ≤ fU(x) ,

where the functions fU and fL are defined as

fU(x) =

{

e−αxTx for x ∈ (−a, a)d

c otherwise ,
fL(x) =

{

e−β xTx for x ∈ (−a, a)d

0 otherwise .

Now we can use the bounds on f to find bounds for the MSE cost. We will
consider separately the three cases.

Infinite lattice. From Eq. (4.1), we have J(P∞, t) =
∑

h∈Zd |p(t)h |2. By Parse-
val’s identity, this expression can be re-written as

J(P∞, t) =
1

(2π)d

∫

[−π,π]d
|pt(eix1 , . . . , eixd)|2 dx =

1

(2π)d

∫

[−π,π]d
(f(x1, . . . , xd))

t
dx .

Then, an upper and a lower bound which conclude the proof can be obtained by
using Lemma 5.7 and then applying well-known properties of the tail of a Gaussian
distribution, see Lemma A.2 in the Appendix for more detail.

Cayley matrix. In this case,

J(Pn, t) =
1

N

∑

h∈Vn

|λh|2t =
1

N

∑

h∈Vn

[

f
(

2π
n1

h1, . . . ,
2π
nd

hd

)]t

.

Define

V ′
n :=

{

−
⌊

n1−1
2

⌋

, . . . , 0, . . . ,+
⌊

n1

2

⌋}

× · · · ×
{

−
⌊

nd−1
2

⌋

, . . . , 0, . . . ,+
⌊

nd

2

⌋}

.

Clearly, f(x) has period 2π in each of its variables, and so

J(Pn, t) =
1

N

∑

h∈V ′
n

[

f
(

2π
n1

h1, . . . ,
2π
nd

hd

)]t

.
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From Lemma 5.7 it follows

J(Pn, t) ≤
1

N

∑

h∈V ′
n

[

fU

(

2π
n1

h1, . . . ,
2π
nd

hd

)]t

,

where fU is defined in Lemma 5.7. Now consider the following set (recall that a < π):

V ′′
n :=

{

h ∈ V ′
n : −a ≤ 2π

nr
hr ≤ a ∀r

}

=
{

h ∈ Z
d : −

⌊

anr

2π

⌋

≤ hr ≤
⌊

anr

2π

⌋

∀r
}

.

Then, using the definition of fU, we get

J(Pn, t) ≤
1

N

∑

h∈V ′′
n

e
−α

[

(

2π
n1

h1

)2
+···+

(

2π
nd

hd

)2
]

t
+ ct.

We conclude the proof by approximating such a Riemann sum with an integral, sim-
ilarly to the technique used in the proof of Theorem 3.3 (see Eq. (3.1)), as explained
in detail in Lemma A.3 in the Appendix.

For the lower bound, the proof is very similar. Indeed,

J(Pn, t) =
1

N

∑

h∈V ′
n

[

f
(

2π
n1

h1, . . . ,
2π
nd

hd

)]t

≥ 1

N

∑

h∈V ′
n

[

fL

(

2π
n1

h1, . . . ,
2π
nd

hd

)]t

=
1

N

∑

h∈V ′′
n

e
−β

[

(

2π
n1

h1

)2
+···+

(

2π
nd

hd

)2
]

t
.

Finally, the conclusion is obtained by using Lemma A.3 (see the Appendix).

Grid matrices. The proof is very similar to the one for Cayley matrices. In this
case,

J(Pn, t) =
1

N

∑

h∈Vn

[

f
(

π
n1

h1, . . . ,
π
nd

hd

)]t

,

and so

J(Pn, t) ≤
1

N

∑

h∈Vn∩V ′′
2n

e
−α

[

(

π
n1

h1

)2
+···+

(

π
nd

hd

)2
]

t
+ ct

≤ 1

N

∑

h∈V ′′
2n

e
−α

[

(

π
n1

h1

)2
+···+

(

π
nd

hd

)2
]

t
+ ct

and

J(Pn, t) ≥
1

N

∑

h∈Vn∩V ′′
2n

e
−β

[

(

π
n1

h1

)2
+···+

(

π
nd

hd

)2
]

t

≥ 1

N

1

2d

∑

h∈V ′′
2n

e
−β

[

(

π
n1

h1

)2
+···+

(

π
nd

hd

)2
]

t
.

Then again the conclusion comes from Lemma A.3 (see the Appendix).
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Fig. 6.1: Plots of J(PN , tN ) for random geometric graphs (averaged), as a function
of N , for various computation times (differently growing w.r.t. N), and re-scaled by
the predicted factor of decay.

6. More general geometric graphs. Our main results concern a class of
highly-structured, regular graphs, for which it was possible to derive precise bounds.
However, we believe that such results can also provide guidelines for the design of more
realistic sensor networks, because deploying agents in a portion of the 2-dimensional
or 3-dimensional space, in a roughly uniform way, and with the constraint of local
communication (meaning connection only with geometric neighbors, i.e. within some
given distance range) results in graphs resembling to portions of lattices, with some
additional irregularities. Our conjecture is supported by some simulation results. We
consider random geometric graphs, as in the Gilbert model for wireless communica-
tion networks ([22], see also the recent book [17]): nodes are placed on a d-dimensional
unit cube uniformly at random and then pairs of nodes are connected by an edge if
and only if the two are within a given distance r (the resulting graph is undirected).
Similarly to the results we have obtained for lattice-like graphs, we are interested in
the asymptotic behavior when the number of nodes N increases, while the number of
neighbors roughly remains constant. Thus, we choose the distance threshold r in such
a way that the average degree is kept constant. Moreover, we only consider connected
realizations, discarding disconnected graphs. Then we choose a classical way of asso-
ciating a consensus matrix P to an undirected graph, the so-called Metropolis weights
rule [31]. Figure 6.1 provides examples of numerical results for the 2-dimensional
case, where the behavior of the Cayley graph predicts a cost scaling as max

{

1
N , 1

t

}

(Corollary 5.5). We plot J(PN , t) as a function of N , for various choices of growth
of t w.r.t. N (respectively, constant t = 20, t =

√
N , t = N , t = N3/2), and then

we already pre-multiply J(PN , t) by the predicted scaling factor, so that a perfectly
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flat line represents the asymptotic predicted behavior. In average, for large N the
prediction turns out to be quite accurate.

7. Conclusions. In this paper the behavior of an estimation performance index
is analyzed. More precisely, it is studied how this index varies with the number
of nodes and the number of iterations. In this way it is possible to determine the
minimum number of iterations which allow to exploit the estimation power of a sensor
network. The limitation of these results is given by the fact that they apply only to
regular grids. However simulation results (presented in Section 6) show that connected
realizations of random geometric graphs with a comparable number of nodes and of
average number of neighbors exhibit a behavior very similar to the corresponding
Cayley graphs. This suggests that for those graphs the performance index behaves
similarly as for regular grids.

A mathematical proof of this fact seems not to be trivial since studying the prop-
erties of graphs which are ‘small perturbations’ of known graphs is not a trivial task.
First, classical literature on small perturbation of matrices does not apply, as here
‘small’ is meant as a significant modification of a little number of entries compared
to the size, not as a infinitesimal variation of each entry. Secondly, suitable assump-
tions should be made on the perturbation so as to rule out those strongly affecting
performance, e.g., disconnecting the graph. The goal of rigorously characterizing the
behavior of large classes of ‘grid-like’ graphs is left as an open and interesting research
area.

Appendix. In this appendix we present the proofs of some technical lemmas
that were used in Section 5.

The following Lemma is the main tool in the proof of Coroll. 5.3. It ensures
that if p(z1, . . . , zd) satisfies the assumptions of Coroll. 5.3, then also q(t)(z1, . . . , zd)

satisfies them (notice that q(t)(z1, . . . , zd) = (p(z1, . . . , zd))
2t

due to the quadrantal
symmetries).

Lemma A.1. Given two sequences of non-negative numbers {ah}, {bh} ∈ R
Z
d

satisfying the assumptions of Coroll. 5.3, then also their convolution {ch} defined by
ch =

∑

k∈Zd akbh−k satisfies the same assumptions.
Proof. Non-negativity and quadrantal symmetries are immediate. What is left to

prove is that, for all i = 1, . . . , d, if kj = hj ≥ 0 for all j 6= i and ki = hi +1 ≥ 1, then
ck ≤ ch. For ease of notation, we give the proof with i = 1, and we write indexes as
h = (h,h′), with h ∈ Z, h′ ∈ Z

d−1, so that what we want to prove is that, for all
h = (h,h′) < 0, ch,h′ − ch+1,h′ ≥ 0. We start by noting that

ch,h′ − ch+1,h′ =
∑

(k,k′)∈Zd

(ak,k′ − ak+1,k′)bh−k,h′−k′

=
∑

k′∈Zd−1





∑

k≥0

(ak,k′ − ak+1,k′)bh−k,h′−k′ +
∑

k≥1

(ak,k′ − ak−1,k′)bh+k,h′−k′



 ,

where the quadrantal symmetry has been used for terms with k ≤ −1. This can also
been re-written by changing the index in the last summation (so as to start from 0),
getting

ch,h′ − ch+1,h′ =
∑

k′∈Zd−1

∑

k≥0

(ak,k′ − ak+1,k′)(bh−k,h′−k′ − bh+k+1,h′−k′) .
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Notice that ak,k′−ak+1,k′ ≥ 0 by assumption, and also bh−k,h′−k′−bh+k+1,h′−k′ ≥ 0,
because either 0 ≤ h− k ≤ h+ k+ 1, or h− k ≤ 0 and in the latter case 0 ≤ k− h ≤
k + h+ 1 and bh−k,h′−k′ = bk−h,h′−k′ ≥ bh+k+1,h′−k′ .

The following two lemmas are used in the proof of Theorem 5.4. The first one
concerns the area under a Gaussian distribution in a neighborhood of the origin, while
the second one is a discrete version where we consider Riemann sums, generalizing
the technique used in the proof of Theorem 3.3 (see Eq. (3.1)).

Lemma A.2. Given γ > 0,

√

π

γt
(1− e−γta2

) ≤
∫ a

−a

e−γx2t dx ≤
√

π

γt
.

Proof. The proof exploits well-known properties of the Gaussian distribution. For
the upper bound, simply

∫ a

−a

e−γx2t dx ≤
∫

R

e−γx2t dx =

√

π

γt
.

The lower bound exploits the well-known property of the complementary error func-
tion erfc(ζ) := 2√

π

∫ +∞
ζ

e−ξ2 dξ, which satisfies erfc(ζ) < e−ζ2

for all ζ > 0, so that

∫ a

−a

e−γx2t dx =

∫

R

e−γx2t dx− 2
1√
γt

erfc(
√
γt a) >

√
π√
γt

(1− e−γta2

) .

Lemma A.3. Assume that n1 ≥ n2 ≥ · · · ≥ nd and take any constants c ∈ (0, 1
2 )

and γ > 0. Define

An,c,γ(t) =
1
N

∑

h:∀r,−bcnrc≤hr≤bcnrc
e
−γ

[

(

2π
n1

h1

)2
+···+

(

2π
nd

hd

)2
]

t
.

Then there exist c′, c′′ > 0 (depending on c, γ and d only) such that, for all t ≥ 1,

c′

N
max

`=0,...,d

{

1

t`/2

∏̀

r=1

nr

}

≤ An,c,γ(t) ≤
c′′

N

∑

`=0,...,d

1

t`/2

∏̀

r=1

nr .

Proof. We start from the upper bound. Let I := {(h1, . . . , hd) ∈ Z
d : −bcnrc ≤

hr ≤ bcnrc ∀r}. Moreover, for any set K ⊆ [d], define

IK := {(h1, . . . , hd) ∈ I : hi 6= 0 ∀i ∈ K and hi = 0 ∀i /∈ K}

and notice that they form a partition of I as K varies over all the possible subsets of
[d] (including K = ∅ and K = [d]). Then

An,c,γ(t) =
1

N

∑

K⊆[d]

∑

h∈IK

d
∏

r=1

e−γ( 2π
nr

hr)
2t .

Now, we want to estimate each term of the sum. Fix K ⊆ [d]. Except in the trivial
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case K = ∅, with no loss of generality we can assume that K = {1, . . . , s}. Then

∑

h∈IK

d
∏

r=1

e−γ( 2π
nr

hr)
2t =

∑

−bcn1c≤h1≤bcn1c
h1 6=0

· · ·
∑

−bcnsc≤hs≤bcnsc
hs 6=0

e−γ( 2π
n1

h1)
2t · · · e−γ( 2π

ns
hs)

2t

=







∑

bcn1c≤h1≤bcn1c
h1 6=0

e−γ( 2π
n1

h1)
2t






· · ·







∑

bcnsc≤hs≤bcnsc
hs 6=0

e−γ( 2π
ns

hs)
2t







= 2s
s
∏

r=1





∑

1≤hr≤bcnrc
e−γ( 2π

nr
hr)

2t



 .

Then, using the following upper bound

2

nr

∑

1≤hr≤bcnrc
e−γ( 2π

nr
hr)

2t ≤ 1

π

∫ 2π
nr

bcnrc

0

e−γx2t dx ≤ 1

2π

∫

R

e−γx2t dx =
1

2

(

1

πγt

)
1
2

we obtain

An,c,γ(t) ≤
∑

K⊆[d]

1
∏

r/∈K nr

(

1

4πγt

)

|K|
2

.

For the lower bound, we use subsets of indexes quite similar to the above-defined
IK , but in this case we do not look for a partition of I. Rather, we define, for any
K ⊆ [d],

JK := {(h1, . . . , hd) ∈ I : hi = 0 ∀i /∈ K}

without the additional request that hi 6= 0 ∀i ∈ K. Then we make a different lower
bound for any K, by discarding the terms with h /∈ JK in the summation which
defines An,c,γ(t), namely we use the fact that, for all K ⊆ [d] we have that

An,c,γ(t) ≥
∑

h∈JK

d
∏

r=1

e−γ( 2π
nr

hr)
2t.

The choice K = ∅ simply gives

An,c,γ(t) ≥
1

N
.

The choice K = {1, . . . , s} gives

An,c,γ(t) ≥
1

N

∑

−bcn1c≤h1≤bcn1c
· · ·

∑

−bcnsc≤hs≤bcnsc
e−γ( 2π

n1
h1)

2t · · · e−γ( 2π
ns

hs)
2t

≥





s
∏

r=1

1

nr

∑

0≤hr≤bcnrc
e−γ( 2π

nr
hr)

2t





(

d
∏

r=s+1

1

nr

)

≥
(

1

2π

∫ 2πc

0

e−γtx2

dx

)s ∏s
r=1 nr

N
.
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Then, we end by using Lemma A.2, which gives

∫ 2πc

0

e−γtx2

dx >
1

2

√

π

γt
(1− e−γt(2πc)2) ≥ 1

2

√

π

γt
(1− e−γ(2πc)2)

when t ≥ 1.
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