A Partition-Based Relaxed ADMM for Distributed Convex Optimization over Lossy Networks: Technical Proofs

N. Bastianello, R. Carli, L. Schenato, M. Todescato

APPENDIX

In this paper we describe the technical proofs for the results presented in [1].

A. Proof of Proposition 1

As we showed in Section III-A of the main paper, it is possible to reformulate the partition-based problem (8) so that it conforms to problem

\[\begin{align*}
\min_x & \quad \{ f(x) + \iota(I-P)(y) \} \\
\text{s.t.} & \quad Ax + y = 0
\end{align*} \tag{A1} \]

to which the R-ADMM can be applied. The three update equations (4), (5) and (6) that characterize the R-ADMM applied to problem (A1) yield

\[y(k+1) = \arg \min_y \{ \mathcal{L}_\rho(x, y; w(k)) \} \tag{A2} \]
\[w(k+1) = w(k) - \rho(\sum_{j \in \mathcal{N}_i} \xi(j) - \rho z(k)) \tag{A3} \]
\[x(k+1) = \arg \min_x \mathcal{L}_\rho(x, y(k+1); w(k+1)) \tag{A4} \]

where \(w \) is the vector of Lagrange multipliers and the augmented Lagrangian is

\[\mathcal{L}_\rho(x, y; w) = f(x) + \iota(I-P)(y) - w^\top (Ax + y) + \frac{\rho}{2} \|Ax + y\|^2. \]

However, as shown in [2], the R-ADMM for problem (A1) can be equivalently characterized with the set of four iterates

\[y(k) = \arg \min_y \left\{ -z^\top(y) + \frac{\rho}{2} \|y\|^2 \right\} \tag{A5} \]
\[w(k) = z(k) - \rho y(k) \tag{A6} \]
\[x(k) = \arg \min_x \left\{ f(x) - (2w(k) - z(k))^\top Ax \right. \]
\[\left. + \frac{\rho}{2} \|Ax\|^2 \right\} \tag{A7} \]
\[z(k+1) = (1 - 2\alpha)z(k) + 2\alpha(w(k) - \rho Ax(k)). \tag{A8} \]

Similarly to what has been done in [3], it is now possible to simplify Equations (A5)–(A8).

First of all, solving the system of KKT conditions for (A5) yields \(y(k) = (I + P)z(k)/(2\rho) \), and therefore Equations (A5)–(A8) become

\[\begin{align*}
y(k) &= (I + P)z(k)/(2\rho) \tag{A9} \\
w(k) &= (I - P)z(k)/2 \\
x(k) &= \arg \min_x \left\{ f(x) + (Pz(k))^\top Ax + \frac{\rho}{2} \|Ax\|^2 \right\} \tag{A10} \]
\[z(k+1) = (1 - \alpha)z(k) - \alpha Pz(k) - 2\alpha \rho Ax(k). \tag{A12} \]

Since we are interested in the trajectory \(k \to x(k) \) and by the fact that the update (A11) depends only on the vector \(z(k) \), then the R-ADMM for problem (A1) can be described by Equations (A11) and (A12) only.

Notice now that the trajectory \(k \to x(k) \) generated by (A11) is equivalent to that generated by (A4) if the initial condition for \(x \) is the same and if \(z(0) = w(0) + \rho y(0) \) since Equation (A6) has to hold at time \(k = 0 \). Therefore Proposition 1 is proved if we can show that (A11) and (A12) can be rewritten as (11) and (12).

Recall that the permutation matrix \(P \) swaps the element \(z_i^{(j,i)} \) with the element \(z_i^{(j,i)} \) of vector \(z \), and that the row of Ax relative to the auxiliary variable \(z_i^{(j,i)} \) is \(-x_i^{(i)} \). Therefore it follows that

\[(Pz)^\top Ax = \left[\begin{array}{c} \cdots \ z_i^{(j,i)} \cdots \ z_i^{(j,i)} \cdots \end{array} \right] \begin{bmatrix} \vdots \ -x_i^{(i)} \ \cdots \ -x_i^{(i)} \ \cdots \end{bmatrix} = -\sum_{i=1}^N \left\{ \sum_{j \in \mathcal{N}_i} z_i^{(j,i)} x_i^{(i)} + \sum_{j \in \mathcal{N}_i} z_j^{(j,i)} x_j^{(i)} \right\}. \]

Moreover, for each node \(i \), \(x_i^{(i)} \) appears in \(|\mathcal{N}_i| \) constraints and \(\{x_j^{(i)} \}_{j \in \mathcal{N}_i} \), in one constraint each. Hence we have

\[\|Ax\|^2 = |\mathcal{N}_i| \left\| x_i^{(i)} \right\|^2 + \sum_{j \in \mathcal{N}_i} \left\| x_j^{(i)} \right\|^2. \]

Therefore Equations (11) and (12) can be derived from (A11) and (A12) using the particular structure of the problem, proving Proposition 1.

B. Proof of Propositions 2 and 3

As was mentioned above, the partition-based problem can be reformulated as (A1) which can be solved by the application of the R-ADMM. Therefore both the convergence results
of Propositions 2 and 3 follow from those of Propositions 2 and 3 of [3].
Indeed the R-ADMM is guaranteed to converge in both the loss-less and lossy scenarios as long as the step-size and penalty parameters are such that $0 < \alpha < 1$ and $\rho > 0$. Moreover, the components of the primal variables vector, which in the partition-based case are the subvectors $x^{(i)}$, are guaranteed to converge to the optimum value, that is, each variable $x^{(i)}_i$ converges to the optimum x^*_i. □

REFERENCES