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Abstract— In this work we consider the problem of simultane-
ously classifying sensor types and estimating hidden parameters
in a network of sensors subject to gossip-like communication
limitations. In particular, we consider a network of noisy sensors
which measure a common scalar unknown parameter. We assume
that a fraction of the nodes is subject to the same (but possibly
unknown) offset. The goal for each node is to simultaneously
identify the class to which the node belongs and to estimate the
common unknown parameter, only through local communication
and computation. We propose a distributed estimator based on
the maximum likelihood (ML) approach and we show that,
in case the offset is known, this estimator converges to the
centralized ML as the number N of sensor nodes goes to infinity.
We also compare this strategy with a distributed implementation
of the estimation-maximization (EM) algorithm; we show trade-
offs via numerical simulations in terms of robustness, speed of
convergence and implementation simplicity.

I. I NTRODUCTION

In recent years, we have witnessed an increasing interest in
the design of control and estimation algorithms which can
operate in a distributed manner over a network of locally
communicating units. A prototype of such problems is the
average consensus algorithm [1], [2], which can be used as a
distributed procedure providing the average of real numbers,
each of them belonging to a unit. Since the average is the
building block for many estimation methods, the average
consensus has been proposed as a possible way to obtain
distributed estimation algorithms and, in particular, to obtain
distributed Kalman filtering [3], [4]. However, while averaging
is suitable for the estimation of real valued parameters, it
is typically of no help when the quantities to be estimated
belong to a finite alphabet. Moreover, the average is by
definition an operation which fuses information loosing in
this way the possible information that is specific of each
unit. The model we consider in the present paper has two
characteristics: the information of each unit contains both a
common scalar parameter and a unit specific parameter and
this second parameter belongs to a finite alphabet.
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More precisely, we assume that we haveN units and that
each uniti measuresyi that can be expressed as

yi = θ +Ti +vi . (1)

where θ ∈ R is a continuous parameter influencing all the
units,Ti ∈A , with A being a finite set, is a discrete parameter
influencing each unit independently andvi is a noise term. The
goal of each unit is to estimate the common parameterθ and
its specific oneTi . Notice that the presence of the common
parameterθ impose that any efficient estimation technique will
require cooperation between units and therefore will require
communication. We will assume that communication between
the units can occur only according to a graph as discussed
in Section III, which is devoted to the distributed algorithm
description.

There are various examples of applications in which the
previous estimation problem could be of interest. One ap-
plication is related to fault detection. In this case the units
represent some sensors that, when working properly, measure
a noisy version of the parameterθ and that, when faulty, add a
bias to the measurement. A similar situation is when there are
heterogeneous sensors belonging to classes which differ bythe
bias they add. In both cases the parameter of primary interest is
θ . Another example is when there are different units belonging
to different classes, the objective being to classify them based
on the yi ’s while also estimating the common parameterθ .
As a possible application of this last scenario, we can imagine
a network for environmental monitoring; the different values
of Ti could model for instance a constant external field only
active in certain areas where the sensor is located, such as for
instance being in the sunshine or in the shade or being inside
or outside of a fire.

More in general, these problems fit in the general class of
the unsupervised clustering problems, which are quite standard
in statistics [5], [6]. Algorithms for clustering have been
widely proposed in the computer science literature both for
the standard centralized case [7] and for the distributed case
[8], [9], [10], [11]. Indeed, the technique proposed in thispaper
can be seen as a distributed algorithm for a specific clustering
problem. Preliminary work along this direction can be foundin
our conference paper [12]. Note also that, with the purpose of
providing a comparison of the algorithm we propose with more
“standard” techniques such as the EM algorithm, we have
faced the problem of implementing alternating-type algorithms
in distributed scenarios. This is, in our view, a topic whichhas
its own interest but which is outside the scope of this work;
as such we plan to address this problem in future work.
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The structure of the paper is as follows: Section II intro-
duces the model we consider; the decentralized estimator is
studied in Section III while its limit behavior is characterized
in Section IV. In Section V an alternative approach based on
a Bayesian model is presented and some generalizations are
discussed in Section VI. Section VII describes a distributed
implementation of alternating-type algorithms such as those
found Sections V and VI. Some simulations are presented
in Section VIII while conclusions are drawn in Section IX.
In order to streamline exposition all proofs are postponed to
Appendix A.

II. T HE MODEL

In this section we give a more precise description of the
model we consider and of the estimation cost we aim at
minimizing by the proposed estimation algorithm. Assume that
the measurementsyi are as in (1), whereθ ∈ R, vi are zero
mean, independent Gaussian random variables with variance
σ2; for simplicity, with respect to what mentioned in the
introduction, we will restrict to the case in whichTi can take
only two values, that are supposed to be known and which,
with no loss of generality1, can be supposed to be 0 and 1,
i.e. Ti ∈ {0,1}. The goal of each uniti is to estimateθ andTi .

Extension to the case in which the difference between the
two symbols is unknown are discussed in Section VI. The
algorithm we propose does not need to know the varianceσ2

which therefore can be assumed to be unknown.

A. The maximum likelihood estimator

When the bias termTi is not present, the centralized
maximum likelihood estimator ofθ (assuming that all mea-
surementsyi are available) is given by

θ̂ = N−1∑
i

yi . (2)

This arithmetic average can be asymptotically evaluated bythe
agents in the graph through standard consensus algorithms as
long as the graph is strongly connected.

The presence of the bias terms makes the problem quite
harder. In this paper we propose a decentralized version of the
centralized maximum likelihood estimator for this problem.
We set some useful notation. We consider the vectorsy :=
(y1, . . .yN) andT := (T1,T2, . . .TN) and the following weights
w(T) := ∑Ti , w(y) := ∑yi . The maximum likelihood estimator
is defined as

(θ̂ ML, T̂ML) := argmax
(θ ,T)

P(y|θ ,T) = argmin
(θ ,T)

[

∑i
(yi−θ−Ti)

2

2σ2

]

(3)
Remark 1:The choice of the maximum likelihood esti-

mator is motivated by the simplicity of the solution we
obtain from it. Of course, it would be natural to seek for
“optimal” estimators which minimize, e.g., the variance ofθ̂ ,
E[(θ̂ −θ )2] and/or the average classification errorE[∑N

i=1 |T̂i −
Ti |]. Unfortunately these optimal estimators are in general
computationally intractable even in the centralized case.We

1The solution we propose can be extended immediately to the case in which
Ti ∈ {a,b} wherea,b are assumed to be known real parameters.

will show instead that the maximum likelihood estimator is not
only computationally simple, but also prone to a decentralized
implementation.

It easy to solve the minimization in (3) for a fixedT:

θ̂(T) := argmin
θ

[

∑i
(yi−θ−Ti)

2

2σ2

]

= 1
N ∑i(yi −Ti) = w(y)−w(T)

N

(4)

The estimator̂θ (T) is then a function of the averageN−1w(y),
which can be obtained by a standard consensus algorithm, and
of the average biasN−1w(T). This second term however is not
directly available, so that (4) is not an implementable solution.
Rather, substituting (4) in (3) we obtain

T̂ML = argmin
T




∑

i

(

yi − w(y)
N + w(T)

N −Ti

)2

2σ2




 (5)

This minimization can be solved in a two-step way by con-
sidering

min
w=0,...,N




 min

T :w(T)=w
∑
i

(

yi − w(y)
N + w

N −Ti

)2

2σ2




 (6)

For everyw = 0, . . . ,N, put

T̂w = argmin
T:w(T)=w

∑
i

(

yi − w(y)
N + w

N −Ti

)2

2σ2 (7)

Let us define

ηi := yi −
w(y)

N

and consider a permutation2 [·] : {1, . . . ,N}→ {1, . . . ,N} such
that η[1] ≤ η[2] ≤ ·· · ≤ η[N]. Clearly, the above minimization
is solved by the vector̂Tw such that

(T̂w)[ j ] =

{
0 if j ≤ N−w
1 otherwise

(8)

Substituting in (6) and performing simple algebraic transfor-
mations, we obtain that the solution of the outer minimization
problem in (6) becomes ˆw = argminF(w), where

F(w) := −w2

N
+w−2

N

∑
j=N−w+1

η[ j ] (9)

Clearly, from (8),

T̂ML
[ j ] = (T̂ŵ)[ j ] =

{
0 if j ≤ N− ŵ
1 otherwise

(10)

and from (4) we get:

θ̂ ML =
w(y)− ŵ

N
=

w(y)−w(T̂ML)

N
(11)

2The subscript[i] is quite standard in statistics to denote ordered samples.
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III. A DECENTRALIZED ESTIMATOR

Notice that each agenti can computeηi by a consensus
algorithm. Moreover, as will be discussed later, there exists
an efficient decentralized algorithm capable of ordering the
ηi , so that each agenti knows its ordered positionoi .

E.g. if the observationηi of agenti is the smallest3 among
all observations (i.e.ηi < η j , ∀ j 6= i) then oi = 1; if yk is
the second smallestok = 2 and so on; more precisely,oi ∈
{1,2, ...,N} and

oi < o j ⇒ ηi ≤ η j .

The mapo· : N → N is a permutation of the setN =
{1, ..,N}. Using a notation which is rather common in the
statistics literature, we can define[·] : N → N as the inverse
permutation w.r.to·, i.e. [oi] = i, which implies that

ηi = η[oi ].

For each valuew, the agenti is thus capable of computing
(T̂w)i through (8). In order to computêTML

i using (10) we
need to know the ordered positionoi of agenti with respect
to N− ŵ. This would follow if we could compute ˆw in a
decentralized fashion, but this is not at all evident, because of
the presence of the aggregation term∑N

j=N−w+1 η[ j ] in (9).
Consider the discrete derivative ofF :

∆(w) := F(w+1)−F(w) = −2w+1
N

+1−2η[N−w] (12)

for w= 1, . . . ,N−1. Notice that∆(w) can be computed by the
agent in ordered positionN−w.

Define the set of local minima:

S := {w∈ [1,N] | ∆(w−1) < 0, ∆(w) > 0}

(interpreting, conventionally,∆(0) < 0 and ∆(N + 1) > 0 as
always true assertions). If we knew that|S | = 1 then our
computational problem could be solved in the following way.
Notice that in this case we would have thatF(w) decreases
until its minimum pointŵ and then starts to increase. A generic
agenti in positionoi can compute∆(N−oi). If ∆(N−oi) < 0
then N−oi < ŵ, namelyoi > N− ŵ, which implies by (10)
that(T̂ŵ)[oi ] = 1. If instead∆(N−oi) > 0, then(T̂ŵ)[oi ] = 0. So,
in this way, each agent could compute its ML estimatorT̂ML

i .
Again, using consensus all agents can then computeN−1ŵ =
N−1w(T̂ML) and can therefore also computeθ using formula
(4).

Of course, the decentralized algorithm proposed above can
always be implemented by the agents. In the following part of
the paper we will show that, typically, forN large,F possesses
just one local minimum in[0,1/2] which happens to be the
global minimum on[0,1], while possibly exhibiting other local
minima on]1/2,1]. It follows that, with high probability, the
maximum likelihood estimator can be obtained by applying
the previous algorithm to all agentsi whose ordered position
oi is aboveN/2 while forcing all agents whose positionoi

3For simplicity of exposition we shall assume that it is not possible that
any two agents have the same observation, i.e.∄(i, j), i 6= j : ηi = η j .

is below N/2 to estimateT̂[oi ] = 0. We can summarize the
previous reasoning in the following definitions:

T̂AML
i :=







1 if 2
(

yi−w(y)
N

)

>1− 2(N−oi)+1
N ∧ oi >

N
2

0 otherwise

θ̂ AML := w(y)−w(T̂AML)
N

(13)
where the superscriptAML stands forapproximate maximum
likelihood. This approximate maximum likelihood estimator
converges (asN → ∞) to the maximum likelihood estimator
in (3) as formally stated in Corollary 12.

Before describing the algorithm to compute(θ̂ AML, T̂AML)
in a distributed fashion, we need to introduce some useful gen-
eral distributed algorithms that will be used in our algorithm.

A. Decentralized average and ranking computation

We model the network of distributed agents with a graph
G = (N ,E ) whereN = {1,2, . . . ,N} is the set of nodes and
E is the set of edges corresponding to the communication
links. We indicate withV(i), the set of neighbors of nodei, i.e.
V(i) = { j | (i, j)∈ E }. We assume that the graph is connected,
i.e. there is a path between any two nodes, and it is undirected,
i.e. nodes are capable of bidirectional communications. We
also assume that each sensor nodei knows its labeli, i.e.
nodes are numbered from 1 toN. As shown in the previous
section, in order to compute the AML estimatorsθ̂ AML

i and
T̂AML

i , as given in (13), it is necessary to compute the averages
of some quantities, namelyw(y) andw(T̂AML), and the ranking
of each nodeoi.

Distributed algorithms for computing averages are well
studied and are also known as average consensus algorithms
(see surveys [13] [14] and reference therein).

We shall denote withPave an “average” operator which
takes as arguments(x(k)

i ,x(k)
j ), wherex(k)

i is the “local” state
stored in nodei at thek−th iteration and(i, j)∈E , and returns
the “updated” state as

(x(k+1)
i ,x(k+1)

j ) = Pave(x
(k)
i ,x(k)

j ) (14)

The following proposition provides the convergence prop-
erties of the Randomized Gossip Average Consensus, which
have been well studied in [15] and [16].

Algorithm 1 Randomized Gossip Average Consensus [15]

Require: graphG = (N ,E ), probability distributionpi j over
E , measurementsyi

1: for all nodei do
2: x(0)

i = yi , k = 0.
3: end for
4: repeat
5: randomly select edge(i, j) ∈ E with P[(i, j)] = pi j

6: (x(k+1)
i ,x(k+1)

j ) = Pave(x
(k)
i ,x(k)

j )

7: x(k+1)
h = x(k)

h , ∀ h 6= i, h 6= j
8: k = k+1
9: until k > M
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Algorithm 2 Randomized Gossip Ranking

Require: graphG = (N ,E ), probability distributionpi j over
E , measurementsyi , node “i” has ID i.

1: for all nodei do
2: Initialize ξ (0)

i = init(yi , i),
3: end for
4: repeat
5: randomly select edge(i, j) ∈ E with P[(i, j)] = pi j

6: (ξ (k+1)
i ,ξ (k+1)

j ) = Prk(ξ
(k)
i ,ξ (k)

j )

7: ξ (k+1)
h = ξ (k)

h , ∀ h 6= i, h 6= j
8: k = k+1
9: until k > M

10: rk(k)
i = extract(ξ (k)

i ) ∀ i

Proposition 2 (Gossip average consensus [15], [16]):
Consider Algorithm 1. If the graphG is connected and
pi j > 0 for all edges(i, j) ∈ E then we have

lim
k→∞

x(k)
i =

1
N

N

∑
i=1

yi almost surely

The randomized implementation of the average consensus
has the advantage to be asynchronous, i.e. nodes do not
require time-synchronization or fine coordination, and to be
parallelizable, i.e. several nodes can perform the updatesat
the same time as long as the updating node pairs are disjoint
[15].

In the sequel of the paper we shall also need a distributed
algorithm which is able to rank the nodes of a network based
on the ordered list of the magnitude of their measurements.
The algorithm is randomized in the same spirit of the previous
randomized gossip average consensus, i.e. at each time an
edge of the network is selected at random and corresponding
nodes exchange information and update their local variable.
The pseudo-code of this algorithm is given in Algorithm 2.

Without entering into the detail which can be found in [17],
it suffices here to assume that this algorithm requires, for each
nodei, a local “state”ξ (k)

i at iterationk. This local state needs
to be initialized as a function of the “local” measurement value
yi and node IDi; we shall denote the initialization procedure
as

ξ (0)
i = init(yi , i)

Similarly to what has been done above, we shall denote
with Prk a “ranking” operator, defined in [17], which takes
as arguments(ξ (k)

i ,ξ (k)
j ), where (i, j) ∈ E , and returns the

“updated” state as

(ξ (k+1)
i ,ξ (k+1)

j ) = Prk(ξ
(k)
i ,ξ (k)

j ) (15)

The stateξ (k)
i contains, in particular, a variablerk(k)

i which
is the current estimate at nodei of its rank. We shall call
extract a procedure which extract this variable fromξ (k)

i ,
i.e.

rk(k)
i = extract(ξ (k)

i ) (16)

The Randomized Gossip Ranking algorithm is sketched above.
and its asympotic behavior of this algorithm is formally stated
in the following theorem [17]:

Theorem 3 (Randomized Gossip Ranking):Consider Algo-
rithm 2. If the graphG is connected andpi j > 0 for all edges
(i, j)∈ E then there existsT > 0 such thatrk(k)

i in (16) satisfies

rk(k)
i = oi ∀k≥ T, i = 1, . . . ,N almost surely

B. Decentralized estimation and classification algorithm

We are now ready to present the algorithm that allows each
sensor i to compute the approximate maximum likelihood
(AML) estimate for the unknown parameterθ and for its
unknown classTi . The algorithm is based on the randomized
gossip average consensus and ranking presented in the previ-
ous section and it is summarized in Algorithm 3.

Algorithm 3 Gossip Estimation and Classification

Require: graphG = (N ,E ), probability distributionpi j over
E , measurementsyi , node “i” has ID i.

1: for all nodei do
2: η(0)

i = yi , w(0)
i = 0, θ̂ (0)

i = yi , T̂(0)
i = 0

3: lines 1-3 of Algorithm 1
4: line 1-3 of Algorithm 2
5: end for
6: repeat
7: randomly select edge(i, j) ∈ E with P[(i, j)] = pi j

8: lines 6-7 of Algorithm 1
9: lines 6-7 of Algorithm 2

10: rk(k+1)
i = extract(ξ (k+1)

i ), rk(k+1)
j = extract(ξ (k+1)

j )

11: η(k+1)
i = yi −x(k+1)

i , η(k+1)
j = y j −x(k+1)

j

12: if rk(k+1)
i ≥ N

2 ∧ 2η(k+1)
i > 1− 2(N−rk(k+1)

i )+1
N then

13: T̂(k+1)
i = 1

14: else
15: T̂(k+1)

i = 0
16: end if

17: if rk(k+1)
loc, j ≥ N

2 ∧ 2η(k+1)
j > 1− 2(N−rk(k+1)

loc, j )+1

N then

18: T̂(k+1)
j = 1

19: else
20: T̂(k+1)

j = 0
21: end if

22: w(k+1)
i =

w(k)
i +w(k)

j
2 +(T̂(k+1)

i − T̂(k)
i )

23: w(k+1)
j =

w
(k)
i +w

(k)
j

2 +(T̂(k+1)
j − T̂(k)

j )

24: θ̂ (k+1)
i = x(k+1)

i −w(k+1)
i

25: θ̂ (k+1)
j = x(k+1)

j −w(k+1)
j

26: for all ℓ = 1, . . . ,N, ℓ 6= i, ℓ 6= j do
27: line 9 of Algorithm 1
28: lines 26-29 of Algorithm 2
29: η(k+1)

i = η(k)
i , w(k+1)

i = w(k)
i

30: T̂(k+1)
i = η(k)

i , θ̂ (k+1)
i = w(k)

i
31: end for
32: k = k+1
33: until k > M

In practice, it is necessary to compute the mean of the
measurementsw(y) (Algorithm 1) and the ranking of the nodes
oi (Algorithm 2) to evaluate the condition given by (13) that
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correspond to lines 11-20 of Algorithm 3. The variablesη(k)
i ,

w(k)
i represent, respectively, the estimates of nodei at time

k of the displacement of its measurement from the average,
i.e. yi − 1

N ∑N
i=1yi , and of the fraction of nodes that belongs to

the class “1”, i.e.1N ∑N
i=1 T̂AML

i . The variableŝT(k)
i , θ̂ (k)

i instead
represent the estimate of nodei at timek of the unknown node
classTi and the unknown parameterθ . From Theorems 2 and
3 it follows that the estimatesrk(k)

i and x(k)
i will converge to

oi and w(y), therefore the conditions stated in lines 11 and
16 will coincide with the condition of (13). As a consequence
T̂i will converge (as the number of gossip iterations goes to
infinity) to the asymptotic maximum likelihood̂TAML

i . In order
to compute the centralized approximate ML estimate of the
parameterθ it is necessary to compute the fraction of the
“1”-class nodesw(T̂AML) = 1

N ∑N
i=1 T̂AML

i . This is achieved by
lines 21-22 in the algorithm which correspond to an average
consensus applied to the time increments of the input signal
T̂(k)

i . This guarantees that∑N
i=1w(k)

i = ∑N
i=1 T̂(k)

i at every time

instantk. Since allT̂(k)
i converge toT̂AML

i , then the input signal
to equations of lines 21-22 tends to zero and asymptotically
eachw(k)

i will converge tow(T̂AML). This claim is formally
stated in the next theorem:

Proposition 4: Consider Algorithm 3. If the graphG is
connected andpi j > 0 for all edges(i, j) ∈ E then we have:

lim
k→∞

T̂(k)
i = T̂AML

i almost surely (17)

lim
k→∞

θ̂ (k)
i = θ̂ AML almost surely (18)

IV. T HE LIMIT BEHAVIOR

In what follows we study the behavior (in particular the
monotonicity) of the objective random functionF whenN →
+∞. To emphasize dependence onN, from now on we will
use the notationFN.

We recall that, in our approach, the bias valuesTi are fixed,
even if unknown to the agents. We put

I1 = {i = 1, . . . ,N |Ti = 1} , I0 = {i = 1, . . . ,N |Ti = 0}
and we assume that

lim
N→+∞

|I1|
N

= lim
N→+∞

w(T)

N
= p∈ [0,1/2[ (19)

We start with some preliminary considerations on the or-
dered variablesη[w]. We can writeηi = ξi + Ω where

ξi = Ti +vi , and Ω =
w(v)

N
− w(T)

N
. (20)

The variablesξi are thus independent and have two possible
distribution functions:

P(ξi ≤ t) = Φσ (t −1) if i ∈ I1

P(ξi ≤ t) = Φσ (t) if i ∈ I0
(21)

where

Φσ (a) :=
1√
2πσ

∫ a

−∞
e
− x2

2σ2 dx

Notice now that

ξ[w] < t ⇔ Λt := |{i |ξi < t}| ≥ w (22)

Put Λq
t := |{i ∈ Iq |ξi < t}| for q = 0,1. Λ1

t and Λ0
t are

two Binomial r.v. of type, respectively,B(|I1|,Φσ (t −1)) and
B(|I0|,Φσ (t)). Since,Λt = Λ1

t + Λ0
t , we have thatE(Λt) =

|I1|Φσ (t −1)+ |I0|Φσ (t) and

lim
N→+∞

E(Λt)

N
= Fξ (t) := pΦσ (t −1)+ (1− p)Φσ (t) (23)

Let us now consider the following normalized and scaled
version ofFN(w):

FN(ω) :=
1
N

FN(Nω) = −ω2+ ω − 2
N

N

∑
k=⌊N(1−ω)+1⌋

η[k]

= −ω2 + ω −2ωΩ− 2
N

N

∑
k=⌊N(1−ω)+1⌋

ξ[k], ω ∈ [N−1,1]

Equations (22) and (23) suggest thatξ[w] and F−1
ξ (w/N)

should be close to each other for largeN. We can thus guess
that:

limN→∞FN(ω)
a.s.
= F (ω)

F (ω) :=−ω2+ω +2pω −2
∫ 1

1−ω
Fξ

−1(t)dt, ω ∈ (0,1]
(24)

Likely enough, local extrema ofFN will converge, almost
surely, to the local extrema ofF so that if F possess just
one local minimum on[0,1/2] which is the global minimum,
then this will also happen forFN almost surely whenN→+∞.
This would mean that our decentralized algorithm will almost
surely coincide with the centralized ML algorithm. The next
section will make precise all these considerations.

A. The analysis of the functionF (ω)

In spite of its apparent simplicity, an analytical study of the
function F is not easy to obtain. It is immediate to verify
that F is continuous. Regarding its monotonicity, numerical
investigations seem to show thatF can have one or two local
minima depending on the particular values forσ andp, i.e. the
derivative ofF is equal to zero once or three times. However,
the derivative ofF seems to be equal to zero in only one point
in ω ∈ (0,1/2) which corresponds to the global minimum.

One case which can be studied in detail is the “small
noise” case, i.e. the limitσ → 0; this is done in the following
proposition:

Proposition 5: Under the assumption of model given by (3)
we have that

lim
σ→0

F (ω) = −ω2 + ω +2pω −2p−2(ω− p)δ−1(p−ω)

uniformly for ω ∈ [0,1], where δ−1(x) is equal to one
for positive x and zero otherwise. Moreover, if̂ω(σ) :=
argminω F (ω), then

lim
σ→0

ω̂(σ) = p.

The previous proposition states that, if the the two distribu-
tions degenerate to a single point, then the proposed algorithm
exactly compute the proportions measurements generated by
each of the two Gaussian distributions. However, when there
is substantial overlap, the estimation has a bias toward the
midpoint 1/2, and in the limit of very large variance estimate
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Fig. 1. Minima of F (ω) (asymptotic) and ofFN(ω) (sample, 10 Monte
Carlo runs) vs. noise standard deviationσ . Data are always generated with
p = ∑i Ti

N = 0.3.

ω̂ is completely uninformative. In fact it can be verified that
(see also Fig. 1)

lim
σ→+∞

ω̂ := argmin
ω

F (ω) =
1
2

The value of the minimumω̂ of the asymptotic function
F (ω) as a function of the noise varianceσ for p = 0.3 is
reported in Figure 1 (dotted line). As stated in the previous
proposition,ω̂ = p for small σ and ω̂ = 1/2 for large σ .
As mentioned above, the graph shows that this minimum
monotonically increases fromp to 1/2, thus confirming the
hypothesis that the global minimum is always in the interval
(0,1/2) for all values of p and σ . Figure 1 also shows the
mean and standard deviation of the minimum ofF̄N(ω) over
10 Monte Carlo runs forN = 100 sensor nodes.

B. The concentration results

In the sequel we present some concentration results which
make rigorous the considerations done above. We recall a
standard result on the concentration of binomial r.v. which
will be our main technical tool.

Theorem 6:Let Z be a binomial r.v of typeB(N, p). Put,
for x > 0, γ(x) = xlogx− x+ 1. Then, for anyx < 1 < y, it
holds

P(Z ≤ Npx) ≤ e−Npγ(x) , P(Z ≥ Npy) ≤ e−Npγ(y)

Remark:Notice that, for anyy0 > 1, there exists a constant
C > 0, such thatγ(y) ≥Cylogy

The following result is standard but we will give an elemen-
tary proof in the Appendix for the sake of making the paper
self-contained.

Lemma 7:For any 0< a< b< 1 and for everyδ > 0, there
exists lδ > 0 such that, forN sufficiently large,

P(|ξ[ j ] −F−1
ξ ( j/N)| ≥ δ ) ≤ e−Nlδ , ∀ j ∈ [aN,bN]

With the following bound we take care of the behavior of
ξ[ j ] for j close to 0 and toN.

Lemma 8:There exist 0< a < 1 andl > 0 such that, forN
sufficiently large and forj ∈ [1,aN], it holds

P
(

ξ[ j ] ≤−(N/ j)1/2
)

≤ e−lN

P
(

ξ[N− j ] ≥ (N/ j)1/2
)

≤ e−lN

P(ξ[N] ≥ N1/2) ≤ e−lN

(25)

Theorem 9:For everyδ > 0 there existsLδ > 0 such that,
for N sufficiently large,

P

(

∃w :

∣
∣
∣
∣

FN(w)

N
−F

(w
N

)
∣
∣
∣
∣
≥ δ

)

≤ e−NLδ

Since our decentralized algorithm is influenced by the
position of the local minima ofFN in [0,1/2], the result above
is not sufficient to study the performance. Indeed, we need to
study the asymptotic behavior of the variation function∆(w).

Theorem 10:For everyδ > 0, there exists̃Lδ > 0 such that

P
(

∃w :
∣
∣
∣∆(w)−F

′
(w

N

)∣
∣
∣≥ δ

)

≤ e−NL̃δ

for N sufficiently large.
Proposition 11: Consider an interval[a,b]⊆ [0,1] andε >

0. Then,

F′(x)≥ε ∀x∈ [a,b] ⇒ P(∆(w)≥0∀w∈ [Na,Nb])≥ pε (N)
F ′(x)≤−ε ∀x∈ [a,b] ⇒ P(∆(w)≤0∀w∈ [Na,Nb])≥ pε (N)

(26)
wherepε(N) := 1−Ce−L̃εN.
Proof Immediate consequence of Theorem 10 applied with
δ = ε.

We are now ready to state and prove the main theoretical
result of our work. Denote bySN the set of local minima of
FN in [0,1/2] and bySglob

N the subset ofSN consisting of the
global minima ofFN living in [0,1/2] (of course a priori this
set could as well be empty).

Corollary 12: Assume that

(a) min
ω∈[0,1/2]

F (ω) < min
ω∈[1/2,1]

F (ω).

(b) F admits just one local minimum point̄ω in [0,1/2]
(which is thus the only global minimum for (a)).

Then, for everyδ > 0, there existsJδ > 0 such that

P(SN/N ⊆]ω̄ − δ , ω̄ + δ [) ≥ 1−Ce−Jδ N

P(Sglob
N 6= /0) ≥ 1−Ce−Jδ N

(27)

By the way the approximate ML algorithm has been defined,
the condition expressed above in (27) yields

P(w(|T̂AML− T̂ML|)/N ≤ 2δ ) ≥ 1−Ce−Jδ N (28)

In other terms, the approximate ML algorithm is close to the
ML solution with high probability for largeN. We would like
to remark that conditions (a) and (b) of Corollary 12 can easily
be checked numerically and turn out to be satisfied in all
examples considered. An analytical proof of these conditions
is at the moment not available except for the limit caseσ → 0
treated in Proposition 5.
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V. BAYESIAN MODELING AND EM

An alternative approach to this estimation and detection
problem is possible if one postulates thatTi , i = 1, ..,N
are independent and identically distributed (i.i.d.) Bernoulli
random variables with parameterp

Ti ∼ B(p) p := P(Ti = 1). (29)

so that

P(T|p) =
N

∏
i=1

pTi (1− p)1−Ti (30)

Hence, one can formulate the problem of estimatingp, θ
andσ from measurementsy1, ...,yN. The maximum likelihood
estimator is defined by

(
p̂, θ̂ , σ̂

)
:= arg max

p,θ ,σ
∑

T∈{0,1}N

P(y|θ ,σ ,T)P(T|p) (31)

whereP(T|p) has been defined in (30) and

P(y|θ ,σ ,T) ∝ e
− 1

2σ2 ∑i(yi−θ−Ti)
2

.

Note that in the estimation problem (3) the number of un-
knowns grows with the number of data; instead the i.i.d.
assumption on theTi ’s allows to keep the parameter space in
(31) of fixed dimension. As a result, the asymptotic properties
of the estimators in (31), such as consistency and asymptotic
efficiency, follow straightforwardly from standard asymptotic
theory of maximum likelihood estimators, see [18].

An estimator of the variablesT1, ..,TN can then be obtained
by maximizing the maximum likelihood estimator̂P(T|y) of
the posterior probability

P(T|y) ∝ P(y|T,θ ,σ)P(T|p)

i.e.
(T̂1, ..T̂N) := arg max

T∈{0,1}N
P̂(T|y).

The maximum likelihood estimator̂P(T|y) of the posterior
probabilityP(T|y) is given, from the invariance principle (see
e.g. [18]), by

P̂(T|y) = cP(y|T, θ̂ , σ̂)P(T|p̂)

= ce
− 1

2 ∑N
i=1

(

yi−θ̂−Ti
σ̂

)2

+ln
(

p̂
1− p̂

)

∑N
i=1Ti

(32)

wherec is a suitable normalization constant.
The maximum likelihood problem (31) is a typical estima-

tion problem for a finite mixture distribution (see [5]) and
does not have a closed form solution. One possible approach
is to resort to the well known Expectation-Maximization (EM)
algorithm in [19]. This is an iterative algorithm which is
known to converge to a local maxima of the likelihood. For
reasons of space we shall only report the final equations for
EM iterations. We refer the reader to the book by [5] for a
derivation of the EM algorithm which can be easily adapted
to this specific problem.

Let θ̂ (k), σ̂ (k) and p̂(k) the estimators at thek− th iteration
of the EM algorithm; the estimators for the(k+1)-th iteration
are given by:

1) Expectation Step: compute the posterior probabilities

µ̂ (k+1)
j := P(Tj = 1|y, θ̂ (k), p̂(k), σ̂ (k))

= p̂(k)e
− 1

2




yj−θ̂ (k)−1

σ̂(k)





2

p̂(k)e
− 1

2




yj−θ̂ (k)−1

σ̂(k)





2

+(1− p̂(k))e
− 1

2




yj−θ̂ (k)

σ̂(k)





2

(33)
2) Maximization Step:

p̂(k+1) =
1
N

N

∑
j=1

µ̂ (k+1)
j

θ̂ (k+1) =
1
N

N

∑
j=1

y j − p̂(k+1)

σ̂ (k+1) =

√
√
√
√
√
√

1
N

N

∑
j=1

(

(y j −θ )2+ µ j −2µ j(y j −θ )
︸ ︷︷ ︸

)

θ=θ̂ (k+1) µ j =µ̂(k+1)
j

(34)

The EM algorithm (33),(34) has a “centralized” nature.
However it can be easily decentralized (i.e. computed by
each node only using local information) since it is essentially
based upon computing averages. It is well known that this
can be done resorting to consensus algorithms; for instance
an algorithm based on gossip has been proposed in [20]. The
averages in (34) can be computed using standard consensus
algorithms.

As expected, if the number of iterations used to compute
the averages in (34) is sufficient to reach consensus, this
distributed-EM algorithm converges to the centralized-EM
solutions. However, as soon as the number of iterations is
not sufficient to reach consensus, the distributed-EM algorithm
either oscillates or even diverge, failing to provide sensible
estimates. This simple simulation experiments suggest that
distributed-EM is not robust against errors in computing the
averages in (34) which may result from an insufficient number
of consensus iterations. As such, deciding how many iterations
are “enough” is a delicate matter. We have instead followed a
different route, which is based on the algorithm discussed in
Section VII.

VI. GENERALIZATION

One drawback of the model in (1) is that theTi ’s are
assumed to belong to a known alphabetA . In particular in
this paper we have considered the caseTi ∈ {0,1}. A simple
yet important generalization is to allow that the alphabet is
partially unknown. For instance one can assume that only the
cardinality of A is known. In the binary case considered in
this paper this is equivalent to assume that

yi = θ + αTi +vi (35)

with Ti ∈ {0,1} andα ∈ R+ unknown4.
In this more general scenario the maximum likelihood

estimator (3) becomes:

4It is immediate to show that, for identifiability reasons, only the difference
between the two symbols have to be parameterized; in addition this difference
can be assumed to be positive modulo permutations.
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(θ̂ ML, T̂ML, α̂ML) = argmax
(θ ,T,α)

P(y|θ ,T,α)

= argmin
(θ ,T,α)

[

∑i
(yi−θ−αTi)

2

2σ2

] (36)

Solving (36) is considerably more difficult than (3); one
possible approach is to utilize an alternating minimization
algorithm as follows:

(i) Fix α := α̂(k−1) and solve

T̂(k)(α) := argmin
T

min
θ

[

∑i
(yi−θ−αTi)

2

2σ2

]

(37)

(ii) Fix T := T̂(k) and solve

(θ̂ (k)(T), α̂(k)(T)) := argmin
(θ ,α)

[

∑i
(yi−θ−αTi)

2

2σ2

]

(38)

Problem (37) is analogous to (3) with the only difference
that in (3) we assumedα = 1. Hence this can be solved as
described in Section II-A.

Instead, problem (38) admits a closed form solution as:

θ̂ (k) = ∑i yi
N − α̂(k) ∑i T̂

(k)
i

N α̂(k) =
∑i T̂

(k)
i yi
N −∑i T̂

(k)
i

N
∑i yi

N

∑i T̂
(k)
i

N

(

1−∑i T̂
(k)
i

N

)

(39)
In Section VIII we shall also report simulation experiments,

in which α is not assumed to be known, using the alternating
minimization approach above; experimental evidence shows
that this alternating minimization algorithm converges infew
steps (2 or 3) in all the examples considered. Of course, in
the distributed scenario the averages in (39) will have to be
computed resorting to consensus algorithms.

As an alternative one could also consider the Bayesian
formulation in Section V for the measurement model (35).
This is standard estimation problem for a mixture of two
Gaussian distributions with unknown means and unknown
(but common) variance. An EM algorithm similar to (33),
(34) in Section V can be derived (see [5]). Of course, in
the distributed setting, when averages are computed using
consensus algorithms one encounters the same drawbacks as
discussed in Section V. In the simulation experiments we have
followed the strategy discussed in Section VII.

VII. D ISTRIBUTED SOLUTION OF“ALTERNATING-TYPE”
ALGORITHMS.

In this Section we address the problem of implementing
alternating algorithms (such as those described in Sections V
and VI) in a distributed scenario. For the sake of exposition
we abstract from the specific algorithms in Sections V and VI
and consider the following algorithm which alternates between
the two steps. Assume we haveN agents each having assigned
a givenfunctionHi : Rs→ Rr , i = 1, ..,N and a given function
G. For k = 1,2, ... do the following steps:

(i) Given X(k) ∈ Rs compute

Y(k)
i := Hi(X

(k))

(ii) Given Y(k)
i ∈ Rr compute

X(k+1) := G

(

1
N ∑

i
Y(k)

i

)

Assume now that, ask → ∞, this alternating algorithm con-
verges to a fixed pointX(∞), Y(∞)

i . Our purpose is to compute
the fixed point of this algorithm (or at least a “good” approxi-
mation) by means of distributed computations. LetX(k)

i be the
“local copy” at the agenti of the “state”X(k) at iterationk.
Ideally one would like thatX(k)

i = X(k)
j for all i, j ∈ [1,N]. Let

us define

Y(k) :=







Y(k)
1
...

Y(k)
N







and let Pk[·] : RrN → RrN denote an “average consensus”
operator, i.e. an operator which preserves the “average” of
its argument and such that

lim
k→∞

Pk[Pk−1[· · ·P0[Y] · · · ]] = 1N ⊗
[

1
N ∑

i
Yi

]

∀Y

We propose the following algorithm in which we need the
auxiliary variablesM(k)

i . These have the same dimension of

Y(k)
i and should represent an approximation of the average

values ofY(k)
i . The vectorM(k) is defined fromM(k)

i in a
similar way in which the vectorY(k) is defined fromY(k)

i .

1) initialization X(0)
i := X(0), Y(−1)

i = Y(0)
i = M(0)

i :=

Hi(X
(0)
i ) ∀i ∈ [1,N].

2) ∀k = 0,1,2, ... do:

(i) M(k+1) = Pk[M(k) − (Y(k−1)−Y(k))]

(ii) X(k+1)
i := G

(

M(k+1)
i

)

(iii) Y(k+1)
i = λY(k)

i +(1−λ )Hi(X
(k+1)
i )

whereλ is a tuning parameter which regulates how fast the
update ofY(k)

i is allowed to be. Ifλ = 1 no update is performed
in (iii ) so that also(iv) is constant and therefore, from (ii),

M(k) converges to its “average” i.e. to1N ⊗
[

1
N ∑i Y

(0)
i

]

.
This distributed gossip algorithm, which is inspired by the

distributed EM algorithms which are found in [9], has been
utilized in the simulation Section VIII to implement in our
distributed scenario both the EM-algorithm in Section V as
well as the EM and the alternating minimization algorithms
found in Section VI.

VIII. S IMULATIONS

In order to compare the algorithm introduced in this paper
with more standard EM algorithms (based on gossip iterations,
as proposed in Section V, VI), we consider the following
setup. In Example 1 (see Fig. 3) we assumeN = 50 sensors
are deployed and connected via a random geometric graph. A
typical realization of this graph (utilized for the simulations
in Figure 3) is depicted in Figure 2. The sensors measure data
according to the model (1) or equivalently according to the
model (35) withα = 1. We generate data withθ = 0, σ = 0.3
and assume thatTi are i.i.d. Bernoulli random variables with
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Fig. 2. Connection graph used in Example 1.

meanp= 0.3. In order to test the robustness of the algorithms
against outliers, in Example 2 we consider a second setup in
which data are generated as in Example 1, except for an outlier
y0 = −2 which is artificially added.

We compare the following algorithms:

1) Distributed AML ( α = 1): this is the distributed ap-
proximate Maximum Likelihood described in Section III
which is based on the model (1) withTi ∈ {0,1} as in
Section II.

2) Distributed AML : the distributed approximate Max-
imum Likelihood based on model (35), which also
estimatesα using the alternating maximization approach
described in Section VI, with the distributed implemen-
tation described in Section VII.

3) EM (α = 1): this is the EM algorithm introduced in
Section V with the distributed implementation described
in Section VII, based on the measurement model (1) with
Ti ∈ {0,1} as in Section II.

4) EM : this is the EM algorithm for the estimation of a
mixture of two Gaussian distributions with different and
unknown means discussed at the end of Section VI, with
the distributed implementation described in Section VII.

The simulation results show that there is not a clear-cut
distinction between different algorithms; from the limited
number of examples we considered, it seems that our ranking-
based algorithm is slightly faster than EM. Also the EM
algorithm which does not assumeα to be known does not
seem to converge (nor at least during the first 3000 iterations
(see Figure 4). The algorithm introduced in this paper exhibits,
overall, a comparable rate of convergence, if not a bit faster
than its competitors while being more robust to outliers in the
examples considered. The simulation results suggest also that
the performance just mildly degrade whenα is not assumed
to be known. One typical realization of the estimatorsθ̂i and
α̂i (estimators forθ and α at the i-th node) obtained by the
distributed AML algorithm are reported in Figure 5.
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Fig. 3. Example 1: Average (over 50 Monte Carlo runs) of the classification
error ∑N

i=1 |Ti − T̂i | as a function of the number of gossip iterations. Data are
generated as follows:θ = 0, Ti ∼ B(0.3), σ = 0.3.
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Fig. 4. Example 2 (with outlier): Average (over 50 Monte Carlo runs) of
the classification error∑N

i=1 |Ti − T̂i | as a function of the number of gossip
iterations. Data are generated as follows:θ = 0, Ti ∼ B(0.3), σ = 0.3. An
outlier is added to each Monte Carlo realization by settingy1 = −2.

IX. CONCLUSIONS

In this work we studied the problem of distributively com-
puting simultaneous binary classification and noisy parameter
estimation in a network of distributed sensors subject to
topological communication constraints. We have proposed a
fully decentralized approximate ML solution and proved that,
when the number of agentsN goes to∞, such a solution
converges, with probability one, to the centralized ML solu-
tion. Compared to more classical approaches like EM methods,
our algorithm presents similar convergence rates but stronger
robustness in various situations, for instance when the offset
of the “misbehaving” sensors is not known, or in the presence
of outliers.

Different research avenues are possible, such as the gen-
eralization to multiple class, the development of more robust
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Fig. 5. Distributed AML: estimateŝθi and α̂i for each nodei as a function
of the number of gossip iterations.

strategies when the offset is unknown as well as the problem
of distributed implementation of alternating-type algorithms.

APPENDIX

Proof of Proposition 4.We start by noting that from Propo-
sition 2 follows that almost surely limk→∞ x(k)

i = 1
N ∑N

i=1yi =

w(y) and limk→∞ η(k)
i = yi −w(y), while from Theorem 3 we

have that almost surely there existsT1 such thatrk(k)
i = oi for

k ≥ T1. Without loss of generality, let us now assume that
all measurements are distinct, i.e.y[1] < y[2] < .. . < y[N]

5 and
define

δ = min
k=1,...,N

∣
∣
∣
∣
2(yi −w(y))−1+

2(N−oi)+1
N

∣
∣
∣
∣

From Proposition 2 it also follows that there existsT2 such that
|η(k)

i − (yi − ȳ)| < δ for all k ≥ T2 and forall i almost surely.
This fact and Theorem 3 imply that there existsT such that

2η(k)
i −1+

2(N− rk(k)
i )+1

N
> 0 ∧ rk(k)

i >
N
2

, k≥ T
a.s.⇐⇒

a.s.⇐⇒ 2(yi −w(y))−1+
2(N−oi)+1

N
> 0∧oi >

N
2

Therefore, according to (13), this implies thatT̂(k)
i = T̂AML

i
holds almost surely for allk≥ T.

Note now that
N

∑
i=1

w(k)
i =

N

∑
i=1

w(k−1)
i +

N

∑
i=1

(
T̂(k)

i − T̂(k−1)
i

)

=
N

∑
i=1

w(0)
i +

N

∑
i=1

(T̂(k)
i − T̂(0)

i )

=
N

∑
i=1

T̂(k)
i =

N

∑
i=1

T̂AML
i = Nw(T̂AML), k≥ T

5The theorem holds also fory[1] ≤ y[2] ≤ . . . ≤ y[N] but the proof is slightly
more tedious since the ranking might not be unique

where we used the fact thatwi(0) = T̂i(0) = 0,∀i and the
last equality follows from Equation (17) almost surely for
some T. Since for k ≥ T the differenceT̂(k)

i − T̂(k−1)
i = 0,

then Proposition 2 implies that limk→∞ w(k)
i = w(T̂AML) almost

surely, and consequently also (18).

Proof of Proposition 5.From equation (24) it suffices to show
that

lim
σ→0

∫ 1

1−ω
Fξ

−1(t)dt = µ(ω)

uniformly for ω ∈ [0,1], where

µ(ω) := p+(ω − p)δ−1(p−ω) =

{

ω ω ≤ p

p ω > p

Through a change of variable it is easy to verify that

∫ 1

1−ω
Fξ

−1(t)dt =

∫ ∞

F−1
ξ (1−ω)

t fξ (t)dt

Denote now

zσ (ω) :=
F−1

ξ (1−ω)−1

σ
.

Let us definefξ (t) :=
dFξ (t)

dt andφσ (t) := dΦσ (t)
dt so that

fξ (t) = (1− p)φσ(t)+ pφσ(t −1). (A.40)

For simplicity we shall also useφ(·) := φ1(·) and Φ(·) :=
Φ1(·). Using (A.40) and suitable change of variables it follows
that
∫ 1

1−ω
Fξ

−1(t)dt =

= (1− p)

∫ ∞

F−1
ξ (1−ω)

tφ
( t

σ

)

dt+ p
∫ ∞

F−1
ξ (1−ω)

tφ
(

t −1
σ

)

dt =

= σ(1− p)

∫ ∞

zσ (ω)+1/σ
xφ(x)dx+ σ p

∫ ∞

zσ (ω)
xφ(x)dx+

+p
∫ ∞

zσ (ω)
φ(x)dx

and so
∣
∣
∣
∣
µ(ω)−

∫ 1

1−ω
Fξ

−1(t)dt

∣
∣
∣
∣
≤

≤ σ(1− p)

∣
∣
∣
∣

∫ ∞

zσ (ω)+1/σ
xφ(x)dx

∣
∣
∣
∣
+ σ p

∣
∣
∣
∣

∫ ∞

zσ (ω)
xφ(x)dx

∣
∣
∣
∣
+

+

∣
∣
∣
∣
µ(ω)− p

∫ ∞

zσ (ω)
φ(x)dx

∣
∣
∣
∣
≤

≤ σ(1− p)

∫ ∞

−∞
|x|φ(x)dx+ σ p

∫ ∞

−∞
|x|φ(x)dx+

+|µ(ω)− p[1−Φ(zσ(ω))]|

Since the first two elements of the sum do not depend onω
and they converge to zero asσ tends to zero. It remains to be
proved that the third element of the sum converges uniformly
to zero inω asσ tends to zero.

Let

Gσ (ω) := µ(ω)− p[1−Φ(zσ(ω))]
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Notice that zσ (ω) is decreasing inω and that ω = 1−
Fξ (σzσ (ω)+1). Now, if ω ≤ p, then

Gσ (ω) = ω − p[1−Φ(zσ(ω))] =
= 1−Fξ (σzσ (ω)+1)− p[1−Φ(zσ(ω))] =
= 1− (1− p)Φ(zσ(ω)+1/σ)− pΦ(zσ(ω))

−p+ pΦ(zσ(ω)) =
= (1− p)[1−Φ(zσ(ω)+1/σ)]

which is a positive and increasing function ofω . If instead
ω ≥ p, then

Gσ (ω) = p− p[1−Φ(zσ(ω))] = pΦ(zσ (ω))

which is a positive and decreasing function ofω . We can argue
that

|µ(ω)− p[1−Φ(zσ(ω))]| = Gσ (ω) ≤ Gσ (p)

and so, in order to prove the uniform convergence to zero of
the left hand side, it is enough to prove thatGσ (p) converges
to zero asσ converges to zero.

Notice finally that, from the previous arguments we have
thatGσ (p) = pΦ(zσ (p)). To prove that limσ→0 pΦ(zσ (p)) = 0
it is equivalent to prove that limσ→0zσ (p) = −∞. Assume by
contradiction that this is not true. Then there would exist a
real constantM and a sequenceσn converging to zero such
thatzσn(p)≥ M for all n. This would imply thatF−1

ξ (1−p)≥
1+ σnM and so

1− p≥ Fξ (1+ σnM) = (1− p)Φ(M +1/σn)+ pΦ(M)

Notice that the right hand side converges to 1−p+ pΦ(M) asn
tends to infinity. This would imply that 1− p≥ 1− p+ pΦ(M)
which yields a contradiction.

The fact that limσ→0 ω̂(σ) = p follows from the uniform
convergence and from the fact thatp is the unique minimum
of the limit function.

Proof of Lemma 7.Fix j and putt = F−1
ξ ( j/N)− δ so that

j = NFξ (t + δ ) = NpΦσ (t + δ −1)+ (1− p)Φσ (t + δ )

Using (22) we obtain that

P(ξ[ j ] ≤ F−1
ξ ( j/N)− δ ) = P(Λt ≥ j)

= P(Λ1
t + Λ0

t ≥ NpΦσ (t + δ −1)+N(1− p)Φσ (t + δ )

≤ P(Λ1
t ≥ NpΦσ (t + δ −1))+P(Λ0

t ≥ (1− p)Φσ (t + δ ))
(A.41)

Theorem 6 yields

P(Λ1
t ≥ NpΦσ (t + δ −1))

≤ exp
[

−|I1|Φσ (t −1)γ
(

NpΦσ (t+δ−1)
|I1|Φσ (t−1)

)] (A.42)

Notice that, forj ∈ [aN,bN], t remains bounded, as wellFσ (t−
1). In particular, this implies that, ifN is sufficiently large, the
argument ofγ is above a constanty0 > 1 for all j ∈ [aN,aN].
Therefore, we can find a positive constantC such that

P(Λ1
t ≥ NpΦσ (t + δ −1)) ≤ e−CN

Arguing similarly for the other addend in (A.41) and for the
analogous termP(ξ[ j ] ≥ F−1

ξ ( j/N)+δ ), we obtain the thesis.

Proof of Lemma 8.Arguing like in (A.41), we can estimate

P
(

ξ[ j ] ≤−(N/ j)1/2
)

≤ P(Λ1
t > p j)+P(Λ0

t > (1− p) j)
(A.43)

wheret = −(N/ j)1/2. To estimate the first addend, consider

y =
p j

E(Λ1
t )

=
pN

|I1|t2Φσ (t −1)

If j ∈ [1,aN], we have thatt ≤−(1/a)1/2. Hence, ifa is chosen
sufficiently small, we can ensure thaty≥eC1t2 for someC1 > 0.
Hence, using the Remark after Theorem 6,γ(y) ≥C2ylogy≥
C3yt2 for suitableC2, C3 > 0. Using Theorem 6, we then obtain

P(Λ1
t > p j) ≤ e−Cp jt2 = e−CpN

Arguing in a similar way for the second addend in (A.43), we
obtain the first estimation in (25).

The second estimation in (25) follows from

P
(

ξ[N− j ] ≥ (N/ j)1/2
)

= P(Λt < N− j) = P(N−Λt > j)

repeating the same arguments above with the binomial r.vN−
Λt . This yields the second estimation. Finally, the third one
can also be obtained along the same lines of reasoning.

Proof of Theorem 9.We can estimate, forw∈ [1,N],
∣
∣
∣

FN(w)
N −F

(
w
N

)
∣
∣
∣

≤ 2|Ω + p|+21
Nξ[N] +2 1

N

N−1
∑

j=N−w+1

∣
∣
∣ξ[ j ] −F−1

ξ

(
j
N

)∣
∣
∣

+2

∣
∣
∣
∣
∣

1
N

N−1
∑

j=N−w+1
F−1

ξ

(
j

N

)

−
1∫

1−w/N
F−1

ξ (t)dt

∣
∣
∣
∣
∣

(A.44)
Let us start with the last deterministic addend. Standard
calculus shows that there exists a sequenceAN converging
to 0, such that, for everyw∈ {1, . . . ,N},

∣
∣
∣
∣
∣
∣
∣

1
N

N

∑
j=N−w+1

F−1
ξ

(
j

N

)

−
1∫

1−w/N

F−1
ξ (t)dt

∣
∣
∣
∣
∣
∣
∣

≤ AN (A.45)

The second term can be decomposed as follows

1
N

N−1
∑

j=N−w+1

∣
∣
∣ξ[ j ]−F−1

ξ

(
j

N

)∣
∣
∣

≤ 1
N

bN
∑

j=aN

∣
∣
∣ξ[ j ] −F−1

ξ

(
j
N

)∣
∣
∣+ 1

N

aN
∑
j=1

|ξ[ j ]|+ 1
N

N−1
∑

j=bN
|ξ[ j ]|

+ 1
N

N−1
∑

j=β N
|F−1

ξ ( j/N)|+ 1
N

aN
∑
j=1

|F−1
ξ ( j/N)|

(A.46)
Fix δ > 0. It immediately follows from (A.45) that

1
N

N−1

∑
j=bN

|F−1
ξ ( j/N)|+ 1

N

aN

∑
j=1

|F−1
ξ ( j/N)| < δ/7 (A.47)

if a andb are sufficiently close to 0 and 1 respectively.
The remaining terms in (A.46) and in (A.44) are now

random variables. In the sequel we will use the notation
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C1,C2, . . . to denote positive constants and we will implicitly
assume that all statements are forN sufficiently large without
explicitly specifying it. It follows from Lemma 8 that

P

(

1
N

aN

∑
j=1

ξ[ j ] ≥− 1
N

aN

∑
j=1

(N/ j)1/2)

)

≥ 1−e−NC1

Moreover, using Lemma 7 it also follows that

P(ξ[ j ] < 0,∀ j ∈ [1,aN]) ≥ 1−e−NC2

Hence, with probability at least 1−e−NC3 it holds that

1
N

αN

∑
j=1

|ξ[ j ]| ≤
1
N

aN

∑
j=1

(N/ j)1/2) ≤
∫ a

0
x−1/2dx

This last integral converges to 0 fora→ 0+, hence, we can
choosea > 0 sufficiently small in such a way that

P

(

1
N

aN

∑
j=1

|ξ[ j ]| ≤ δ/7

)

≥ 1−e−NC3 (A.48)

Similarly, we can chooseb < 1 in such a way that

P

(

1
N

N−1

∑
j=bN

|ξ[ j ]| ≤ δ/7

)

≥ 1−e−NC4 (A.49)

We now assume thata and b have been fixed in such a way
that (A.47), (A.48), and (A.49) hold true. In correspondence
of sucha andb, it follows from Lemma 7 that

P

(

1
N

bN

∑
j=aN

∣
∣
∣
∣
ξ[ j ]−F−1

ξ

(
j
N

)∣
∣
∣
∣
≤ δ/7

)

≥ 1−e−NC5 (A.50)

Finally, we take care of the first two terms in (A.44).
Lemmas 7 and 8 show that

P

(

0 <
1
N

ξ[N] <
1√
N

)

≥ 1−e−NC6

Hence,

P

(
1
N
|ξ[N]| ≤ δ/7

)

≥ 1−e−NC6 (A.51)

By the definition ofΩ (see (20)), it follows immediately that

P(|Ω + p| ≤ δ/7) ≥ 1−e−NC7 (A.52)

Using estimations (A.45), (A.47), (A.48), (A.49), (A.50),
(A.51), and (A.52) inside (A.46) and (A.44) we obtain the
thesis.

Proof of Theorem 10.We can estimate
∣
∣
∣∆(w)−F

′
(w

N

)∣
∣
∣≤ 1

N
+2|Ω+ p0|+2

∣
∣
∣ξ[N−w] −F−1

ξ

(

1− w
N

)∣
∣
∣

We then conclude with arguments similar to those used in the
proof of Theorem 9.

Proof of Corollary 12.The first statement is an immediate
consequence of Proposition 11 applied to the subintervals,
respectively,[0, ω̄ − δ ] and [ω̄ + δ ,1].

Concerning the second point, notice that by (a) we have that

min
ω∈[1/2,1]

F (ω)− min
ω∈[0,1/2]

F (ω) = δ̄ > 0

Applying now Theorem 9 withδ = δ̄/3, we obtain the thesis.
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