Gossip algorithms for simultaneous distributed
estimation and classification in sensor networks

Alessandro Chiuso,Senior Member, IEEEFabio Fagnani, Luca Schenatdember, IEEE Sandro Zampieri

Abstract— In this work we consider the problem of simultane- More precisely, we assume that we hadveunits and that
ously classifying sensor types and estimating hidden paragters egch uniti measurey; that can be expressed as
in a network of sensors subject to gossip-like communicatio
limitations. In particular, we consider a network of noisy sensors
which measure a common scalar unknown parameter. We assume
that a fraction of the nodes is subject to the same (but possip . . . .
unknown) offset. The goal for each node is to simultaneously Where 8 € R is a continuous parameter influencing all the
identify the class to which the node belongs and to estimatéh¢  units, T; € <7, with </ being a finite set, is a discrete parameter
common unknown parameter, only through local communicatio  influencing each unit independently ands a noise term. The
and computation. We propose a distributed estimator based o goal of each unit is to estimate the common paramétand

the maximum likelihood (ML) approach and we show that, it i T Notice that th f th
in case the offset is known, this estimator converges to the 'S Specific oneli. Nouce tha € presence o € common

centralized ML as the number N of sensor nodes goes to infinity. Parametet impose that any efficient estimation technique will
We also compare this strategy with a distributed implementéion  require cooperation between units and therefore will nequi
of the estimation-maximization (EM) algorithm; we show trade-  communication. We will assume that communication between
offs via numerical simulations in terms of robustness, spek of the units can occur only according to a graph as discussed

convergence and implementation simplicity. in Section Ill, which is devoted to the distributed algonith

Yi=0+Ti+Vv. 1)

description.
There are various examples of applications in which the
. INTRODUCTION previous estimation problem could be of interest. One ap-

. . L lication is related to fault detection. In this case thetani
In recent years, we have witnessed an increasing interest In .
. L . : represent some sensors that, when working properly, measur
the design of control and estimation algorithms which can’ . .
X o noisy version of the paramet@rand that, when faulty, add a
operate in a distributed manner over a network of locally. o SR
ias to the measurement. A similar situation is when these ar

communicating units. A prototype of such problems is th eterogeneous sensors belonging to classes which difiéxeby
average consensus algorithm [1], [2], which can be used ag.a

o - ias they add. In both cases the parameter of primary irtisres
distributed procedure providing the average of real nusmbe ) . . _
. e . . Another example is when there are different units beloggin
each of them belonging to a unit. Since the average is t

e o . .
o L o different classes, the objective being to classify thersell
building block for many estimation methods, the average ) . vject 9 y
) n they;’s while also estimating the common parameter
consensus has been proposed as a possible way to objain . o . . ) .
o o . . . . S a possible application of this last scenario, we can imagi
distributed estimation algorithms and, in particular, tatain . N .
S o : . a network for environmental monitoring; the different vesu
distributed Kalman filtering [3], [4]. However, while avejiag . !
) . . - af T; could model for instance a constant external field only
is suitable for the estimation of real valued parameters, ]

is tvpically of no help when the quantities to be estimate%aive in certain areas where the sensor is located, sudbr as f
ypically P q instance being in the sunshine or in the shade or being inside

belong to a finite alphabet. Moreover, the average is b
definition an operation which fuses information loosing in
this way the possible information that is specific of each
unit. The model we consider in the present paper has
characteristics: the information of each unit containshbat .
common scalar parameter and a unit specific parameter é{lﬁ
this second parameter belongs to a finite alphabet. t

outside of a fire.
More in general, these problems fit in the general class of
e unsupervised clustering problems, which are quitedstiah
in statistics [5], [6]. Algorithms for clustering have been
gely proposed in the computer science literature both for
e standard centralized case [7] and for the distributesg ca
[8], [9], [10], [11]. Indeed, the technique proposed in thaper

, _ can be seen as a distributed algorithm for a specific clugteri
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The structure of the paper is as follows: Section Il introwill show instead that the maximum likelihood estimator @& n
duces the model we consider; the decentralized estimatooidy computationally simple, but also prone to a decerteali
studied in Section Il while its limit behavior is charadmad implementation.
in Section IV. In Section V an alternative approach based onit easy to solve the minimization in (3) for a fix&d
a Bayesian model is presented and some generalizations are

discussed in Section VI. Section VII describes a distridute 6(T) = argmin[zi %}
implementation of alternating-type algorithms such ass¢ho 1 6 Wiy)—w(T) 4
found Sections V and VI. Some simulations are presented = {iyi—T)= N

in Section VIII while conclusions are drawn in Section IX, ) N , , 1
In order to streamline exposition all proofs are postpored { € €stimatoB(T) is then a function of the averagé “w(y),
Appendix A. which can be obtained by a standard consensus algorithm, and

of the average biad—*w(T). This second term however is not
directly available, so that (4) is not an implementable sofu

) ) ) ) o Rather, substituting (4) in (3) we obtain
In this section we give a more precise description of the

Il. THE MODEL

model we consider and of the estimation cost we aim at W) W) 2

odel e estimation A (e oT)
minimizing by the proposed estimation algorithm. Assuna th FML — argmin Z (5)
the measurementg are as in (1), wher® € R, v; are zero T . 202

mean, independent Gaussian random variables with variance

o for simplicity, with respect to what mentioned in therhjs minimization can be solved in a two-step way by con-
introduction, we will restrict to the case in whidh can take gjgering

only two values, that are supposed to be known and which,

with no loss of generality can be supposed to be 0 and 1, (y- W) w _T_)Z
i.e. Ti € {0,1}. The goal of each unitis to estimated andT;. min min 3 NN ©6)
Extension to the case in which the difference between the wW=0,...N | T:w(T)=w4 202

two symbols is unknown are discussed in Section VI. The

algorithm we propose does not need to know the variarfce For everyw=0,...,N, put

which therefore can be assumed to be unknown. ,

I T

A. The maximum likelihood estimator Tw = argmin 257 (7)

Tw(T)=w"T

When the bias termT; is not present, the centralized
maximum likelihood estimator 06 (assuming that all mea- Let us define
surementy; are available) is given by B w(y)

O=N"'Yv. (2
! and consider a permutatiof] : {1,...,N} — {1,...,N} such

This arithmetic average can be asymptotically evaluatetth®y that N < Nz < -+ < Ny~ Clearly, the above minimization
agents in the graph through standard consensus algorittmssasolved by the vectot,, such that
long as the graph is strongly connected.

The presence of the bias terms makes the problem quite (Tl _{ 0 if j<N-w ®)
harder. In this paper we propose a decentralized versiomeof t il 1 otherwise
centralized maximum likelihood estimator for this proble
We set some useful notation. We consider the vecyars
(Y1,...yn) and T := (Tq, To,... Tn) and the following weights
w(T) =3 T, w(y) := 3 ¥i. The maximum likelihood estimator
is defined as N

W2
(T Fw):=—gtw-2 i) ©)
20? j=N=w+1

mSubstituting in (6) and performing simple algebraic transf
mations, we obtain that the solution of the outer minimizati
problem in (6) becomew = argminF (w), where

(GML FMLY argma)P(Y|9’T):argmin[zi
6.1) 6.1)

] ) o ©) . Clearly, from (8),
Remark 1: The choice of the maximum likelihood esti-

mator is motivated by the simplicity of the solution we FML_ oy 0 ifj<N—-w (10)
obtain from it. Of course, it would be natural to seek for [i] =Ty = 1 otherwise

“optimal” estimators which minimize, e.g., the variancetf

E[(6 — 6)7] and/or the average classification ergjgN , |T,— @nd from (4) we get:

Ti|]]. Unfortunately these optimal estimators are in general % ML
computationally intractable even in the centralized ca¥e. M- = Wly) =W = wly) —w(T™) (11)

N N

1The solution we propose can be extended immediately to &einavhich
Ti € {a,b} wherea,b are assumed to be known real parameters. 2The subscript;) is quite standard in statistics to denote ordered samples.



I1l. A DECENTRALIZED ESTIMATOR is below N/2 to estimate‘f'[oi} = 0. We can summarize the

. . previous reasoning in the following definitions:
Notice that each agentcan computen; by a consensus

algorithm. Moreover, as will be discussed later, there texis 1 if 2(yi_%y)) >1-2RONL g N
an efficient decentralized algorithm capable of ordering th ~ TAML.—

ni, so that each agemtknows its ordered position;. 0 otherwise

E.g. if the observatiom; of agenti is the smallestamong BAML . w(y)—w(FAML)
all observations (i.en; < nj, Vj #1i) theno; = 1; if yy is o N (13)
t{hlezseccl)\ln}dairgalleslk =2 and so on; more precisely; where the superscrifAML stands forapproximate maximum
A likelihood This approximate maximum likelihood estimator
0 <0j = Ni < nj. converges (adN — ) to the maximum likelihood estimator
) ) in (3) as formally stated in Corollary 12.
The mapo. : .4/ — ./ is a permutation of the set)” = Before describing the algorithm to Compl{léAMvaAML)

{1,..,N}. Using a notation which is rather common in the,, 4 distributed fashion, we need to introduce some useful ge

statistics literature, we can defifyg: .4 — .4 as the inverse g5 gistributed algorithms that will be used in our algumit
permutation w.r.o,, i.e. [0]] =i, which implies that

i = Nioy]- A. Decentralized average and ranking computation

o ) We model the network of distributed agents with a graph

For each valuew, the agent is thus capable of computinge, _ (N, &) wheret = {1,2 N} is the set of nodes and
7o) AML | i ’ 25y

(Tw)i through (8). In order to comput&™ using (10) We ¢ i the set of edges corresponding to the communication
need to know the ordered positian of agenti with respect jinks. Wwe indicate withv (i), the set of neighbors of nodegi.e.
to N—w. This wo_uld foIIow_ n‘_ we could computev in a V(@i)=1{j| (,j) € &}. We assume that the graph is connected,
decentralized fashion, but this is not at all evident, bseaaf ; o ‘thereis a path between any two nodes, and it is undiecte
the presence of the aggregation teffl 1 1yjj in (9). i.e. nodes are capable of bidirectional communications. We

Consider the discrete derivative bt also assume that each sensor nodenows its labeli, i.e.
_ 2w 1 nodes are numbered from 1 k& As shown in thg previous
Aw)=FWwW+1)—FW) = ——g—=+1-20n-w (12) section, in order to compute the AML estimatdé™L and

_ TAML, as given in (13), it is necessary to compute the averages
for W= 1...,N—-1. N(_)'Flce thatA(w) can be computed by the o¢ some quantities, namely(y) andw(TAML), and the ranking
agent in ordered positioN — w. of each node;.

Define the set of local minima: Distributed algorithms for computing averages are well
] studied and are also known as average consensus algorithms
& ={we [LN][A(w-1) <0, A(w) > 0} (see surveys [13] [14] and reference therein).
We shall denote with“Z,,e an “average” operator which

takes as argumen(sxi(k),xgm), wherexi(k> is the “local” state

computational problem could be solved in the following waﬁtor?d n ”Odf at thek—thiteration and(i, j) € &', and returns

Notice that in this case we would have tiatw) decreases € “updated” state as

until it_s_minim_gm pointwand then starts to increase. A generic (xi(k“),xﬁk“)) _ yave()(i(k>7xgk)) (14)

agenti in positiono; can computéA(N — ;). If AIN—0;) <0

thenN —oj < W, namelyo; > N —W, which implies by (10) The following proposition provides the convergence prop-

that (Ta) o) = 1. If insteadA(N—0;) > 0, then(Tys) ;o] = 0. So, erties of the Randomized Gossip Average Consensus, which

in this way, each agent could compute its ML estima$f-. have been well studied in [15] and [16].

Again, using consensus all agents can then compNuteV =

N-1w(TML) and can therefore also compuleusing formula Algorithm 1 Randomized Gossip Average Consensus [15]

4. Require: graph¥ = (.4, &), probability distributionp;; over
Of course, the decentralized algorithm proposed above can &, measurementg

always be implemented by the agents. In the following part of.: for all nodei do

the paper we will show that, typically, fod large,F possesses 2: Xi(o) =Vi, k=0.

just one local minimum in0,1/2] which happens to be the 3: end for

global minimum on0, 1], while possibly exhibiting other local 4: repeat

minima on]1/2,1]. It follows that, with high probability, the 5: randomly select edgé, j) € & with P[(i, j)] = pij

maximum likelihood estimator can be obtained by applyings: (xi(k”),xgkﬂ)) = Qa\,e(xi(k),xgm)

the previous algorithm to all agentsvhose ordered position . (k1) _ x(k), Vh£i, h# |

o is aboveN/2 while forcing all agents whose positian 5" Kl n ’

9: until k> M

(interpreting, conventionallyA(0) < 0 andA(N+1) > 0 as
always true assertions). If we knew tha?| = 1 then our

SFor simplicity of exposition we shall assume that it is nosgible that
any two agents have the same observation,fi(ej),i # j : ni = nj.



Algorithm 2 Randomized Gossip Ranking
Require: graph® = (.4, &), probability distributionp;; over
&, measurementg, node 1" has ID .

1: for all nodei do

2 Initialize & = init(y;i),

3: end for

4: repeat

5:  randomly select edgé, j) € & with P[(i, j)] = pij
6 (£, &) = 2. &)

7 Y=gl vhzih#]

8 k=k+1

9: until kK>M

k™ = extract(§) Vi

[N
o

Theorem 3 (Randomized Gossip Rankinghnsider Algo-
rithm 2. If the graph/ is connected angj; > O for all edges

(i,]) € & then there exist$ > 0 such tharki(k) in (16) satisfies

k=0 Vk>T,i=1....N almost surely

B. Decentralized estimation and classification algorithm

We are now ready to present the algorithm that allows each
sensori to compute the approximate maximum likelihood
(AML) estimate for the unknown parameté and for its
unknown classT;. The algorithm is based on the randomized
gossip average consensus and ranking presented in the previ
ous section and it is summarized in Algorithm 3.

Algorithm 3 Gossip Estimation and Classification

Proposition 2 (Gossip average consensus [15], [16]):
Consider Algorithm 1. If the graph¢ is connected and
pij > 0 for all edgeq(i, j) € & then we have

N

2:

lim . almost surel 3
kﬂmx NZy. y "

Require: graph¥ = (.4
&, measurementg, node 1" has ID .
1: for all nodei do

&), probability distributionp;; over

r’i(O):yiv WI(0> =0, 6 —yh -’|=I(0> -0
lines 1-3 of Algorithm 1

line 1-3 of Algorithm 2

The randomized implementation of the average consensus end for
has the advantage to be asynchronous, i.e. nodes do ngtrepeat

require time-synchronization or fine coordination, and & b 7.
parallelizable, i.e. several nodes can perform the updates g.
the same time as long as the updating node pairs are disjoigt

randomly select edgé, j) € & with P[(i, J)] = pij
lines 6-7 of Algorithm 1
lines 6-7 of Algorithm 2

[15]. 10: rk(kH) = extract(fl( >) rkE Y= extract(fj(k+1))
In the sequel of the paper we shall also need a distributed k1 (k+1) (k+1) k1
ey Y =y XY
algorithm which is able to rank the nodes of a network based" X' o I o
on the ordered list of the magnitude of their measurements:  if k™ > N A anl > 1 W then
The algorithm is randomized in the same spirit of the presiou, 5. Fhtl) _q
randomized gossip average consensus, i.e. at each timegn elsé
edge of the network is selected at random and correspondipg T+l _ g
nodes exchange information and update their local variablg;. endl if
The pseudo-code of this algorithm is given in Algorithm 2. (k+1) y (k1) 2Ntk )1
Without entering into the detail which can be found in [17]}’ if rkl(ﬁi’l) 27 A 2’71 >1- N then
it suffices here to assume that this algorithm requires, dche 18: T; =1
nodei, a local “state”Ei(k) at iterationk. This local state needs 19: e|S§(k+l>
to be initialized as a function of the “local” measuremeritiea  20: T = 0
yi and node IDi; we shall denote the initialization procedure2:  end if )
as PYSIIYY L B s (f(k+1) _ *_(k))
0 C . ’ I i i
Ei( = init(yi,i) N ' wi N (.i:_(k+1) _ A_(k))
Similarly to what has been done above, we shall denote égk+1) _X_(k+21) W_(k+i) .
with 2 a “ranh(i)ng’;k?perator, d.ef.ined in [17], which takes . él(k+1) :xl(k“) wl(-k“)
. _ i i
?s argurr:ents{.{I ,EJ ), where (i,j) € &, and returns the 2. for all (21, Ne£ie+]do
updated” state as .
) 27: line 9 of AIgonthm 1
k+1) £ (k+1) . )
A P 15) 28 lines 26-29 of Algorithm 2
(. &) = 7. ") (1) = lines 2620 oo 2
The statefi(k) contains, in particular, a variabfki(k) which . f'(k+l> _ ’7kk> 6(k+1) W_I(k)
is the current estimate at nodeof its rank. We shall call 5. ond for b !
gxt ract a procedure which extract this variable fragn”, 320 k=k+1
I.€. 33: until k> M

k™ = extract(§¥) (16)

The Randomized Gossip Ranking algorithm is sketched aboveln practice, it is necessary to compute the mean of the
and its asympotic behavior of this algorithm is formallyteth measurements(y) (Algorithm 1) and the ranking of the nodes

in the following theorem [17]:

o; (Algorithm 2) to evaluate the condition given by (13) that



correspond to lines 11-20 of Algorithm 3. The variab §), Put Af := |{i € 19]& < t}| for q=0,1. At and A? are
t t

w represent, respectively, the estimates of nod time two Binomial r.v. of type, respectivelf3(|l*|,®; (t — 1)) and
k of the displacement of its measurement from the averad¥!®l,®s (t)). Since, A\t = Al + AP, we have thatE(A) =
i.e.yi— &N,y and of the fraction of nodes that belongs tdl1/®s (t — 1) + [lo| s (t) and
the class 17, i.e2 yN, TAML The variabled: ™, 8 instead E(A)

’ N Zi=1"i [ | H t) P
represent the estimate of nodat timek of the unknown node ™Mo N Fe(t):=pPo (t-1)+(1-p)Po(t) (23)
classT; and the unknown parametér From Theorems 2 and Let us now consider the following normalized and scaled

3 it follows that the estimates&® andx™® will converge to yarsion ofFy (W):

i i
o, and w(y), therefore the conditions stated in lines 11 and

. T . " 1 2 N
1A.6 WI|| coincide with the condition of (13)._ As a cpnsequencgN(w) = RN = -+ w— = z N
T; will converge (as the number of gossip iterations goes to N N o))

infinity) to the asymptotic maximum likelihog§*™"-. In order N
to compute the centralized approximate ML estimate of the — _w2_|_w_2wQ_3 Z S, we IN71,1)
parameterf it is necessary to compute the fraction of the k:'\{N(l,w)HJ
“1"-class nodesy(TAML) = LyN  TAML This is achieved by _ .
lines 21-22 in the algorithm which correspond to an averageEduations (22) and (23) suggest thigl; and F,~(w/N)
consensus applied to the time increments of the input sigﬁglof‘ld be close to each other for latye We can thus guess
7. This guarantees thgt¥ ;w = sN, 7® at every time that:
instantk. Since allf* converge taFAML, then the input signal  IMN—wFn (@) 2 7 (w)
1 | '

to equations of lines 21-22 tends to zero and asymptotically F(w) ::—w2+w+2pw—2/1|:{l(t)dt we (0,1] (24)
eachw™ will converge tow(TAVL). This claim is formally 0 ’ ’
stated in the next theorem: Likely enough, local extrema oFy will converge, almost

Proposition 4: Consider Algorithm 3. If the grapl¥ is surely, to the local extrema ofF so that if # possess just
connected angbi; > O for all edges(i, ) € & then we have: one local minimum orf0,1/2] which is the global minimum,

L2k RAML then this will also happen fdfy almost surely wheiN — +oo.
;lmoTi =T almost surely an This would mean that our decentralized algorithm will alinos
lim éi<k) — "ML  gImost surely (18) surely coincide with the centralized ML algorithm. The next

k—oo section will make precise all these considerations.

IV. THE LIMIT BEHAVIOR

In what follows we study the behavior (in particular théA' The analysis of the functiof (w)

monotonicity) of the objective random functiGhwhenN — In spite of its apparent simplicity, an analytical study loé t
+o0. To emphasize dependence Np from now on we will function.7 is not easy to obtain. It is immediate to verify
use the notatioffy. that.% is continuous. Regarding its monotonicity, numerical
We recall that, in our approach, the bias vallieare fixed, investigations seem to show that can have one or two local
even if unknown to the agents. We put minima depending on the particular values foandp, i.e. the
1 0o . derivative of.# is equal to zero once or three times. However,
I"={i=1... N[Ti=1}, I"={i=1....N[Ti=0} the derivative of# seems to be equal to zero in only one point
and we assume that in w € (0,1/2) which corresponds to the global minimum.
IE w(T) One case which can be studied in detail is the “small
lim — = lim ——==pel0,1/2] (19) noise” case, i.e. the limi — O; this is done in the following
N=te N Note N proposition:
We start with some preliminary considerations on the or- proposition 5: Under the assumption of model given by (3)
dered variables),;. We can writen; = & + Q where we have that
&G=Ti+w, and9:$—$. (20) (L[nof(w):—w2+w+2pw—2p—2(w— p)d-1(p—w)
The variablesé; are thus independent and have two possibiiformly for w € [0,1], where d.1(x) is equal to one
distribution functions: for positive x and zero otherwise. Moreover, (o) =
P& <t) =D (t—1) ificll argmin, .7 (w), then
- (21) lim &(o) = p.
P(& <t) = Dg (1) ificl® 0—0
where The previous proposition states that, if the the two distrib
1 a @ tions degenerate to a single point, then the proposed #igori
g (a) = m[me 2% dx exactly compute the proportions measurements generated by

each of the two Gaussian distributions. However, when there
is substantial overlap, the estimation has a bias toward the
Sw <t e A=[{i|& <t} >w (22) midpoint /2, and in the limit of very large variance estimate

Notice now that



Lemma 8:There exist 0< a< 1 andl > 0 such that, folN
sufficiently large and foij € [1,aN], it holds

0.65

@ Asymptotic

06r Sample (mean and errorbars)

0.55} i ]P)(E[J] < —(N/J)l/z < ele
““““ ’ P(&nj=(N/DY?) < e (25)
| N < ele

P(&n) > NY/?)
Theorem 9:For everyd > 0 there existd 5 > 0 such that,
for N sufficiently large,

F|\ (W) P w _NL
| — = — | > < 5
P( 3w ‘ F ( ) o e

Since our decentralized algorithm is influenced by the

0.25 I I I I I I I I
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

noise standard deviation o position of the local minima offy in [0,1/2], the result above
is not sufficient to study the performance. Indeed, we need to

Fig. 1. Minima of 7 (w) (asymptotic) and oFn(w) (sample, 10 Monte study the asymptotic behavior of the variation functi(w).
(;:rlo%%u;s)o\és noise standard deviation Data are always generated with Theorem 10:For every6 >0, there exist$5 ~ 0 such that

]P’(Ew ; ‘A(W) T (VNV)’ > 5) <N

@ is completely uninformative. In fact it can be verified thaj,, N sufficiently large.

(see also Fig. 1) Proposition 11: Consider an intervala, b] C [0,1] ande >

R . 1 0. Then,
o—lﬂmw ‘= argming (w) = >
@ FN>evxelab = P(AW)>0vwe[NaNb])>pe(N)
The value of the minimun@ of the asymptotic function .Z7'(x)<—eVxe[a,b] = P(A(w)<0vVwe [Na Nb])>pe(N)
Z(w) as a function of the noise varianee for p=0.3 is i (26)
reported in Figure 1 (dotted line). As stated in the previowshere ps(N) :=1—Ce kN,
proposition, & = p for small o and & = 1/2 for large 0. Proof Immediate consequence of Theorem 10 applied with
As mentioned above, the graph shows that this minimudn= ¢. |
monotonically increases from to 1/2, thus confirming the
hypothesis that the global minimum is always in the interval We are now ready to state and prove the main theoretical
(0,1/2) for all values ofp and . Figure 1 also shows the result of our work. Denote by the set of local minima of
mean and standard deviation of the minimumrafw) over F in [0,1/2] and bySJ°° the subset ofy consisting of the
10 Monte Carlo runs foN = 100 sensor nodes. global minima ofFy living in [0,1/2] (of course a priori this
set could as well be empty).
Corollary 12: Assume that
) (@ min Z(w)< min Z(w).
In the sequel we present some concentration results which ~ «<[0,1/2] we[1/2,1] _
make rigorous the considerations done above. We recall ) # admits just one local minimum poinb in [0,1/2]

standard result on the concentration of binomial r.v. which  (Which is thus the only global minimum for (a)).

B. The concentration results

will be our main technical tool. Then, for everyd > 0, there existss > 0 such that
Theorem 6:Let Z be a binomial r.v of typeB(N, p). Put,

for x > 0, y(x) = xlogx—x+ 1. Then, for anyx < 1 <, it P(Sy/N Clw—8,w+6[) > 1—Ce %N

holds (27)

P(S £ 0) > 1—Ce %N

-N N >

P(Z<Npx <e P, PZ=Npy) < e ) By the way the approximate ML algorithm has been defined,
Remark:Notice that, for anyyo > 1, there exists a constantyne condition expressed above in (27) yields

C > 0, such thaty(y) > Cylogy
The following result is standard but we will give an elemen- P(w(|TAME — TML) /N < 25) > 1—Ce %N (28)
tary proof in the Appendix for the sake of making the paper
self-contained. In other terms, the approximate ML algorithm is close to the
Lemma 7:For any O<a< b <1 and for everyd > 0, there ML solution with high probability for largeN. We would like
existsls > 0 such that, foN sufficiently large, to remark that conditions (a) and (b) of Corollary 12 canlgasi
1, NI . be checked numerically and turn out to be satisfied in all
.P(MU] o FE (J/N” >0)<e e, VjelaN,bN . examples considered. An analytical proof of these conuitio
With the following bound we take care of the behavior of 4t the moment not available except for the limit cases 0

g[j) for j close to 0 and toN. treated in Proposition 5.



V. BAYESIAN MODELING AND EM 1) Expectation Step compute the posterior probabilities

An alte_rnative .apprpach to this estimation .and detection flj(kH) = P(Tj= 1|y’é(k)’ pk, 5)
problem is possible if one postulates thgt i = 1,..,N a0_g)\2
are independent and identically distributed (i.i.d.) Bamrif 0 *%(y’ 50 )
random variables with parametpr = e 5
_1 (VJ*M)*l) 1 (Vﬁém)
Ti~%(p) p=PT=1) (29) pe 2\ 9 ) Laoptye T\ ¥ )
so that N 2) Maximization Step:
P(Tlp)=[]p"(1—p)* T 30
(TIp) i|:|p (1-p) (30) sy _ 1 N e
N i
Hence, one can formulate the problem of estimatmg Jﬁl
ando from measurementg, ...,yn. The maximum likelihood gk+1)  _— 1 yj— Ff,(k+l>
estimator is defined by N &
S8 AN . 1
(p,6,0): argelgaxTegl}N P(y|6,0,T)P(T|p)  (31) Gkt — 5 Zl ((Yj —0)2 4y — 2u(yj — 9))
] J:
_d (kD)
whereP(T|p) has been defined in (30) and 6=60+1) =i

(34)

The EM algorithm (33),(34) has a “centralized” nature.
) o However it can be easily decentralized (i.e. computed by
Note that in the estimation problem (3) the number of uns, e node only using local information) since it is esséptia
knowns grows W'tr,‘ the number of data; instead the i.i.¢saseq upon computing averages. It is well known that this
assumption on th&’s allows to keep the parameter space iRy pe done resorting to consensus algorithms; for instance
(31) of f|x¢d d|menS|on. As a result, the_asymptouc progsrti an algorithm based on gossip has been proposed in [20]. The
of the estimators in (31), such as consistency and asymptQfi,erages in (34) can be computed using standard consensus
efficiency, follow straightforwardly from standard asymofit algorithms.

theory of maximum likelihood estimators, see [18]. As expected, if the number of iterations used to compute
An estimator of the variableg, .., Ty can then be obtained o 4verages in (34) is sufficient to reach consensus, this

by maximizing the maximum likelihood estimat®XT1y) of gistributed-EM algorithm converges to the centralized-EM

1 I A_T\2
P(y|e7U’T) |:|6752'2|(y| 0-T) .

the posterior probability solutions. However, as soon as the number of iterations is
P(Tly) O P(y|T,8,0)P(T|p) not sufficient to reach consensus, the distributed-EM étyor
either oscillates or even diverge, failing to provide sblesi
ie. estimates. This simple simulation experiments suggedt tha
(T1,..Tn) := arg maP(T|y). distributed-EM is not robust against errors in computing th
Te{o, N averages in (34) which may result from an insufficient number

of consensus iterations. As such, deciding how many itarati

The maximum likelihood estimatol?(T|y) of the posterior o : )
robability P(Ty) is given, from the invariance principle (Seeare enough” is a delicate matter. We have instead followed a
P ' different route, which is based on the algorithm discussed i

e.g. [18]), by Section VII.

P(Tly) = cP(y[T,8,6)P(TIp)
- 7%ZiNzl<Yi*g*Ti> ()3, (32) VI. GENERALIZ;-ATION _
= ce One drawback of the model in (1) is that thgs are
wherec is a suitable normalization constant. assumed to belong to a known alphabgt In particular in

The maximum likelihood problem (31) is a typical estimathiS paper we have considered the c@se {0,1}. A simple
tion problem for a finite mixture distribution (see [5]) and/€t important generalization is to allow that the alphalset i
does not have a closed form solution. One possible appro&&tially unknown. For instance one can assume that only the
is to resort to the well known Expectation-Maximization (EMcardinality of <7 is known. In the binary case considered in
algorithm in [19]. This is an iterative algorithm which isthis paper this is equivalent to assume that
known to converge to a local maxima of thg Iikelihoo_d. For Vi=0+aT +v (35)
reasons of space we shall only report the final equations for
EM iterations. We refer the reader to the book by [5] for with Ti € {0,1} anda € R* unknowrf.
derivation of the EM algorithm which can be easily adapted In this more general scenario the maximum likelihood
to this specific problem. estimator (3) becomes:

Let 8 6K and pi¥ the estimators at thke—th iteration ~ , , o _

It is immediate to show that, for identifiability reasons|yotie difference

of the. EM algorithm; the estimators for ﬂﬁb+ 1)'th iteration between the two symbols have to be parameterized; in addhis difference
are given by: can be assumed to be positive modulo permutations.



(i) Given Yi<k) € R" compute

(ML FML gMLy a:gng?ﬁ(yIG,T,a) X (kD) Y
Ta
—  argmi _(yi*G*aTi)z} (36) Z
= argmin|y; A=
(6,T,a)

Assume now that, ak — o, this alternating algorithm con-
Solving (36) is considerably more difficult than (3); oneerges to a fixed poinX(®), Yi(°°). Our purpose is to compute
possible approach is to utilize an alternating minimizatiothe fixed point of this algorithm (or at least a “good” approxi

algorithm as follows: mation) by means of distributed computations. Xéli) be the
() Fix a:=a®1 and solve “local copy” at the agent o(fk)the “(skgate“x(k) at iterationk.
N _ - 0-aT)? Ideally one would like thaX;™ = X;" for all i, j € [1,N]. Let
TW(@) = arngmmeln [Z s } (37) us define (k;
Y.
(i) Fix T:=T® and solve v '
A (yi—6—aT)? Yl\(lk>
00 (T),aM(T)) = argmln[z 3"—202+}

(6,0) and let R[] : RN — R™ denote an “average consensus”

(38) operator, i.e. an operator which preserves the “average” of
Problem (37) is analogous to (3) with the only differencgs argument and such that

that in (3) we assumed = 1. Hence this can be solved as
described in Section II-A. lim — 1y ®
Instead, problem (38) admits a closed form solution as: kaF’k[F’k 1l RolY]-- N

ZY] vY
o v g sit® 5% 5% 5y We propose the following algorithm in which we need the
60 = 2 gy = ﬁ auxiliary variablesMi(k). These have the same dimension of
i (17 i )
9)

- N
Yi(k) and should represent an approximation of the average

values on Y The vectorM® is defined fromM() in a
(k)

(

In Section VIIl we shall also report simulation experiments;, - way in which the vectoY( K is defined fromy
in which o is not assumed to be known, using the alternating :

minimization approach above; experimental evidence showst) initialization X1 = X0, Yi< Y= Yi(O) = Mi(0> =
that this alternating minimization algorithm convergedew Hi (X,( )) Vi€ [1,N].
steps (2 or 3) in all the examples considered. Of course, in2) Vk=0,1,2,... do:
the distributed scenario the averages in (39) will have to be (i) M&D =R M Y (=D vy (k)]
computed resorting to consensus algorithms. (ii) )(,(k“) -G M(kH)S

As an alternative one could also consider the Bayesian (kt1) ) (k+1)
formulation in Section V for the measurement model (35). (i) Y = A+ (- HY)
This is standard estimation problem for a mixture of twiéhereA '5 a tuning parameter which regulates how fast the
Gaussian distributions with unknown means and unknowipdate OfY ¥ is allowed to be. IA =1 no update is performed
(but common) variance. An EM algorithm similar to (33)jn (iii) so that also(iv) is constant and therefore, from (ii),
(34) in Section V can be derived (see [5]). Of course, im® converges to its “average” i.e. iy ® %ziYi(o) .
the distributed setting, when averages are computed usingrhis distributed gossip algorithm, which is inspired by the
consensus algorithms one encounters the same drawbackgi@gibuted EM algorithms which are found in [9], has been
discussed in Section V. In the simulation experiments wehaytilized in the simulation Section VIII to implement in our
followed the strategy discussed in Section VIL. distributed scenario both the EM-algorithm in Section V as

well as the EM and the alternating minimization algorithms
VII. DISTRIBUTED SOLUTION OF“ALTERNATING-TYPE” found in Section VI.
ALGORITHMS.

In this Section we address the problem of implementing VIII. SIMULATIONS
alternating algorithms (such as those described in Sex¥on  In order to compare the algorithm introduced in this paper
and VI) in a distributed scenario. For the sake of expositianith more standard EM algorithms (based on gossip iteration
we abstract from the specific algorithms in Sections V and \ds proposed in Section V, VI), we consider the following
and consider the following algorithm which alternates lsw setup. In Example 1 (see Fig. 3) we assule- 50 sensors
the two steps. Assume we haMeagents each having assignere deployed and connected via a random geometric graph. A

agivenfunctionH; : R® —R", i = 1,..,N and a given function typical realization of this graph (utilized for the simitats
G. Fork=1,2,... do the following steps: in Figure 3) is depicted in Figure 2. The sensors measure data
() Given XK c RS compute according to the model (1) or equivalently according to the

(k) ®) model (35) witha = 1. We generate data with=0, 0 =0.3
Y = Hi(XY) and assume that are i.i.d. Bernoulli random variables with
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= Distributed AML
= = = Distributed AML (a=1) | |
Distributed EM
Distributed EM (a=1)

i
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Classification error Y, |T; — T;|
o]

=
N

=
o

P e e e gy |

0 500 1000 1500 2000 2500 3000
iteration k

Fig. 2. Connection graph used in Example 1. Fig. 3. Example 1: Average (over 50 Monte Carlo runs) of tressification
error YN, [T, — Ti| as a function of the number of gossip iterations. Data are
generated as follows#) =0, T; ~ %(0.3), 0 =0.3.

meanp = 0.3. In order to test the robustness of the algorithrr
against outliers, in Example 2 we consider a second setup
which data are generated as in Example 1, except for an out
Yo = —2 which is artificially added.

We compare the following algorithms:

=
(=2}

Distributed AML

i
'S

Classification error Y, |T; — T
o]

= = = Distributed AML (a=1)
Distributed EM
Distributed EM (a=1)

i
N

=
o

1) Distributed AML ( a = 1): this is the distributed ap-
proximate Maximum Likelihood described in Section IlI
which is based on the model (1) with € {0,1} as in
Section Il

2) Distributed AML : the distributed approximate Max-
imum Likelihood based on model (35), which alsc
estimatesx using the alternating maximization approac!
described in Section VI, with the distributed implemen ‘ ‘ ‘ ‘ ‘
tation described in Section VII. 0 500 1000 1500 2000 2500 3000

3) EM (a = 1): this is the EM algorithm introduced in iteration k
Sectior? V with the distributed implementation describgd, 4. Example 2 (with outlier): Average (over 50 Monte @arlins) of
in Section VI, based on the measurement model (1) W'Fﬁ'g. cIéssificatio?] errog N, T — 'ﬁ\. as a fSnction of the number of gossip
Ti € {0,1} as in Section . iterations. Data are generated as follovs= 0, T; ~ 2(0.3), 0 = 0.3. An

4) EM: this is the EM algorithm for the estimation of goutlier is added to each Monte Carlo realization by setiing- —2.
mixture of two Gaussian distributions with different and
unknown means discussed at the end of Section VI, with
the distributed implementation described in Section VII. IX. CONCLUSIONS

The simulation results show that there is not a clear-cutIn this work we studied the problem of distributively com-
distinction between different algorithms; from the lindte puting simultaneous binary classification and noisy patame
number of examples we considered, it seems that our rankimgtimation in a network of distributed sensors subject to
based algorithm is slightly faster than EM. Also the EMopological communication constraints. We have proposed a
algorithm which does not assunte to be known does not fully decentralized approximate ML solution and provedttha
seem to converge (nor at least during the first 3000 iteratiowhen the number of agenfd goes toe, such a solution
(see Figure 4). The algorithm introduced in this paper digib converges, with probability one, to the centralized ML solu
overall, a comparable rate of convergence, if not a bit fastidéon. Compared to more classical approaches like EM methods
than its competitors while being more robust to outliershie t our algorithm presents similar convergence rates but g&on
examples considered. The simulation results suggest laggo robustness in various situations, for instance when theeoff
the performance just mildly degrade whenis not assumed of the “misbehaving” sensors is not known, or in the presence
to be known. One typical realization of the estimatéraind of outliers.

a; (estimators for@ and a at thei-th node) obtained by the Different research avenues are possible, such as the gen-
distributed AML algorithm are reported in Figure 5. eralization to multiple class, the development of more sbbu
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where we used the fact that(0) = T;(0) = 0,Vi and the
last equality follows from Equation (17) almost surely for

someT. Since fork > T the di1‘ference‘|°i(k> - 'fi( =0,

then Proposition 2 implies that limew = w(TAML) aimost
surely, and consequently also (18). |

0 00 000 1800 2000 =00 3000 Proof of Proposition 5From equation (24) it suffices to show
A that
1
lim 5 Ttydt = p(w)

g—0

uniformly for w € [0, 1], where

W w<p
p w>p

500 1000 1500 2000 2500 3000
iteration k

-os! : ‘ ‘ : : p(w) = p+(w—p)di(p—w) = {

, o ) . A ) ) Through a change of variable it is easy to verify that
Fig. 5. Distributed AML: estimate$; and &; for each node as a function

of the number of gossip iterations.

1 00
F’ltdt:/ tfs(t)dt
1% ® JRH(L s®

70))

strategies when the offset is unknown as well as the problédenote now
of distributed implementation of alternating-type algloms. F{l(l— w)—1

APPENDIX dFE

Let us definef (t) := and g (t) := 922U 50 that

Proof of Proposition 4We start by noting that from Propo-
(K)
sition 2 follows that almost surely lipre X = &SN,y = fe(t) = (1— P) @ (t) + pgs(t — 1). (A.40)
w(y) and lim_.« r]i _yi —w(y), while from Theorem 3 we

have that almost surely there exidissuch thatk® = o; for ~ For simplicity we shall also us@(-) := @(-) and ®(.) :=
k > T;. Without loss of generality, let us now assume th&Pi(-). Using (A.40) and suitable change of variables it follows
all measurements are distinct, iygy <y <... <yj° and that

define )
. 2(N—o0)+1 ¢ (Ddt=
d=_min 2(yi—w(y))—1+7( o)+ Lo o0 o _
k=1....N N 1 t t—1\ .
—a-n/, ¢(E)dt+p Lt == dt=
From Proposition 2 it also follows that there exi$tssuch that Fe (1; ) Fe (172‘:)
|r)i(k) —(yi—y)| < o for all k> T, and foralli almost surely. =o0(1- p)/ X@(x)dx+ ap XQ(X)dx+-
This fact and Theorem 3 imply that there exiStssuch that To@tl/o 2(®)
1 [ o0ax
on® 1 2NZRFL g g0 N o7 oas
N 2 and so
= 2(yi—w(y))—1+T>O/\oi>§ ‘H(W)— ()dt‘
Therefore, according to (13), this implies tHat) = T.AML o(l-p ‘/ X)dx +0p’/m x@(x)dx| +
holds almost surely for ak > T. +1/°’ REEC)
Note now that +|p(w) — p/ p(x)dx <
Nk oy S i sk w2012
Sull = w197 <a(1-p) [ Moax+op [ xgdxt
i= i= i= -
N N +H(w) = p[l— D (zo(w))]|
~ T WOy ER_FO)
i; I i: ! ! Since the first two elements of the sum do not dependvon
N and they converge to zero astends to zero. It remains to be
— T ZTAML Nw(TAMY  k>T proved that the third element of the sum converges uniformly
i= to zero inw as o tends to zero.
5The theorem holds also fofy <y <... <yn) but the proof is slightly
more tedious since the ranklng mlght not be unlque Go(w) := p(w) — p[l— P(z5(w))]
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Notice that z;(w) is decreasing inw and thatw = 1— Arguing similarly for the other addend in (A.41) and for the

Fs(0Z5(w) +1). Now, if w < p, then analogous ternP(&; > F{l(j/N) + 9), we obtain the thesis.
|
Go(w) = w—p[l—®(z0(w))] = SRR ,
=1-Fg(0z5(w) +1) - p[l — D(z0(w))] = Proof of Lemma 8Arguing like in (A.41), we can estimate
=1~ (A= peG(w) & 1/0) = pP(zs(w)) P (& <~ (N/)Y?) <P > p)+ (A > (1-p)))
—p+ pP(z(w)) =
= (1- )1~ P(zo(w) +1/0)] (A 43)
wheret = —(N/j)¥/2. To estimate the first addend, consider
which is a positive and increasing function af. If instead pj pN
@2 p. then PTEAD T MR- 1)
Go(w) = p— p[l—P(z5(w))] = pP(zo(w)) If j € [1,aN], we have that < —(1/a)"/2. Hence, ifais chosen

sufficiently small, we can ensure that 1t for someC; > 0.
Hence, using the Remark after Theoreny6y) > Cyylogy >
Cayt? for suitableC,, Cz3 > 0. Using Theorem 6, we then obtain

(@) — [~ P(zo(®))]| = Go (@) < Go(p) P(AL pj) < &-CPI _ g-CoN

and so, in order to prove the uniform convergence to zero Rfqying in a similar way for the second addend in (A.43), we
the left hand side, it is enough to prove ti@4(p) converges piain the first estimation in (25).

to zero aso converges to zero. The second estimation in (25) follows from

Notice finally that, from the previous arguments we have
thatGy(p) = p®(z(p)). To prove that ling_o p®(z5(p)) =0 P (E[ij} > (N/J)l/z) =P(A<N-j)=P(N-A¢>])
it is equivalent to prove that lig1,0z5(p) = —o. Assume by
contradiction that this is not true. Then there would exist
real constanM and a sequencey converging to zero such
that z5, (p) > M for all n. This would imply thangl(l— p) >

which is a positive and decreasing functionvafWe can argue
that

repeating the same arguments above with the binomid&l £v
Rt. This yields the second estimation. Finally, the third one
can also be obtained along the same lines of reasoninll.

1+ oxM and so Proof of Theorem 9We can estimate, fow € [1,N],
1—p> F (14 0aM) = (1 p)@(M+ 1/0y) + po(M) B — 7 ()|

N-1 .

Notice that the right hand side converges tod+ p®(M) asn <21Q+p|+25En +28 T ‘EU] _ F{1 (ﬁ) ‘

tends to infinity. This would imply that 2 p>1— p+ p®(M) J=N-w+1

which yields a contradiction. 1 N A

. A . 2|5 F )= Fo(t)dt
The fact that ling_.o&®(0) = p follows from the uniform N j:NZW+1 ¢ (N) 17\',{/,\‘ ¢ ®
convergence and from the fact thats the uniqgue minimum (A.44)
of the limit function. Let us start with the last deterministic addend. Standard

B calculus shows that there exists a sequeAgeconverging

to 0, such that, for eve 1,...,N},
Proof of Lemma 7Fix j and putt = F{l(j/N) — 0 so that we }

1
. N H .
j=NFs(t+8) =Npdg (t+3— 1)+ (1— p)Pgy (t+ ) % NZ Fgl(ﬁ)_ / Foi)d <Av  (A45)
Using (22) we obtain that J=Nmw 1-w/N
P(§; < F{l(j/N) _ &) =P\ > ) The second term can be decomposed as follows
N-1 :
=P(AL+ AP > Np®g (t+5— 1)+ N(1— p)®q (t + 5) ﬁj:@w]e‘m —F*l(ﬁ)]
<P(AL>Npdg (t+38—-1)) +P(A? > (1- p)®g(t+ 3 bN 1] an N_t
<P(At = Np®g ( ) (Af = (1= p)Pg ( (A.)é‘zl) < %j:zaN EU]_FE (ﬁ)’+%jzl|5“]|+%j:zb'\l|5m|
Theorem 6 yields N-1 aN
+x 3 RMA/N)+ R 3 IR NG/
P(A} > Npdg (1406 1)) i=BN =1
< 1 NpPg(t+6-1) (A.42) (A.46)
= exp[—|l ®g (t—1) V( I[dg(t—1) )} Fix 6 > 0. It immediately follows from (A.45) that

Notice that, forj € [aN,bN], t remains bounded, as wél (t — 1 Nt

1). In particular, this implies that, iN is sufficiently large, the N j;N
argument ofy is above a constarng > 1 for all j € [aN,aN].
Therefore, we can find a positive const@such that

aN
FEUMI g 3 NI <87 ()

if a andb are sufficiently close to 0 and 1 respectively.
The remaining terms in (A.46) and in (A.44) are now
P(A} > Npdg (t+6—-1)) <e N random variables. In the sequel we will use the notation



C1,Cy, ... to denote positive constants and we will implicitly
assume that all statements are fosufficiently large without
explicitly specifying it. It follows from Lemma 8 that
1 aN
> —

(350 1) o e

(1]

(2]

> &>
Moreover, using Lemma 7 it also follows that

P(&; <0.Vj€[LaN]) >1—e N2
Hence, with probability at least-1e N it holds that

aN a
= 3 < z<N/J>1/2> [ xvzax

This last integral converges to 0 far— O+, hence, we can
choosea > 0 sufficiently small in such a way that

(3]

[4]

(6]
(7]

1 aN NG
< >1-g '8 .
P N JZ &l <d/7) >1-e (A.48) 8]
Similarly, we can choosb < 1 in such a way that -
N-1
1 (A.49)

%IE g1 <8/7) >1—e N
[10]

We now assume tha andb have been fixed in such a way
that (A.47), (A.48), and (A.49) hold true. In correspondend!l]
of sucha andb, it follows from Lemma 7 that

1bN

2

j=aN

[12]
P

-1
N 2 |8 Fe

(%)‘gaﬁ >1-eN% (A50)

[13]
Finally, we take care of the first two terms in (A.44).
Lemmas 7 and 8 show that

1 1
P(O< =&y <—=)>1—e NG
( N SN EN)_

P(Jlenl<8/7) 21—
By the definition ofQ (see (20)), it follows immediately that (16]
P(IQ+p/<8/7)>1—-e & (A.52)

Using estimations (A.45), (A.47), (A.48), (A.49), (A.50),
(A.51), and (A.52) inside (A.46) and (A.44) we obtain theig
thesis. ]

[14]

Hence,
[15]
(A.51)

[17]

[19]

w—Fg’ (1_%)‘ [20]

We then conclude with arguments similar to those used in the
proof of Theorem 9. ]

Proof of Corollary 12.The first statement is an immediate
consequence of Proposition 11 applied to the subintervals,
respectively]0, w— 6] and [w+ 3, 1].

Concerning the second point, notice that by (a) we have that

mn Z(w)— min F(w)=35>0
we(1/2,1] we[0,1/2]

Proof of Theorem 10We can estimate

‘A(w) 7 (VNV)‘ < %+2|Q+ Pol +2 &

Applying now Theorem 9 withd = 5/3, we obtain the thesis.
|
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