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Abstract

In this paper we discuss suboptimal distributed estimatremes for stable stochastic discrete time linear systewfer the assumptions
that (i) distributed sensors have computation capatslitjg) the communication between the sensors and the estimeenter is subject
to random packet loss, and (iii) there is no communicaticmveen sensors. We consider strategies which are based omeasurement
fusion (MF) as well as on fusing local estimates, such asl Ideéman filters or other pre-processing rules. We show thatdptimal
mean square estimation error that can be achieved undeetpask, referred as infinite bandwidth filter (IBF), cannetrbached using a
limited bandwidth channel; we also compare these stratagieler specific noise regimes. We also propose novel matioain@ols to
derive analytical upper and lower bounds for the expectéchason error covariance of the MF and the IBF strategiesiasng identical
sensors. The theoretical findings are complemented withilation results.
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1 Introduction There is a vast literature regarding distributed estinmatio
and sensor fusion with perfect communication links (see
for example [4], and references therein). In particulagréh
are two classes of problems that are relevant to this work.
The first class addresses the problem of distributing com-
utational burden from the central node, where the decision
eErocess takes place, to the distributed sensors, undesthe a

The rapid growth of large wireless sensor networks capable
of sensing and computation promises the design of novel
applications, but it is also posing several challenges due t
the unavoidable lossy nature of the wireless channel. Thes

challenges are particularly evident in control and estiomat ¢, 1ntion of perfect communication, i.e. packets arrivéawit
applications since packet loss and random delay degrade, delay or with a known constant delay. In this context
the overall system performance, thus motivating the devel- Willsky, Levy et al. [16] [10] showed that it is possible to re '
opment of novel tools and algorithms, as illustrated in the ¢qgirct the centralized Kalman filter (CKF) estimate from

survey [9]. In this work we focus on the problem of esti- |55 Kaiman filter estimates generated by each sensor. In
mating a stochastic discrete time linear system observed by articular, the CKF can be obtained as the output of a linear

a numbe_r of Sensors wh|ch can preprocess sensor dat_a ar‘Hlter which uses the local Kalman estimates as inputs. More
communicate this information to a central node via a wire- recently Wolfe et al. [L7] showed that the computational
less lossy channel. load of the central node can be reduced even further by run-
ning on each sensor a local filter which generates a partial
- estimate of the state so that the central node just needs to
1 This paper was not presented at any IFAC meeting. This work sum the contribution from each node together to recover the
has been partially supported by European Union projectlEH7-  CKF estimate. The main difference between [16] [10] and
223866-FeedNetBack, by the Italian CaRiPaRo Foundatiojegr  [17] is that in the latter approach all local sensors need to
"Wise-Wai” and by the Progetto di Ateneo CPDA090135/09 know the whole system dynamics, while in the former ap-
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- proaches only the central node needs to know the dynamical
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to packet loss and variable delay between the sensor and more specifically the statement of Theorem 1, the state-
the estimation center. This problem is particularly retgva ments and proofs of Theorems 2 and 3, and the example
in moving target tracking applications based on radar and of Section 9.1.

GPS measurements [4]. For example in [11] the problem of ¢ We derive analytical expressions to compute upper and
optimal estimation from randomly delayed measurements lower bounds of performance of these estimators as-

from multiple channels has been addressed; in [3] and [18] suming i.i.d. Bernoulli packet loss probabilities. Fingin

the authors showed how to perform optimal estimation with
time-varying delay and out-of-order packets without requi

ing the storage of large memory buffers and the inversion

of many matrices. More recently, in [15] the authors pro-

bounds on performance turns out to be particularly chal-
lenging due to the fact that the estimation error covariance
of the different estimators at the central node depends
nonlinearly on the specific packet loss sequence of all

sensors, therefore computing expected error covariance
a-priori given the packet loss statistics becomes a com-
binatorial problem that explodes with time. In particular,
we derive upper and lower bounds in the scenario where
all sensors are identical for two specific strategies: the
measurement fusion (MF) strategy and the infinite band-
width filter (IBF) strategy. The MF strategy is based on
optimally fusing the raw measurements received by the
central station from the sensors, while the IBF strategy

vided lower and upper bounds for the optimal mean square
estimator subject to random measurement loss, and in [13]
the upper bound was extended to multiple distributed sen-
sors subject to simultaneous packet loss and random delay.
Finally, the recent papers [14][1] analyze some tradedadfs b
tween communication, computation and estimation perfor-
mance in multi-hop tree networks.

However, there are only few scattered results concerndd wit

distributed estimation subject to packet loss when semsers

provided with computation capabilities to preprocess data

before transmitting it to the estimation center. A recent re
sult in this direction is given by Gupta et al. [8] who showed

is based on the assumption that each nodes sends to the
base station not only the current measurement but also all
previous measurements in a single packet. We also show
through some simulations that some of these bounds are

rather tight and can be used to estimate in advance the ex-
pected error of the different strategies. Preliminary itasu
have appeared in [6], more specifically the Lemmas 6
and 8, Theorems 9 and 10 , and part of Section 9.2.

that when there is only one sensor, the optimal strategy for
the sensor in the presence of packet loss is to send the lo-
cal Kalman estimate rather than the raw measurement. This
is because the local estimate includes the informationtabou
all previous measurements, therefore as soon as the cen-
tral node receives the local estimate it can reconstruct theThe structure of the paper is as follows: Section 2 contains
optimal estimate even if some previous packets were lost.the mathematical formulation of the problem; in Section 3
Along the same lines, Robinson et al. [12] showed under the optimal strategy under packet loss is presented. The mea
what conditions a linear combination of the past measure- surement fusion strategy is presented in Section 4 while sev
ments can improve estimation performance. Unfortunately, eral strategies based on fusing local estimates are detuss
these results do not generalize to multiple sensors eaeh proin Section 5. Section 6 contains comparative results under
vided with its own lossy communication channel. Differ- different noise regimes, namely low process noise and low
ently, a notable work which explicitly focuses on multiple measurement noise. Bounds on the achievable performance
sensors with lossy communication is given by Gupta et al. are found in Section 7, while Section 8 discusses complexity
[7]who proposed a computationally and bandwidth efficient issues. Simulation results illustrate the theoreticaldéon
fusion strategy which can guarantee to achieve the same perin Section 9 and conclusions end the paper in Section 10.
formance of the optimal strategy if each sensor knows the

history of the packet loss sequence of all other sensors, i.e

under the assumption that sensors can communicate. 2 Problem formulation

The contribution of this work can be summarized as follows: 2.1 Modeling

e We show that the optimal mean square estimation error
that can be achieved under packet loss, referred as infinit
bandwidth filter (IBF) (Section 3), cannot be achieved us-
ing a limited bandwidth channel (see Theorem 1). As a
consequence, we consider several suboptimal strategies
with different computational and communication require-
ments by either fusing measurements (Section 4), or local
estimates (Section 5). We also compare these strategies . o ]
under specific noise regimes namely low process noiseWherex € R,y € R™, A has all eigenvalues inside the unit
and low measurement noise (Section 6). It is proved that circle, w andyv; are uncorrelated, zero-mean, white Gaus-
no strategy is superior to the others in all scenarios. Bhisi sian noises with covariancEéww;' | = Q, andE[Vi (W) '] =
investigated also via simulations confirming that the rel- R;j&;j, i.e. we assume uncorrelated measurement noise un-
ative performance depends on the packet loss probabilityless differently stated. More compactly, if we define the eom
and noise scenarios. Partial results have appeared in [5]pound measurement column noise veetet (V¢,..., W) €

We consider a stable discrete time linear stochastic system
€observed byN sensors:

Xe+1 = AX +W

i P 1)
Vi = CGx+W, i=1...,N



R™ m= 5; m, we haveE[vivg | = R3(t —s), where the, j)- Time  current timet =4
th block of the matrixR € R™™M is [R]jj = Rj € R™*™Mi,

The initial conditionxg is again a zero-mean Gaussian ran- 3 = ” d—o
dom variable uncorrelated with the noises and covariance = l ot B e B Received Ti‘: 1
E[xoxj] = Po, and for convenience we define the matrix = S | eceved T
C'=I[Cc/ CJ ... Cj]. We also assume th& > 0 unless 2 el T2 packets T} -0
differently stated. Note thaA being stable guarantees the 3 z, vs. time 5 _
existence of stable estimators even in the presence of packe ¢
loss. AN AL Info at

e fusion center
The sensors are not directly connected with each other and :‘ ::’ ﬁ’ ::‘ 2=y
can send messages to a common central node through a lossy ,,s: y; 1 b

communication channel, i.e. there is a non zero probability
that the message is not delivered correctly. We model the
placket dropping events through a binary random variable Fig. 1. Snapshot at time= 4 of the information flow for the
¥ € {0,1} such that: Infinite Bandwidth Filter (IBF). Top: packets arrived at thusion
center. The value of theth row, t-th column is the information
received from the fusion center at timdrom nodei; an empty
; 0 if packet sent at time by nodei is lost cell means that the corresponding packet has been losorBott
% = 1 otherwise 2) corresponding information available at the fusion center.
) ) ) ) strategies, based on natural choices for the functiprasd
Each sensor is provided with computational and memory re- g,. Other choices are obviously possible, as in [12], [7] and
sources to (possibly) preprocess information before sendi  [5].

it to the central node. More formally, at each time instant
each sensarsends the preprocessed informatie R’

Z{ = ftl (yllvyl27"'7y{) = ftl (yll.‘t) (3) . . . .

Here we consider the optimal filter in mean square sense
wheref is bounded ancﬂti() are causal functions of the local that we can obtain if we assume infinite bandwidth in the
measurements. Natural choices are-yi, i.e. the latest communication channel when a packet is sent successfully,
measurement, or the output of a (time varying) linear filter: i-€- each sensor sends to the central node all measurements

up to current time:

3 Infinite Bandwidth Filter (IBF)

& =Ré&_1+G% ' i\ Z{ yllT is i in Fi o
| HiZ L Divi wherey;, = (Vt,Yi_1.--.,Y;)- Thisis illustrated in Figure 1.
z =Hi& +Diyt The estimator at the central node is given by

as for example a local Kalman filter. SIBF _

R =E| A =EM |y, a0yl @)

The objective is to design a state estimator at the centds no _
given the information arrived up to timeMore formally, let whereT{ is the time elapsed since the most recent received
us define the information set available at the central node aspacket from the-th sensor at timg as shown in the top right
corner of Fig. 1. This filter is optimal among all possible
N . . strategies i.e., more formally,
%:U%', %IZ{ZAV‘L:Lk:l,...,t} (4)
i=1 Ptl\tBF < Pt?tv vftl()’v%7v91()

Based on this set, we want to design an estimator as follows

where F’t"?': = var(x — 2‘?': | #) is the error covariance of

>?tg‘t =oi(A%) (5) the infinite bandwidth filter. In other words, this filter sets
bound on the achievable perfor_mance of any other filter_. Un-
such that its erroPt?t = var(x — f‘[g\t | A4) =E[(x — )A(tg‘t)(xt -~ fortunately there is no hope to find a strategy which achieves

9T ) ) ) the same performance with a more parsimonious use of the
Xt\t) | 4] is small. Depending on the choice of the sensor channel. This finding is formally stated in the following the
preprocessing function§ and the estimator functiorg, orem.

we get different strategies. Note that the estimator emer c

varianceF’t“"t is a function of.%, and therefore also of the Theorem 1 Let us consider the state estimaiﬁ? andﬂEF
specific packet loss sequence, i.e. it is a random variable.defined as above. Then there do not exist (possibly nonlin-
In the following of this section, we propose three different ear) functions z= f(y;,) € R’ with bounded sizé < «,



and functions ¢.# ), such that ﬁt = Pt"tBF for any possible  where the symbol T indicates the Moore-Penrose pseudoin-

packet loss sequence, i.e. verse, and Eqns. (12),(14) are valid with the additional as-
sumption thaR > 0 andR;_; > 0. The previous equations
ﬂfi() a() | P% = PI‘BF V){ correspond to a time-varying Kalman filter which depends
t\s tt = Tt o

on the packet loss sequence. Note that only measurements
that have arrived are used for the computation of the esti-
matex[""{':, i.e. the dummy zero measurementyjnare not

The previous theorem states that there is no hope to find aseq as if they were real measurements, but are discarded.
preprocessing with bounded message size which can achieve

the error covarianc®'BF of the infinite bandwidth filter .
tt The measurement fusion strategy has the advantage to be

(IBF) since it is not possible to know in advance what the ., teq recursively and exactly with the inversion of one
packet loss event will be. This fact raises the problem of how |\ o+riv of (at most) the size of the state vector, as it can
to find bandwith-efficient strategies with good estimation be inferred from Eqns. (12) and (14) which corr’espond to
performance. Here we propose two suboptimal estimation y,q jmnjiementation of the Kalman Filter via the Information
strategies which provide the optimal solution in the specia gjyer [16]. On the other hand, if a packet is lost, then the
casi Ofl perfect communication link, i.e. when there is N0 jytqrmation conveyed by the measurement in that packet is
packet loss. lost forever, while sending filtered version of the outpist, a
described in the next section, might partially recovered it

4 Measurement Fusion (MF)
This strategy has been shown to provide good performance

The first estimation strategy, referred as measurememtfusi  In Simulations under different noise regimes [5], however,

(MF), consists in sending the raw measurements intuitively, it should provide almost optimal performance
in a scenario with high ratio between process noise and

4 -y ®) measurement noise. In fact, if the process noise is large
t as compared to the measurement noise only most recent
measurements convey relevant information, thereforesther
. . X §s no much gain in filtering the past measurements at the
state .estlmator with the arrived measurements at the d:entrasensors_ Although this seems to be case in many simulations,
node: MF . there are choices for the system dynamics for which the MF
K = Epx| A, i=1....N] (©) strategy is not optimal even under noiseless measurements
where the information set in this case corresponds to as shown later in Section 6.

A= Ih=1k=1,.. .t}

It is possible to explicitly compute the MF filter as follows. 5 Fusion of Local Filter Estimates (EF)
Let us first define the following variables:

The second estimation strategy, named estimate fusion (EF)
WCy Wyt is based on the fusion of local filtered version of the mea-
. . surements. According to this strategy, tkte node sends an

G= , o= “estimate” of the state computed via

raey Ky

which can be obtained from the centralized matrix
C and from the lumped column measurement vector
v = (yiy?...yN)T by replacing the rows and columns

corresponding to the lost packets with zeros. It was shown N
in [13] that the state estimate for the measurement fusion EF _Eix|Z =1 Nl=S o7 . 17
strategy is given by: Xt [XtM*Tt" e i; t4*Tt' (7)

2 =T34 1+Gy (16)

and the central node performs the following fusion rule

oMF ) AgMF o .
X = (- Ltc[)AXt—l\t—l+ Let (10) wherez{ d is the most recent estimate received by the cen-
o _ _ —1 _
Pt'\\{'F =Ri1—P1G (GRaG +R)'CGRy 1 (11) tral node from the sensor nodlei.e. 7 is the time elapsed
—((PLiCTRIC) =Pl asN VicTR Ic )y Y12 since the most recent packet at titfeom nodei. The con-
B ( t\tfltrcl B ]C‘)_T ( UHJFE'*M Ri'GH12) ditional expectation will be computed assuming a Gaussian
Lt =PRi-1G (GR-1G +R)' (13)  measuré.

— pMF {yloTR* Wt *l} 4
t‘t = tT Lo KN R 1 Alternatively one could think oF[- | -] as being the besinear
Pig = AF{“\{' A +Q (15) estimator.



Besides computing the coefficiens, one has also to decide in nature. More formally:
how each node processes its own measurements, i.€ thow

andG| are chosen. i Ft4|1+|-t

Before discussing these choices, we first describe how the Ro= (- Lt' G)A

gains®} can be computed. Let us define:
where the gain L{" are the local Kalman filter gains com-

ztlfrtl puted as
Q= [ o] and z;=| : |. P~ (A— KGR (A—KI'G) T+
A +K{'Ry (KJ*')T +Q
Of course, the optimal fusion coefficients of Egn. (17) can '—%’l = RCG'(GRCG +Ri)
be computed as: Kt'" _ Au,l
O =F [Xt Zt-l,—r} E {Zt,r ZtTJ} -1 (18) We shall call the optimal estimate based on the received data

4" 0 the optimal Kalman estimate fusion (KEF):
i

A procedure based on a standard state-augmentation ar-
gument which allows to compute the covariance matrices AKEF i KEF |
E[xz ] andE [z,7/,] is illustrated in Appendix A. The Efx |3’ gl =1 N = _Zlcbt' it;rti (20)
. 1=
conditional variance of<t‘t =% — xt‘t given the sequence

{¥}s—1.+ can be computed using the standard formula for Unfortunately, as discussed in [16], even in the absence of
the error covariance packet losses and with uncorrelated measurement noise, the
optimal estimate, i.e. the CKF, cannot in general be recov-

t‘t —var{xt‘F|yé, s<tl=var{x)-®E [Zt,r ZtTJ}thT (19) ered as a static linear function of the most recmnly.

This equation will be useful in evaluating the performance -2 Partial Estimate Fusion (PEF)
of different choices of the local pre-processing stratebje
andG}. Of course it can also be used to monitor on-line the This strategy is suggested by the observation that, in the
performance of the estimattxf‘t';, absence of packet losses, one could compute the gains in a
centralized manner and distribute the computations to each
) - sensor. To be more precise, assume that all measurements are
Note that the error covariance of EREF is based only on  ayailable to a common location, i.e. that there are no packet

the latest packet received from each sensor node, thereforgéosses. We shalldenotewu:[jtKF E[%|y}4,i=1,..,N] the
is potentially larger than the error covariance that cowd b centralized Kalman filter (CKF). Its evolution is governed
obtained by using all received packe®s, = var(x|.#), i.e.: by the equations:
: = +L
Ptl‘tBF <Ry < PtI‘EtF i >”<tC = R, 11 T Lewt (21)

. . o . = (I -LC)A
However, the computational price to pay in this case is much o= ©)

larger. The optimal choice of the “local” filter matric€$

andG} in Eqgn. (16) is far from being a trivial task even if ~Where the gair; = [L{L? --- L] is the centralized Kalman
topology and statistics of the model are completely known. filter gain computed as

Therefore, in order to gain some further intuition, we exglo

ér;d compare some sensible choices of the matfitesd Ri1 = (A—KC)R(A—KC)T + KRK +Q
' L; = RCT(CRCT +R)!
5.1 Kalman Estimate Fusion (KEF) K = ALt
A natural choice for the matricég andG, is given by run- 2 The superscript! reminds thaZ' is the local estimate of the

ning a local Kalman filter on each sensor, i.e. by computing state at thé—th sensor, where the galrt! is computed using the
the best estimate given its own measurements, which is locallocal Kalman filter equations.



Note now that, defining} to be the solution of The scenario with zero process noise,Qe- 0, corresponds
to the case in which a very accurate model is available for the
Z=R2 ,+Ly, (22) state evolution. In these circumstances the state estimati
problem essentially boils down to estimation of the initial
. . ; condition. The first remarkable but not trivial fact is thiaet
the CKF estimate{f" IS given byxF =5L14. Forthese  |gpcan pe computed by a static fusion of the local Kalman
reason we shall call the’s “partial estimates”. This strategy filters (KEF) as well as of the partial estimates (PEF). It is
was suggested in [17] for distributed estimation to the pur- also rather intuitive that, in the absence of process noise,
pose of reducing the power consumption. Note that Eqn. (22) there is no loss in propagating estimators just using the sys
falls in the class Eqn. (16) with; := R andG} :=L{. tem dynamics (i.e. in open loop): this gives also optimality
of OPEF. Last it is clear that MF does not use information
Similarly to the KEF strategy, the central node performs the from lost measurements, and thus cannot be optimal. This
optimal fusion of the most recent packet from each sensoris formalized in the next theorem:
ZLT{ as follows:

Theorem 2 (Small process noise)let Q=0 and R=
per o N oer diag{Ry,..,Ry} > 0. Then
% =Ex |4*Tti7l =1,...,N]= Zld)t’ zLTti (23)
= IBF PEF _ pKEF OPEF _ pMF
Rie =Ry =R =Ry <R
where the superscripf™ stands for the optimal partial es-
timate fusion and the coefficients} are computed as de-
scribed in the previous section. , ) . )
Dn‘ferently, in the scenario with zero measurement noise,

Differently from KEF, in the absence of packet losses this & R=0, one may think that optimally fusing the latest

strategy is guaranteed to recover the performance of the CKFfl_ehC.e'ye.OI (;nefésturer?ents vlvould ¥'eld optlmhal perfor;nzangei
even with correlated measurements noise [17]. is Is indeed true for scalar systems, as shown in [12], bu

it fails to be so for general multivariable systems; in fafct,
one considers a system which is observabla steps, the
5.3 Open-loop Partial Estimate Fusion (OPEF) strategy that performs best depends upon the process noise
and the specific loss sequence as discussed in the following

This strategy is similar to PEF since the sensor nodes per-theorem:
form the same filtering given by Eqn. (22), i.e. they send the

partial state estimates according to the centralized Kalma Theorem 3 (Small measurement noise).et us consider
node rather than computing the optimal gaidf given packet loss sequences and systems dynamics parameters

by Eqn. (23), it compensates the packet loss by using thea ¢ for which for which BIF > P"EF and scenarios for
open loop partial state estimate based on the latest receive which PIF < pPEF | |

packet from each node, i.e.: tt tt

OPEF _ N ¢i,0PEF4‘ - N ATti4l . (24) Rimark 4 Theoreins 2 and 3 study, respectively, the cases
it Zl t — Zl —1 Q=0,R>0and R=0,Q > 0. It can be proven that the mini-
= = mum variance estimator of the state given the measurements
. : _ is a continuous function w.r.t. changes|j@|| (Theorem 2)
wheret; is the time elapsed since the most recent packet and||R|| (Theorem 3). This can be verified using the follow-

ecened fom et me nstant. AUhough 1 ecks  ingargument. the covaiance matir o e mezsure
’ y P ments Y:= [y .y ,....% |7, where y :=[(y) ", .. () '],

complexity at the central node, and in Section 6 it will be ;o qitive definite (in fact bounded away from zero) under
shown to achieve the optimal performance in the small pro- ya 45sumptions of both Theorems 2 and 3. In addition both
cess noise to measurement noise regime. the covariance&yy := coyx, Y} and the varianc&yy are

continuous functions w.r.t. Q and R. Therefore the minimum
6 Analysis under special regimes variance estimatok; = T2, 1Y is a continuous function
w.r.t. to Q and R under both scenarios. This implies that
our analysis will give insights also for either small proses
noise or small measurement noise scenarios, as confirmed
by the simulations in Section 9.1.

Even though it seems not possible to perform a rigorous
comparative analysis of all the strategies presented in Sec
tions 3, 4 and 5 in full generality, there are two special yet
important regimes which deserve some attention. These are
the two extreme scenarios in which either the process noise
is zero or the measurement noise is zero. 3 We omit the details in the interest of space.



7 Performance bounds 7.2 Lower bounds for the Riccati Equation: identical sen-
sors and stable dynamics

In this Section we turn our attention to computing an an-
alytical upper bound for the performance (state estimation In order to compute lower bounds for the estimation error
error variance) of the MF, and lower bounds for both MF covariance we first need to study in some detail the structure
and IBF. The upper bound for MF is computed resorting to a of the Riccati update for the estimation error covariance.
suboptimal (and hence with larger variance) MF estimation We shall also consider only the case in which there are
strategy, while for the lower bounds we shall need to study N identical sensors. More precisely, = C for all i, and
in some detail the structure of the Riccati update which is, Rj = Rg; for all i and j.
to the best of our knowledge, a novel contribution.
Let us define:

7.1 Upper Bound for Measurement Fusion (MF)

o . 4(PL,¢):=(—-LC)P(l —LC)T+1|_R|_T (26)
An upper bound on the state estimation error variance can ¢
be found by computing the error variance for a suboptimal __ . . . o . .
measurement fusion procedure. As discussed in Section 4 the! NS is the (filtering) state estimation error using the dain
measurement fusion strategy is nothing but a time varying When the initial state estimate has variaftand measure-
Kalman filter, for which the optimal gaib; in Eqn. (10)-  Ments fron¥ sensors are utilized. The optimal Kalman gain
(15) can be computed on-line and depends on which packet<£a1 be obtained by minimizing(P. L, ¢) with respect td.,
have been received. Of course one could instead consider (,thalnmg
suboptimal strategy in which the estimator gaidoes not
depend on the packet loss history. This suboptimal filter,
introduced in [13], can be written as:

-1
L*(P,¢):=argmin¥ (P L,¢) = pc’ <cpCT+ %R

_ _ (27)
Xt'\ﬂ': =(1- LtCt)A)?tNlFl‘t,l-i- eyt (25) The corresponding optimal prediction error is given by
wherel; = [tL1y2L2--- yWLN], andL' are constant gains. i (P () == (P L")
It has been shown in [13] that the steady state minimum . (VT LR (28
expected error covariance for this filter provides an upper = (I=LC)P(I -LC)  +7L'R(LY) (28)
bound for the measurement fusion strategy, as summarized = P-PC" (CPC + %R)*lcp

in the following theorem:

Theorem 5 ([13]) Let us consider the systems of Eqn. (1) For future use we also define the prediction error variance

with possibly unstable dynamics A and correlated measure- update -
ment noises, i.e.iR+ 0, and the filter defined in Eqn. (25). P(PL) == APs(PHA" +Q (29)
Let
S= 71mir1N JmEy[var(xt —)?t'\ﬂ'il)] Lemma 6 The functiongb; (P, ¢) and ®(P,¢) are concave
o bt _ _ _ ~as a function of P and convex as a functior/of
Then S is given by the unique fixed point of the following
operator: In the following we shall also make extensive use of a lower
. bound of the Riccati operatep(P,¢) as follows. Consider
W) (S =ASA +Q— the convex se? := {P=P' : P> P,,P < Ry }. We would
—AASCT(ACSC + (1-A)S+R)lcsSA like to find a linear function ofP, say G(P,¢) such that

S = diag{C1Sq ,...,CnSGL G(P() <®1(P) VP e 2.

i.e. S= W, (S) and has the property that The matricesPy, and Py define the set” over which the

linear lower bounds holds. In the rest of the paper we shall
always usén = ®(Py,N), i.e. the lowest achievable steady
state prediction error variance when Bllsensors are uti-
lized, andPy = ARyAT + Q, i.e. the open loop steady state
variance, which is the upper bound of the state prediction
The previous theorem basically describes how to computeerror when no information is available. It is a standard fact
the best filter among the class of all (suboptimal) filterdwit  to show that, provide® ¢ %, also®(P,/) € &.

constant gain&'. Since this filter is suboptimal, it provides

also an upper bound for the error estimation error covaeianc Of course a trivial (constant) lower bound G(P,¢) =

of the MF strategy. Incidentally, being MF suboptimal as ®ny(¢) := ®(Py,£). This follows from the fact tha®(P,¢) is
compared to the IBF, then it also provides a computable monotonically non-decreasing By i.e. ®(P,,¢) > ®(Py,¢)
upper bound for the performance of the IBF strategy. holds wheneveP, > P;.

lim supE, [RY{Fy] <§
—00 ¢



A tighter (linear inP) bound can be taken of the form:

J
L(PL) = ®(Pn, ) + 5 Wi(P—Pn)W]
=1

(30)

whereW; have to be chosen so thatP,¢) < ®(P,¢), VP
2.

The following theorem discusses the choic&bf j =1,..,J
in Eqn. (30):

Theorem 7 Let us define

Am = A—KnC
T T, R\1 (31)
Km = AL*(Pn,¢) = ARC' (ARC" + &)

The linear (in P) functions in Eq{30) are lower bounds
for the Riccati update(P, ¢) provided J= 1 andW¥; = aAny

for a suitablea € [0,1]. The tightest bound in this class is

obtained for¥9 := apAn where

ap:=argmaxa st L(Pl,a) <P(PY) VPe P (32)
ael0,1]

0.9

0.8

0.7

APAT 4+ Q
—~ 0.6
& ®(P,1)
o
0.4 _ ____,;;:—;
03[ T — ﬁﬁLB(i]i, 1) |

02F

0.1 /Pm

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 2. Graphical representation of bounding functionsdoalar
system withA=0.94C=1Q=0.1,R=05N =6.

7.3 Lower bound for Measurement Fusion (MF)
The following theorem gives a lower bound on the expected

(average) state estimation error for the measurementrfusio
approach

With a completely analogous argument it can be seen thatTheorem 9 Let Ryr and Rie respectively the asymptotic

the linear lower bound for the filtering update
LP(RO < @1(PY)
can be taken of the form
LEB(P ) := ®¢ (P, ) + ad(1 — LmC) (P — Pm)(1 — LmC);é
whereLm = L*(Pn,¢) = PrCT (ARCT + R) . Itis us(efu)l

to observe that

LR =ALP(ROAT +Q.

prediction and filtering state estimation errdrs Then
E[Fve] 2 Rz ElRje] = Rye”

where P2 is the unique stationary solution d®% =
o ST.LB o
LLB(PLE () and BB = LLB(RLE E).

7.4 Lower Bound for Infinite Bandwidth Filter (IBF)

The estimatox{ﬁ": is characterized by the variabigs..., 7V;

the value oft/ is the number of steps elapsed since the
last packet from nodehas been received at timeUnder
the assumkgtion of identical sensors, the performance of the

The following lemma gives a very simple expression of this estimatorme depends only upon the numbéght, h?, ..

lower bound for scalar state space systems. The correspond-

ing functions are graphically portrayed in Figure 2.

Lemma 8 For system with scalar state spaces, i.e=n
dim{x} = 1, the functionL}B(P,¢) admits the very simple
closed form expression

LYB(P.0) = ¢ (Pm,£) + B(P—Pn) (34)

where
_ ch (PMaé) - ch(Pmaé)

h: Py — P

whereh; can be defined as follows: let us consider, for each
nodei, only the last packet which has been successfully re-
ceived; according to the definition above this has happened
at timet — 7{. The variableh™ represents the number of
these packets which have been received at timen. In
formulas:

N
h{“::i;(S(rt' -m)

4 To be rigorous, the asymptotic variandadg= and P,\;F should

be defined as the lim-inf of the sequen@ﬁ%fl and Pt’i’t”:. With a

little bit of abuse, we neglect this in the interest of charit



IBF. Let us denote witLe (t, k, 462, .., 9) the state filter-

. Time tl ing error variance at timeand withRgg (t+1,k, 41, D)
] the state prediction error variance at tlme 1 assuming
‘é 2 - the conditional distribution off in (35) (and hencék = N)
S and with subsequent cumulat|ve number of arrived packets
[ 22, 22, ékfl EO
. R
§ z, z, z, _
o] 2, 2, 7 It is clear that
n
z, 5t
Per () 1= E[Rge(t.k 4° ,,é%}
h3=0 h?=1hl=1 h0=3 Per (k) i= E [Per(t+ 1,k &%, )] (36)
G=5 (=5 6=4 =3 = APLL(WAT +Q

Fig. 3. Schematics for the definition ¢& and ¢X. The entries

are theJefceived PﬁCketS: high(ljighted (VEHOW) are thdepaskets are increasing functions &fand provide a sequence of lower
received from each sensor node: 3 packets received at tirk f .

1 at timet =3 and 1 at timg = 2. bounds forE[Rg ] andE[Rer]. i.e

whered(+) is the Kronecker delta. Let us now fix the tirie

£, 5t St St St
the IBF estimatonx{'?F can be computed using the equations ElPge] = P_lBF(°°) 2 ID_lBF(k+1) = P_IBF(k) 2 P_IBF(l)
for the measurement fusion filter assuming that the equiva- E[Per] = Rer () > --Per(k+1) > Rer (K) - - > Agr (1)

lent number of packetg" arrived at timet — m is defined,
recursively, by the relation

0 0 The following theorem provides computable lower bounds
b = hy for the above quantities:
=0Mlin m=12,..
Theorem 10 The matricesj5|fBF(k) and Pgg (k) defined in

The definition of™ and4" is graphically illustrated in Fig-  gqn. (36) are lower bounded bl (k) > PLB(k) and
ure 3. It is fairly easy to see that the joint probability den- A, (k) > pLB (k) where: IBF IBF
sity function of the variables variable& can be written in BFAY) = TiBF '

terms of the conditional densitigg /™ ¢m, (™1 .. 0) =

p(¢™1¢m), which have the expression |5|TB’I;EB(1) = O (Pn, E£P) = ¢ (Pn,N(1- 1))
. PRE2(2) = & [L (P, B[40, 6)]
N—¢ m 1 ke
p(a™t =" = < ¢ rtn )ANE(]-—/\)KKt |5|fB’|IEB(k) = E |LBo- 0 LB o (P, B[4 1|6F 2])} :
and

where ) is the packet loss probability, i.8. = E[y} = 0].
Based on this we shall now construct a sequence of lower — _

bounds as follows. Let us now fix an integeand assume PaE (1) = ®(Pn,El) = ®(Pn,N(1- 1))
that P_LB 2) = E[LLB(d(P.. El¢L éO /0
p(d(:£|4(71) _ 5(£—N), (35) _|BF( ) [ ( ( m, [t| t])v t)] ) )
PR (k)= E[LBo-- 0 LB o (P, E[4 6 Y)]

i.e. that’k = N. This means that at time—k all previous
measurements from all sensors are available and hence the
state filtering error variance at tine kis the variance of the  whereE[4|¢f 1] = (f "+ (1—A)(N—£1) and R, is the
centralized Kalman estimatd-/{" kt_x- For simplicity of solution of B, = ®(Py,N), i.e. the opt|ma| (steady state)
exEosmon we shall assume tiat— k is “large” and hence  €I70r variance when measurements from N sensors are re-

REKF kt_k Converges tdm, which is the (steady state) pre- ceived at all times.

diction error variance for the centralized setting, i.e.ewh ] .
all measurements are available. Of course this is does notin practice one can Compu%p (k) for increasing values
happen in practice w.p.1, and hence this assumption will of k until convergence.

provide a lower bound. LeIPlfBF and Rgr be the (steady
state) state filtering and prediction error variance usheg t  Itis worth stressing that the lower bound for the IBF progide

also a lower bound for MF. Therefore one can use, as a lower

5 The bounds computed this way will hence be validtftiarge”. bound for MF, whichever is larger amov@]’l};B and PTBIEB.
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Fig. 4. Trace of error variance vgig as defined in Eqn. (37)ug [ %) computed via Montecarlo runs for three different packsslo

probabilities p = 0.25, A = 0.5 andA = 0.75). Top: IBF, MF and OPEF. Bottom: KEF, PEF and IBF

8 Complexity Considerations (1) The results in Section 6 concerning different regimes
in terms of ratio between the model noise variafte

Besides performance considerations also computational and th? measurement noise variafgare verified on

complexity has to be taken into account when implementing a specific example in Section 9.1.

estimation algorithms. In fact, complexity influences both (2) The theoretical bounds for IBF and MF computed un-

computational time as well as energy consumption, which der the assumption that all sensors are identical and the

may be a critical issue when using battery powered devices. ~ dynamics is stable, are illustrated in Section 9.2.

To derive some quantitative results, febe the size of the

state vectorm the size of each measurement veotorN 9.1 Comparison under different noise regimes

the number of sensors, akdthe maximum time elapsed
since all most recent packets are received by the centralwe shall consider the following simulation example with 7

node from each sensor. The computational complexity at sensors generated by Eqn. (1) with parameters
the sensor node is none for the MF since the raw measure-

ment is sent, while it i©Q(max(n?,nm)) for the EF (KEF, T

PEF, OPEF) due to the computation of the state estimates. , _ 099 1 _ 204110411

At the central node, the computational complexityig®) 0 099|’ 0000O0TO0O0 37)
for MF since® it is necessary to invert a matrix of at most .

sizen, it is O(N°n3k) for KEF and PEF, and(Nn) for R=diag{10,20,40,0.5,2,1,40},

OPEF since just a sum is required. Q= podiag{10 3,103}

The parametepig will be varied to study the behavior under
differentregimes, i.e. different ratios between the maahel
the measurements noises.

9 Simulation Results

We shall consider two simulation setups in order to illustra

the theoretical findings. In particular: Figure 4 reports the steady state error variance of the first
- component of the state as a function @), where each
6 Using the information form of the Kalman filter as in [1] point is computed by averaging the (filtering) variarige
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Fig. 5. Trace of Error Variance vs. packet loss probabilityMontecarlo average over 1000 experiments (MF and IBF) malygical
bounds. Left: Example 1, Right: Example 2.

over a Montecarlo run of 5000 time steps packet loss se- H H ME ‘ KEF ‘ PEF ‘ OPEF H
quence, i.e. liM.oE,[Ry] ~  3,_; Ry for T =5000, for
packet drop probabilitied := P[)} = 0] € {0.25,0.5,0.75}.
For small values ofg, i.e. under the small process noise fOF% —0
regime, the OPEF behaves very similarly to PEF. This is

Performance ) ) )
Good Optimal| Optimal| Optimal

Performance|| Almost | Almost| Almost

reasonable since, for small process noise, it make sense tdg IR| ) . . Very poor
“trust” the model and hence to propagate estimates in open|| gy —0 || optimal | optimal| optimal

loop. Note also that MF is the worst strategy for smail Complexity

This is also in line with the results in Section 6 predict- None Modest | Modest | Modest

ing that PEF is better than MF f@ = 0. On the opposite at sensor

regime, i.e. under the small measurement noise, correspond|| Complexity a
ing to large values ofig, the MF is almost undistinguishable base station
from the IBF. Although, this might seem in contrast with

Theorem 3, it is important to remark that Figure 4 shows the S . .

. . ummary of the results for prosed strategies: Measuremesioi
average performance, while Theorem 3 focuses on a S'ngle(MF), Kalman Estimates Fusion (KEF), Partial Estimate Buosi
realization. Therefore, these simulations suggest that fr (PEF), and Open-loop Partial Estimate Fusion (OPEF).
an empirical perspective, the MF behaves optimally under
the small measurement noise regime. Differently, note how 9.2 Bounds for identical sensors
OPEF performs very poorly in this regime, since it equally
weights old and recent estimates. Finally, it is interegtm
observe that both KEF and PEF perform very well under all
regimes, thus suggesting that how fusion is performed at the
sensor nodes, i.e. the choice of the filter paramdipend
G in Egn. (16), is not too critical, since the central node can
extract most the useful information by taking into account
the exact correlation among all received local estimates, a A— lo-g 0-1] C=[1 0], Q=diag{10 2,101}, Rj =1

Moderatg High High Very low

We shall consider the two examples described by the fol-
lowing parameters:

Example 1

the price of high computational cost. 0 09
fori=1,...,25.
Example 2

7 The conditional variance given the packet drop seque{ry@}a 099 1

has been computed in closed form as discussed in Section 5 for o —
all methods except OPEF. The unconditional variance isimbda
simulating a sufficiently long sequence of packet drop secgie
and averaging the conditional variance over that sequehioe.
same could also have been done for the OPEF; however this is
rather involved from a computational point of view and hetice o o
variance for OPEF has been computed purely by Monte Carlo The packet loss probability is varied in the ranga &
simulations. [0.1,0.9].

0 099

], Ci=[1 0], Q=diag{103,10°3}, R; =1

fori=1,...,25.

11



The results of a simulation are reported in Figure 5. The Time t=n+1
variances for MF and IBF are computed as in the previous —_— l
simulations by averaging the (filtering) variangg over a
Montecarlo run of 1000 time steps. For the example consid-
ered, we stopped &= 3 for the computation of the lower
bound for IBFPEE (k). Only marginal improvements could
be noticed by increasinigfurther.

l Scenario a

r4l;

Sensor number
[N

Scenario b

In the specific example, the true performance of the MF al- 1 z,
gorithm is indistinguishable from its analytical upper bdu 2 2,
while the two lower bounds become less tight as the packet
loss probability increases.

Fig. 6. lllustration of the two scenarios. Scenaiop): all packets
have been lost except the last one sent by sensor 1. Scdnario

10 Conclusions (bottom): all packets have been lost except the last oneshsen
both sensor 1 and 2.

In this paper we showed that it is not possible to design From this equation the covariance functiBpy := E[sns;] |

a bandwidth-limited distributed estimation fusion aldgiom can be easily computed, starting from the initial condition
which achieves the same estimation error performance of the

infinite bandwidth filter when random packet loss occurs.

Consequently, we proposed some suboptimal strategies for E[Xox] 0
which we derived some analytical upper and lower perfor- 0 0...0
mance bounds under different regimes and we studied their 200.:=

computational complexity, as summarized in Table 1. This : R
work and [7] suggest that distributed estimation and fusion 0 o0 0

with multiple sensors subject to random packet loss require

the development of new design strategies as well as novel

mathematical tools, and much research needs to be doneObserve now that all the elements®fxz'; | andE [z .z, |
Moreover, further research directions include the extemsi  are indeed elements &f, x for suitable values ofi andk.

to more complex communication topologies like trees or

graphs [1], more realistic packet loss models which include ,

loss correlation and transmission delay, and analytical pe APpendix B

formance bounds for unstable systems.

Proof of Theorem 1We will prove the theorem by providing

. a family of counterexamples: We start by observing that the
Appendix A optimal fusion strategy at the fusion center is given by:
The covariance matrice® [xz';] and E[zz';] can o (A) =E[x | 4]

be computed using a standard state-augmentation argu-

ment as follows: let us define the augmented state VeCtorindependently of the choice of the functiorfd(), i.e.

§ 1= (&72!17__,2{\‘), By combining Eqn. (1) and Eqn. (16), it var(x — g (A4)|-%4) < varlx — & (A4)|A4),V(o,-#%4). Let
is immediate to see that us consider the following dynamical systems with two
(identical) sensors:

& = Wis-1+B'Ww-1+Biw (A.38)
where Xer1 = AX +W
A 0..0 Y =Cx+Vv
W GIGAr: 1t ... o Y2 =Cx +W
t-= . . .
' o wherew; € R"y! € R,y? € R and Xo, W, V¢,V are uncor-
GNcyAarN o o related zero-mean white random variables with covariances
var{xg} =Py >0,Var{w} =Q >0, 0,1 = 0,2 =, respec-
I 0... 0 tively. We consider, for any = n+ 1, two different packet
arrival scenarios:
o GiC, v Gt.. o0
: R a{yi=.=W=0i=12y =1y ,=0}
GMCu 0..GM b:{fi=.=W=0i=12) =, =1}
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i.e. attimet =n+ 1 in scenario (a) only the last packet from
the first sensor arrived successfully at the central nodiewh
in scenario (b) both packets corresponding to tireen+ 1
were received but the packets corresponding to timesnl
were lost.

Let us first consider the expressions for the infinite band-

width filter (IBF): Under scenario (a) we have

5IBF.a

R = Exlyp k<t =Sl oG vk gt EeR"

From the first equation we see that, w.l.0.g., we can thke

2{‘?5"" = Yt ogo'yE. With a symmetric argument, repeated
al 2

for sensor 2, als@? = y}_,0¢ Yz holds true. In order for
the second equation to be satisfied, there must exist matrice
Tip andT,p such that

Lo 1 ! alyz ! bY&"'yﬁ
Tib ) O Yt Top ) O Y= ) 20¢——=—
o3 dk Ty - 5 20

which can only happen i = T¢P for someT. Note

whereg®! are computed through the standard Riccati recur- however thaig}" and gf satisfy (B.39) and (B.40) respec-

sions which we write compactly as

gt = W(A.C,P,Q,1,K), (B.39)

which has the following meaningﬁ’1 is the coefficient vec-
tor at timek, obtained from the Riccati recursions for the
model with parametera,C, model noise varianc®, mea-
surement noise varianceand initial varianceP,.

Under scenario (b) we have:

SBFb

R " = Ex|ypyBk<tl=3Z15k oGk g €R"

Note also that, since the two sensors are assumed to be ide

tical and with independent noises, the estimator in scenari

(b) satisﬁesg:fk”1 = gﬁ’z =: gE, vk and can be written as

bYk Yk

JIBEb
P = S 0200™5

Xie =~ =

This simply means that@ = ZgE’1 = ZgE*2 is the impulse

tively. Since the Riccati equation is not linear in the noise

variancer, it is not possible to findT such thatgl" =

W(A,C,P,Q,r,k) = TW(A C,P,Q,r/2,k) = T, k. For
instance, it is straigﬁtforward to verify that, for

] c=[10]

andQ=1,r=1,t=n+1= 3, we have that

09 1
0 09

min
TeR2x2

3
> llgk" ~Tepl5 = 0.0698
k=1

"confirming that it is not possible to findl such tha1g§' =

T fork=1,2,3.

This concludes the proof that there do not exist linear func-
tions of dimensiom that allow to retrieve the optimal esti-
mate for all possible packet loss sequences.

These results continue to hold even if we consider more

response of the estimator one would obtain with just one generalnonlinearfunctionsz = f{(y;,). In fact, as shown
sensor whose measurement is the mean of the measuremenis the specific example above, in order to retrieve the opti-
of the two sensors (and with halved measurement noise vari-mal estimate, starting fromz it has to be possible to recon-

ance).
Thus, with the notation introduced in (B.39), we have that

b,1

1
=g’ =6 = SWACR.Qr/2k.  (B.A40)

We start by showing that there do not exigear functions
of the measurement = f{ (Y},) = Y\ o} Y of sizen (the
state dimension), i.e4 € R", that can retrieve the optimal
mean square estim t"" for both the scenarios just illus-

trated. For this to be true the following would have to hold
for some suitable matriceg a, Ty p, To.a € R™™:

Epx|2] = Tad =R}
Ex|Z,Z] = Tupz + TopZ = ﬂEF’b

13

struct 53 g2"yL under scenario (a) angl 2 gPyt under
scenario (b). Since, as shown aboie,s.t.gi" = T, vk <
n-+1, the central node can also reconstrygtys, ...y, ;
from z,lHl. This is equivalent to saying that the function
zt = f1 . (v}...yt, 1) mapsn+ 1 real numbers inta real
numbers, and that the central node can reconstruetthe
real numbers from tha real numberz}, ,, which is clearly
impossiblé .

The proof for arbitrary but finite packet sizgi.e Z € R
can be obtained similarly by properly constructing differe

8 Of course one could argue that in an infinite bandwidth setup
there is essentially no limitation on the numiden (3); however,
when bandwidth limitations come into play, resolution riegu
ments would of course impose an upper bound.dbwould also

be possible to consider “smart” coding schemes which, hewev
would have to depend also on the specific packet loss sequence



packet loss scenarios for which the gains of the optimal 4 40 also
linear combination of the measurements are linearly inde- =
pendent, which means that there do not exists linear func-

tions f!() which always recover the optimal mean square XtK‘tEF = E[ thi[ T.,I =1,..,N]
estimatQQEF.Also similarly to the proof above, this can be _ [ ey =1 |4 _
extended to general nonlinear functiofis). O BF L b Tt” Lo
Xt\t |4 |a = a a
GIBF
= Kt

Proof of Theorem 2We shall give the proof when the matrix
Ais invertible. If A is singular, then the proof can be easily
adapted by first considering a basis transformation and sub-
sequently by restricting to the subspace which corresponds

holds, thus proving thaﬁKEF Pt"tBF.

to the non-zero eigenvalues Af Let us now turn our attention mﬁtEF. By first computing
‘KF = E[x|y}4,i = 1,..,N] it is simple to observe that the
Let us first consider the IBF given by partial estimatez, s=t— 1 (see equations (22), (17)) is
given by
th?': = E[Xt|yI17 ivizla"aN] X .
A v 4 = A (sl (oD TR oLy Y) () TR
= AEMolY), ;i=1..N] L 1
= = A (SO TR Ry
|
If we denote by ((O)TRAOL+ Pyt A
- The last equality proves thatare linear and invertible func-
GA yll ti j|
) ) ions ofz' and therefore
i GA i y|2
O = . Y= PEF ._ i -
. . Xt‘t Ext|z‘[ Tivl_lv"vN]
CA yi = Extlit =1
X[K‘tEF

than a standard formula from linear minimum variance es-

timation [2] yields: thus implying a|sd3tl‘3tEF Ptl‘<tEF.

. -1
REF = A (3Ny(0 ) RO 4Ry

If we now consider the open loop strategﬁfEF, recall that

ui (B.41)
Ra( t,rti) R Ytl,rti - N i
X = LimaA"g
Note also that the-th local state estimator, i.e. the best —A(sN (6 VR lo . Pfl) -1
estimator that theth node can construct based solely on its (z':l_( t*Tt') R oot *ho
own measurements, is given by -zi'\‘:l(ﬁt' Ti)TRlet' d
—f i
41' L= E| i|yi ] Note now that the last term on the rlght hand side is indeed
' Lt i X{EF given in Eqn. (B.41), thus proving thaﬁt"EF_ QEF.
1! i _ i _
= AT ((@,TQ)TRI' 1@4{ +Py l) : This yields also the last equali§f?”&F = R|EF.

(ﬁtl DRI
—Ti t—1f . MFE . .
Finally, note thalxm computes the best estimate given only
the measurements which have indeed reached the fusion
center; hence its variance is strictly larger (for a generic
choice of the d nam|cs governlng the state evolution) than
QIBF _ At zN (O _)TRiflﬁi 4pot ’l. the variance of(t (IBF), which is the lower bound on the
Xt\t i=1 t—1/ t—1f 0 .
N L AT achievable accuracy for any given packet drop sequence.
i1 ((ﬁt,rti) RO +R )A ‘{4

(B.42)
holds true. Since the right hand side is a linear function of Proof of Theorem 3We start by showing that there exists

Therefore, using the assumption theis invertible,

14



PPEF_ Let us consider the fol-

a scenario for whictiPMF > 't
10

, R=0
01

tt
lowing systems:

11

A= ] Ci=[10], Q=
1

where Py = |, i.e. we consider a single sensor. Suppose

that yi = 0,y3 = 1, i.e. the first packet is lost, while the
second is received successfully. It is eas
%5 =%5" = aly+ a3y;, where 0% ag € R%1k=1,2.
SinceEly} |y3] # yi, it follows that xg"'zF £ )‘('2“32F therefore

ch\/'zF > PZF"ZEF. This result is not too surprising since it is al-
ready known thaxt'ﬁ": = iﬁtEF is always true when there is

a single sensor [8].

to verify tha

from which W; have to be chosen so tifat

Wi(P—Pn)¥] <An(P—Pn)A, YPe P (B.45)

M-

i

In particular note that whelR— Py, is singular als@p(P, ¢) —
®(Pn,¢) (and hencel (P, ¢) — ®(Py, () is so.

 Consider now rank one incrememé =P — Py it follows

that for all A} (positive semidefinite and of rank 1)
J _ —
Y WilhW] < AnABA,
=1

must hold. This implies, in particular, that the rangegiy

. . . . 1 . 1 .
We now prove that there exists a scenario for which coincide, for allj, with the range ofmAp. Sincels is an

MF
Rit <R

example to which we add a second sensor with observa-

tion matrixC, = [0 1]. It is easy to verify that the outputs

PPEF Consider the same dynamics of the previous arbitrary rank 1 positive semidefinite matrix, this implies

W =ajAn ¥j€[1,J]

of the local filter on each sensor according to the PEF Therefore zf:lLle(P— Pm)lleT = Eleajﬁ_\m(P— Pn)Am.

strategy arez = [y 0" andZ = [0 y?|". Let us con-
sider the following packet loss sequenge= yi = y? =
1,¥%% = 0, thereforexily = Elxalyi.y5.vi] = %5, while
XSEF = E[x2|2,Z] = E[x2|y3,y2]. It is also possible to
verify that Ey}|y3,y3] # yi since the covariance matrix
S =E[EET], where& = [ylyiy?]T, is not singular. This

implies thatx;’EF i'zﬁ‘zp, thereforePé\"'zF < PE‘ZEF. O

Proof of Lemma 6Let us first considerd(P,¢). Con-
cavity in P follows rather easily from the fact that
P (PL)=minL¥(P,L,¢). As far as convexity irt, the fol-
lowing argument can be used: assume (positive) real

, : oo A (PY d?oq (e
variable and consider the der|vat|vesfd(£—) and de(Z 23
ds (P() do¢(R()

It is easy to verify that—y— < 0 and—;z— > 0. The

conclusion for®d(P,¢) follows from the fact thatb(P,¢) is
an affine function ofb¢ (P, ¢). This completes the proofd

Proof of Theorem 7The structure of the Riccati update
imposes some constraints on the matix In particular
P(P,¢) satisfies

®(P,£) — (P, ) < An(P — Pm)An, (B.43)

whereAn is defined in Eqgn. (31). Note that in order to prove
(B.43)
o(P () < A_mPA_;Jer;K;JFQ (B.44)

has been used. It follows from (30) and (B.43) that

L(P0) < D(P0) < D(Pn,l) + An(P— Pn)Ay,
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Thus, w.l.o.g., we can také= 1 and

W, = aAn (B.46)
Moreover, sincea2Am(P — Prn)Amn < Am(P — Pn)An must
hold,a € [0, 1] follows. At this point we would like to choose
the tightest (linear) lower bound of the form
L(PL,a) = D(Pm,0) + a’An(P—Pm)AL  (B.47)

which is equivalent to maximizinge under the constraint
thatL(P,¢,a) bounds from belowb(P,¢) in the setZ, i.e.

ap:=argmaxa st L(P{,a) <D(PY) VPe Z.
ael0,1]

Hence the lower bound 8B(P,¢) := L(P,/, ap). m

Proof of Lemma 8The proof is just based on the observa-
tion that Egn. (34) is nothing but the line going through the
points of coordinate$Py, @+ (Pm,¢)) and (Ru,®+(Ru,?)).

Of course concavity ofb; (P,¢) guarantees that this line is
below ®¢ (P, ¢) for all P € &2. This is indeed the “optimal”
approximation from below, i.e. the linear functionfrwith

the largest slope which goes trougRm, ®(Pn,¢)) and
always remains belowps (P) VP € & = [Py, Pu]. O

Proof of Theorem 9The (prediction) state estimation error
using the measurement fusion approach satisfies the recur-
sive equatiorR ;1 = ®(R, 4 ). From convexity of®(P, /) in

9 Note that this is only a necessary condition £diP, ¢) < ®(P, )
to hold.
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