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Abstract

In this paper we discuss suboptimal distributed estimationschemes for stable stochastic discrete time linear systemsunder the assumptions
that (i) distributed sensors have computation capabilities, (ii) the communication between the sensors and the estimation center is subject
to random packet loss, and (iii) there is no communication between sensors. We consider strategies which are based on rawmeasurement
fusion (MF) as well as on fusing local estimates, such as local Kalman filters or other pre-processing rules. We show that the optimal
mean square estimation error that can be achieved under packet loss, referred as infinite bandwidth filter (IBF), cannot be reached using a
limited bandwidth channel; we also compare these strategies under specific noise regimes. We also propose novel mathematical tools to
derive analytical upper and lower bounds for the expected estimation error covariance of the MF and the IBF strategies assuming identical
sensors. The theoretical findings are complemented with simulation results.
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1 Introduction

The rapid growth of large wireless sensor networks capable
of sensing and computation promises the design of novel
applications, but it is also posing several challenges due to
the unavoidable lossy nature of the wireless channel. These
challenges are particularly evident in control and estimation
applications since packet loss and random delay degrade
the overall system performance, thus motivating the devel-
opment of novel tools and algorithms, as illustrated in the
survey [9]. In this work we focus on the problem of esti-
mating a stochastic discrete time linear system observed by
a number of sensors which can preprocess sensor data and
communicate this information to a central node via a wire-
less lossy channel.

1 This paper was not presented at any IFAC meeting. This work
has been partially supported by European Union project FP7-ICT-
223866-FeedNetBack, by the Italian CaRiPaRo Foundation project
”Wise-Wai” and by the Progetto di Ateneo CPDA090135/09
funded by the University of Padova. Corresponding author
Alessandro Chiuso Ph. +390498277709

Email addresses:alessandro.chiuso@unipd.it
(Alessandro Chiuso),schenato@dei.unipd.it (Luca
Schenato).

There is a vast literature regarding distributed estimation
and sensor fusion with perfect communication links (see
for example [4], and references therein). In particular, there
are two classes of problems that are relevant to this work.
The first class addresses the problem of distributing com-
putational burden from the central node, where the decision
process takes place, to the distributed sensors, under the as-
sumption of perfect communication, i.e. packets arrive with
no delay or with a known constant delay. In this context,
Willsky, Levy et al. [16] [10] showed that it is possible to re-
construct the centralized Kalman filter (CKF) estimate from
local Kalman filter estimates generated by each sensor. In
particular, the CKF can be obtained as the output of a linear
filter which uses the local Kalman estimates as inputs. More
recently Wolfe et al. [17] showed that the computational
load of the central node can be reduced even further by run-
ning on each sensor a local filter which generates a partial
estimate of the state so that the central node just needs to
sum the contribution from each node together to recover the
CKF estimate. The main difference between [16] [10] and
[17] is that in the latter approach all local sensors need to
know the whole system dynamics, while in the former ap-
proaches only the central node needs to know the dynamical
model of the whole system.

The other class of works is related to estimation subject
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to packet loss and variable delay between the sensor and
the estimation center. This problem is particularly relevant
in moving target tracking applications based on radar and
GPS measurements [4]. For example in [11] the problem of
optimal estimation from randomly delayed measurements
from multiple channels has been addressed; in [3] and [18]
the authors showed how to perform optimal estimation with
time-varying delay and out-of-order packets without requir-
ing the storage of large memory buffers and the inversion
of many matrices. More recently, in [15] the authors pro-
vided lower and upper bounds for the optimal mean square
estimator subject to random measurement loss, and in [13]
the upper bound was extended to multiple distributed sen-
sors subject to simultaneous packet loss and random delay.
Finally, the recent papers [14][1] analyze some tradeoffs be-
tween communication, computation and estimation perfor-
mance in multi-hop tree networks.

However, there are only few scattered results concerned with
distributed estimation subject to packet loss when sensorsare
provided with computation capabilities to preprocess data
before transmitting it to the estimation center. A recent re-
sult in this direction is given by Gupta et al. [8] who showed
that when there is only one sensor, the optimal strategy for
the sensor in the presence of packet loss is to send the lo-
cal Kalman estimate rather than the raw measurement. This
is because the local estimate includes the information about
all previous measurements, therefore as soon as the cen-
tral node receives the local estimate it can reconstruct the
optimal estimate even if some previous packets were lost.
Along the same lines, Robinson et al. [12] showed under
what conditions a linear combination of the past measure-
ments can improve estimation performance. Unfortunately,
these results do not generalize to multiple sensors each pro-
vided with its own lossy communication channel. Differ-
ently, a notable work which explicitly focuses on multiple
sensors with lossy communication is given by Gupta et al.
[7] who proposed a computationally and bandwidth efficient
fusion strategy which can guarantee to achieve the same per-
formance of the optimal strategy if each sensor knows the
history of the packet loss sequence of all other sensors, i.e.
under the assumption that sensors can communicate.

The contribution of this work can be summarized as follows:

• We show that the optimal mean square estimation error
that can be achieved under packet loss, referred as infinite
bandwidth filter (IBF) (Section 3), cannot be achieved us-
ing a limited bandwidth channel (see Theorem 1). As a
consequence, we consider several suboptimal strategies
with different computational and communication require-
ments by either fusing measurements (Section 4), or local
estimates (Section 5). We also compare these strategies
under specific noise regimes namely low process noise
and low measurement noise (Section 6). It is proved that
no strategy is superior to the others in all scenarios. This is
investigated also via simulations confirming that the rel-
ative performance depends on the packet loss probability
and noise scenarios. Partial results have appeared in [5],

more specifically the statement of Theorem 1, the state-
ments and proofs of Theorems 2 and 3, and the example
of Section 9.1.

• We derive analytical expressions to compute upper and
lower bounds of performance of these estimators as-
suming i.i.d. Bernoulli packet loss probabilities. Finding
bounds on performance turns out to be particularly chal-
lenging due to the fact that the estimation error covariance
of the different estimators at the central node depends
nonlinearly on the specific packet loss sequence of all
sensors, therefore computing expected error covariance
a-priori given the packet loss statistics becomes a com-
binatorial problem that explodes with time. In particular,
we derive upper and lower bounds in the scenario where
all sensors are identical for two specific strategies: the
measurement fusion (MF) strategy and the infinite band-
width filter (IBF) strategy. The MF strategy is based on
optimally fusing the raw measurements received by the
central station from the sensors, while the IBF strategy
is based on the assumption that each nodes sends to the
base station not only the current measurement but also all
previous measurements in a single packet. We also show
through some simulations that some of these bounds are
rather tight and can be used to estimate in advance the ex-
pected error of the different strategies. Preliminary results
have appeared in [6], more specifically the Lemmas 6
and 8, Theorems 9 and 10 , and part of Section 9.2.

The structure of the paper is as follows: Section 2 contains
the mathematical formulation of the problem; in Section 3
the optimal strategy under packet loss is presented. The mea-
surement fusion strategy is presented in Section 4 while sev-
eral strategies based on fusing local estimates are discussed
in Section 5. Section 6 contains comparative results under
different noise regimes, namely low process noise and low
measurement noise. Bounds on the achievable performance
are found in Section 7, while Section 8 discusses complexity
issues. Simulation results illustrate the theoretical derivation
in Section 9 and conclusions end the paper in Section 10.

2 Problem formulation

2.1 Modeling

We consider a stable discrete time linear stochastic systems
observed byN sensors:

xt+1 = Axt +wt

yi
t = Cixt +vi

t , i = 1, . . . ,N
(1)

wherex∈ Rn, yi ∈ Rmi , A has all eigenvalues inside the unit
circle, wt andvi

t are uncorrelated, zero-mean, white Gaus-
sian noises with covariancesE[wtw⊤

t ] = Q, andE[vi
t(v

j
t )

⊤] =
Ri j δi j , i.e. we assume uncorrelated measurement noise un-
less differently stated. More compactly, if we define the com-
pound measurement column noise vectorvt = (v1

t , . . . ,v
N
t ) ∈
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Rm,m= ∑i mi , we haveE[vtv⊤s ] = Rδ (t−s), where the(i, j)-
th block of the matrixR∈ Rm×m is [R]i j = Ri j ∈ Rmi×mj .
The initial conditionx0 is again a zero-mean Gaussian ran-
dom variable uncorrelated with the noises and covariance
E[x0x⊤0 ] = P0, and for convenience we define the matrix
C⊤ = [C⊤

1 C⊤
2 . . . C⊤

N ]. We also assume thatR> 0 unless
differently stated. Note thatA being stable guarantees the
existence of stable estimators even in the presence of packet
loss.

The sensors are not directly connected with each other and
can send messages to a common central node through a lossy
communication channel, i.e. there is a non zero probability
that the message is not delivered correctly. We model the
packet dropping events through a binary random variable
γ i
t ∈ {0,1} such that:

γ i
t =

{

0 if packet sent at timet by nodei is lost

1 otherwise
(2)

Each sensor is provided with computational and memory re-
sources to (possibly) preprocess information before sending
it to the central node. More formally, at each time instantt
each sensori sends the preprocessed informationzi

t ∈ Rℓ:

zi
t = f i

t (y
i
1,y

i
2, . . . ,y

i
t) = f i

t (y
i
1:t) (3)

whereℓ is bounded andf i
t () are causal functions of the local

measurements. Natural choices arezi
t = yi

t , i.e. the latest
measurement, or the output of a (time varying) linear filter:

ξ i
t = F i

t ξ i
t−1 +Gi

ty
i
t

zi
t = H i

t ξ i
t +Di

ty
i
t

as for example a local Kalman filter.

The objective is to design a state estimator at the central node
given the information arrived up to timet. More formally, let
us define the information set available at the central node as

It =
N
⋃

i=1

I
i

t , I
i

t = {zi
k |γ

i
k = 1,k = 1, . . . ,t} (4)

Based on this set, we want to design an estimator as follows

x̂g
t|t = gt(It ) (5)

such that its errorPg
t|t = var(xt − x̂g

t|t |It) = E[(xt − x̂g
t|t)(xt −

x̂g
t|t)

⊤ |It ] is small. Depending on the choice of the sensor

preprocessing functionsf i
t and the estimator functionsgt ,

we get different strategies. Note that the estimator error co-
variancePg

t|t is a function ofIt , and therefore also of the
specific packet loss sequence, i.e. it is a random variable.
In the following of this section, we propose three different
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Fig. 1. Snapshot at timet = 4 of the information flow for the
Infinite Bandwidth Filter (IBF). Top: packets arrived at thefusion
center. The value of thei-th row, t-th column is the information
received from the fusion center at timet from nodei; an empty
cell means that the corresponding packet has been lost. Bottom:
corresponding information available at the fusion center.

strategies, based on natural choices for the functionsf i
t and

gt . Other choices are obviously possible, as in [12], [7] and
[5].

3 Infinite Bandwidth Filter (IBF)

Here we consider the optimal filter in mean square sense
that we can obtain if we assume infinite bandwidth in the
communication channel when a packet is sent successfully,
i.e. each sensor sends to the central node all measurements
up to current time:

zi
t = yi

1:t (6)

whereyi
1:t = (yi

t ,y
i
t−1, . . . ,y

i
1). This is illustrated in Figure 1.

The estimator at the central node is given by

x̂IBF
t|t = E[xt |It ] = E[xt |y

1
1:t−τ1

t
, . . . ,yN

1:t−τN
t
] (7)

whereτ i
t is the time elapsed since the most recent received

packet from thei-th sensor at timet, as shown in the top right
corner of Fig. 1. This filter is optimal among all possible
strategies i.e., more formally,

PIBF
t|t ≤ Pg

t|t , ∀ f i
t (),∀γ i

t ,∀gt()

wherePIBF
t|t = var(xt − x̂IBF

t|t |It) is the error covariance of
the infinite bandwidth filter. In other words, this filter setsa
bound on the achievable performance of any other filter. Un-
fortunately there is no hope to find a strategy which achieves
the same performance with a more parsimonious use of the
channel. This finding is formally stated in the following the-
orem.

Theorem 1 Let us consider the state estimatex̂g
t|t andx̂IBF

t|t
defined as above. Then there do not exist (possibly nonlin-
ear) functions zit = f i

t (y
i
1:t) ∈ Rℓ with bounded sizeℓ < ∞,
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and functions gt(It ), such that Pgt|t = PIBF
t|t for any possible

packet loss sequence, i.e.

∄ f i
t (),gt() | Pg

t|t = PIBF
t|t , ∀γ i

t

The previous theorem states that there is no hope to find a
preprocessing with bounded message size which can achieve
the error covariancePIBF

t|t of the infinite bandwidth filter
(IBF) since it is not possible to know in advance what the
packet loss event will be. This fact raises the problem of how
to find bandwith-efficient strategies with good estimation
performance. Here we propose two suboptimal estimation
strategies which provide the optimal solution in the special
case of perfect communication link, i.e. when there is no
packet loss.

4 Measurement Fusion (MF)

The first estimation strategy, referred as measurement fusion
(MF), consists in sending the raw measurements

zi
t = yi

t (8)

from each sensor node, and to find the best mean square
state estimator with the arrived measurements at the central
node:

x̂MF
t|t = E[xt |It , i = 1, . . . ,N] (9)

where the information set in this case corresponds to
I i

t = {yi
k |γ

i
k = 1, k = 1, . . . ,t}.

It is possible to explicitly compute the MF filter as follows.
Let us first define the following variables:

C̄t =









γ1
t C1
...

γN
t CN









, ȳt =









γ1
t y1

t
...

γN
t yN

t









which can be obtained from the centralized matrix
C and from the lumped column measurement vector
yt = (y1

t y2
t . . . yN

t )⊤ by replacing the rows and columns
corresponding to the lost packets with zeros. It was shown
in [13] that the state estimate for the measurement fusion
strategy is given by:

x̂MF
t|t = (I − L̄tC̄t)Ax̂MF

t−1|t−1 + L̄t ȳt (10)

PMF
t|t =Pt|t−1−Pt|t−1C̄

⊤
t (C̄tPt|t−1C̄

⊤
t +R)†C̄tPt|t−1 (11)

=(P−1
t|t−1+C̄⊤

t R−1C̄t)
−1=(P−1

t|t−1+∑N
i=1 γ i

tC
⊤
i R−1

ii Ci)
−1(12)

L̄t = Pt|t−1C̄
⊤
t (C̄tPt|t−1C̄

⊤
t +R)† (13)

= PMF
t|t

[

γ1
t C⊤

i R−1
11 . . . γN

t C⊤
i R−1

NN

]

(14)

Pt+1|t = APMF
t|t A⊤ +Q (15)

where the symbol † indicates the Moore-Penrose pseudoin-
verse, and Eqns. (12),(14) are valid with the additional as-
sumption thatR> 0 andPt|t−1 > 0. The previous equations
correspond to a time-varying Kalman filter which depends
on the packet loss sequence. Note that only measurements
that have arrived are used for the computation of the esti-
matex̂MF

t|t , i.e. the dummy zero measurement in ¯yt are not
used as if they were real measurements, but are discarded.

The measurement fusion strategy has the advantage to be
computed recursively and exactly with the inversion of one
matrix of (at most) the size of the state vector, as it can
be inferred from Eqns. (12) and (14) which correspond to
the implementation of the Kalman Filter via the Information
Filter [16]. On the other hand, if a packet is lost, then the
information conveyed by the measurement in that packet is
lost forever, while sending filtered version of the output, as
described in the next section, might partially recovered it.

This strategy has been shown to provide good performance
in simulations under different noise regimes [5], however,
intuitively, it should provide almost optimal performance
in a scenario with high ratio between process noise and
measurement noise. In fact, if the process noise is large
as compared to the measurement noise only most recent
measurements convey relevant information, therefore there
is no much gain in filtering the past measurements at the
sensors. Although this seems to be case in many simulations,
there are choices for the system dynamics for which the MF
strategy is not optimal even under noiseless measurements,
as shown later in Section 6.

5 Fusion of Local Filter Estimates (EF)

The second estimation strategy, named estimate fusion (EF),
is based on the fusion of local filtered version of the mea-
surements. According to this strategy, thei-th node sends an
“estimate” of the state computed via

zi
t = Γi

tz
i
t−1 +Gi

ty
i
t (16)

and the central node performs the following fusion rule

x̂EF
t|t = E[xt |z

i
t−τ i

t
, i = 1, . . . ,N] =

N

∑
i=1

Φi
tz

i
t−τ i

t
(17)

wherezi
t−τ i

t
is the most recent estimate received by the cen-

tral node from the sensor nodei, i.e. τ i
t is the time elapsed

since the most recent packet at timet from nodei. The con-
ditional expectation will be computed assuming a Gaussian
measure1 .

1 Alternatively one could think ofE[· | ·] as being the bestlinear
estimator.
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Besides computing the coefficientsΦi
t , one has also to decide

how each node processes its own measurements, i.e. howΓi
t

andGi
t are chosen.

Before discussing these choices, we first describe how the
gainsΦi

t can be computed. Let us define:

Φt :=
[

Φ1
t . . .ΦN

t

]

and zt,τ :=











z1
t−τ1

t
...

zN
t−τN

t











.

Of course, the optimal fusion coefficients of Eqn. (17) can
be computed as:

Φt = E
[

xt z⊤t,τ
]

E
[

zt,τ z⊤t,τ
]−1

(18)

A procedure based on a standard state-augmentation ar-
gument which allows to compute the covariance matrices
E
[

xt z⊤t,τ
]

andE
[

zt,τ z⊤t,τ
]

is illustrated in Appendix A. The
conditional variance of ˜xEF

t|t = xt − x̂EF
t|t given the sequence

{γ i
s}s=1,..,t can be computed using the standard formula for

the error covariance

PEF
t|t =var{x̃EF

t|t |γ
i
s, s≤ t}=var{xt}−ΦtE

[

zt,τ z⊤t,τ
]

Φ⊤
t (19)

This equation will be useful in evaluating the performance
of different choices of the local pre-processing strategies Γi

t
andGi

t . Of course it can also be used to monitor on-line the
performance of the estimator ˆxEF

t|t .

Note that the error covariance of EF,PEF
t|t is based only on

the latest packet received from each sensor node, therefore
is potentially larger than the error covariance that could be
obtained by using all received packets,Pt|t = var(xt |It), i.e.:

PIBF
t|t ≤ Pt|t ≤ PEF

t|t ∀γ i
t .

However, the computational price to pay in this case is much
larger. The optimal choice of the “local” filter matricesΓi

t
andGi

t in Eqn. (16) is far from being a trivial task even if
topology and statistics of the model are completely known.
Therefore, in order to gain some further intuition, we explore
and compare some sensible choices of the matricesΓi

t and
Gi

t .

5.1 Kalman Estimate Fusion (KEF)

A natural choice for the matricesΓi
t andGi

t , is given by run-
ning a local Kalman filter on each sensor, i.e. by computing
the best estimate given its own measurements, which is local

in nature. More formally:

ẑi,l
t = F i

t ẑi,l
t−1 +Li,l

t yi
t

F i
t = (I −Li,l

t Ci)A

where the gains2 Li,l
t are the local Kalman filter gains com-

puted as

Pi
t+1 = (A−K i,l

t Ci)Pi
t (A−K i,l

t Ci)
⊤+

+K i,l
t Rii

(

K i,l
t

)⊤
+Q

Li,l
t = Pi

t C
⊤
i (CiPi

t C
⊤
i +Rii )

−1

K i,l
t = ALi,l

t

We shall call the optimal estimate based on the received data
zi,l
t−τ i

t
, the optimal Kalman estimate fusion (KEF):

x̂KEF
t|t = E[xt |z

i,l
t−τ i

t
, i = 1, . . . ,N] =

N

∑
i=1

Φi,KEF
t zi,l

t−τ i
t

(20)

Unfortunately, as discussed in [16], even in the absence of
packet losses and with uncorrelated measurement noise, the
optimal estimate, i.e. the CKF, cannot in general be recov-
ered as a static linear function of the most recentzi

t only.

5.2 Partial Estimate Fusion (PEF)

This strategy is suggested by the observation that, in the
absence of packet losses, one could compute the gains in a
centralized manner and distribute the computations to each
sensor. To be more precise, assume that all measurements are
available to a common location, i.e. that there are no packet
losses. We shall denote withxCKF

t|t := E[xt |yi
1:t , i = 1, ..,N] the

centralized Kalman filter (CKF). Its evolution is governed
by the equations:

x̂CKF
t|t = Ft x̂CKF

t−1|t−1 +Ltyt

Ft = (I −LtC)A
(21)

where the gainLt = [L1
t L2

t · · · LN
t ] is the centralized Kalman

filter gain computed as

Pt+1 = (A−KtC)Pt(A−KtC)⊤ +KtRK⊤
t +Q

Lt = PtC⊤(CPtC⊤ +R)−1

Kt = ALt

2 The superscripti,l reminds thatzi,l
t is the local estimate of the

state at thei−th sensor, where the gainLi,l is computed using the
local Kalman filter equations.
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Note now that, definingzi
t to be the solution of

zi
t = Ftz

i
t−1 +Li

ty
i
t , (22)

the CKF estimate ˆxCKF
t|t is given byx̂CKF

t|t = ∑N
i=1zi

t . For these

reason we shall call thezi
t ’s “partial estimates”. This strategy

was suggested in [17] for distributed estimation to the pur-
pose of reducing the power consumption. Note that Eqn. (22)
falls in the class Eqn. (16) withΓi

t := Ft andGi
t := Li

t .

Similarly to the KEF strategy, the central node performs the
optimal fusion of the most recent packet from each sensor
zi
t−τ i

t
as follows:

x̂PEF
t|t = E[xt |z

i
t−τ i

t
, i = 1, . . . ,N] =

N

∑
i=1

Φi,PEF
t zi

t−τ i
t

(23)

where the superscriptPEF stands for the optimal partial es-
timate fusion and the coefficientsΦi

t are computed as de-
scribed in the previous section.

Differently from KEF, in the absence of packet losses this
strategy is guaranteed to recover the performance of the CKF
even with correlated measurements noise [17].

5.3 Open-loop Partial Estimate Fusion (OPEF)

This strategy is similar to PEF since the sensor nodes per-
form the same filtering given by Eqn. (22), i.e. they send the
partial state estimates according to the centralized Kalman
filter gains. However, differently from PEF, the central
node rather than computing the optimal gainsΦi

t given
by Eqn. (23), it compensates the packet loss by using the
open loop partial state estimate based on the latest received
packet from each node, i.e.:

xOPEF
t|t =

N

∑
i=1

Φi,OPEF
t zi

t−τ i
t
=

N

∑
i=1

Aτ i
t zi

t−τ i
t

(24)

whereτ i
t is the time elapsed since the most recent packet

received from nodei at time instantt. Although this looks
like a naive solution, it dramatically reduces computational
complexity at the central node, and in Section 6 it will be
shown to achieve the optimal performance in the small pro-
cess noise to measurement noise regime.

6 Analysis under special regimes

Even though it seems not possible to perform a rigorous
comparative analysis of all the strategies presented in Sec-
tions 3, 4 and 5 in full generality, there are two special yet
important regimes which deserve some attention. These are
the two extreme scenarios in which either the process noise
is zero or the measurement noise is zero.

The scenario with zero process noise, i.e.Q= 0, corresponds
to the case in which a very accurate model is available for the
state evolution. In these circumstances the state estimation
problem essentially boils down to estimation of the initial
condition. The first remarkable but not trivial fact is that the
IBF can be computed by a static fusion of the local Kalman
filters (KEF) as well as of the partial estimates (PEF). It is
also rather intuitive that, in the absence of process noise,
there is no loss in propagating estimators just using the sys-
tem dynamics (i.e. in open loop): this gives also optimality
of OPEF. Last it is clear that MF does not use information
from lost measurements, and thus cannot be optimal. This
is formalized in the next theorem:

Theorem 2 (Small process noise)Let Q = 0 and R=
diag{R1, ..,RN} > 0. Then

PIBF
t|t = PPEF

t|t = PKEF
t|t = POPEF

t|t < PMF
t|t

Differently, in the scenario with zero measurement noise,
i.e. R = 0, one may think that optimally fusing the latest
received measurements would yield optimal performance.
This is indeed true for scalar systems, as shown in [12], but
it fails to be so for general multivariable systems; in fact,if
one considers a system which is observable inn steps, the
strategy that performs best depends upon the process noise
and the specific loss sequence as discussed in the following
theorem:

Theorem 3 (Small measurement noise)Let us consider
R = 0 and Q> 0. Then there exist scenarios in terms of
packet loss sequences and systems dynamics parameters
A,C for which for which PMF

t|t > PPEF
t|t and scenarios for

which PMF
t|t < PPEF

t|t .

Remark 4 Theorems 2 and 3 study, respectively, the cases
Q= 0,R> 0and R= 0,Q> 0. It can be proven that the mini-
mum variance estimator of the state given the measurements
is a continuous function w.r.t. changes in‖Q‖ (Theorem 2)
and‖R‖ (Theorem 3). This can be verified using the follow-
ing argument3 : the covariance matrixΣYY of the measure-
ments Y:= [y⊤1 ,y⊤1 , ...,y⊤t ]⊤, where yk := [(y1

k)
⊤, ...,(yN

k )⊤],
is positive definite (in fact bounded away from zero) under
the assumptions of both Theorems 2 and 3. In addition both
the covarianceΣxY := cov{xt ,Y} and the varianceΣYY are
continuous functions w.r.t. Q and R. Therefore the minimum
variance estimator̂xt|t = ΣxYΣ−1

Y Y is a continuous function
w.r.t. to Q and R under both scenarios. This implies that
our analysis will give insights also for either small process
noise or small measurement noise scenarios, as confirmed
by the simulations in Section 9.1.

3 We omit the details in the interest of space.
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7 Performance bounds

In this Section we turn our attention to computing an an-
alytical upper bound for the performance (state estimation
error variance) of the MF, and lower bounds for both MF
and IBF. The upper bound for MF is computed resorting to a
suboptimal (and hence with larger variance) MF estimation
strategy, while for the lower bounds we shall need to study
in some detail the structure of the Riccati update which is,
to the best of our knowledge, a novel contribution.

7.1 Upper Bound for Measurement Fusion (MF)

An upper bound on the state estimation error variance can
be found by computing the error variance for a suboptimal
measurement fusion procedure. As discussed in Section 4 the
measurement fusion strategy is nothing but a time varying
Kalman filter, for which the optimal gainLt in Eqn. (10)-
(15) can be computed on-line and depends on which packets
have been received. Of course one could instead consider a
suboptimal strategy in which the estimator gainL̄ does not
depend on the packet loss history. This suboptimal filter,
introduced in [13], can be written as:

x̌MF
t|t = (I − L̄tC̄t)Ax̌MF

t−1|t−1 + L̄t ȳt (25)

whereL̄t = [γ1
t L̄1 γ2

t L̄2 · · · γN
t L̄N], andL̄i are constant gains.

It has been shown in [13] that the steady state minimum
expected error covariance for this filter provides an upper
bound for the measurement fusion strategy, as summarized
in the following theorem:

Theorem 5 ([13]) Let us consider the systems of Eqn. (1)
with possibly unstable dynamics A and correlated measure-
ment noises, i.e. Ri j 6= 0, and the filter defined in Eqn. (25).
Let

S= min
L̄1,...,L̄N

lim
t→∞

Eγ [var(xt − x̌MF
t|t−1)]

Then S is given by the unique fixed point of the following
operator:

Ψλ (S) = ASA⊤+Q−

− λASC⊤(λCSC⊤ +(1−λ )SC+R)−1CSA⊤

SC = diag{C1SC⊤1 , . . . ,CNSC⊤N}

i.e. S= Ψλ (S) and has the property that

lim
t→∞

sup
t

Eγ [P
MF
t|t−1] ≤ S

The previous theorem basically describes how to compute
the best filter among the class of all (suboptimal) filters with
constant gains̄Li . Since this filter is suboptimal, it provides
also an upper bound for the error estimation error covariance
of the MF strategy. Incidentally, being MF suboptimal as
compared to the IBF, then it also provides a computable
upper bound for the performance of the IBF strategy.

7.2 Lower bounds for the Riccati Equation: identical sen-
sors and stable dynamics

In order to compute lower bounds for the estimation error
covariance we first need to study in some detail the structure
of the Riccati update for the estimation error covariance.
We shall also consider only the case in which there are
N identical sensors. More precisely,Ci = C for all i, and
Ri j = Rδi j for all i and j.

Let us define:

G (P,L, ℓ) := (I −LC)P(I −LC)⊤ +
1
ℓ

LRL⊤ (26)

This is the (filtering) state estimation error using the gainL
when the initial state estimate has varianceP and measure-
ments fromℓ sensors are utilized. The optimal Kalman gain
can be obtained by minimizingG (P,L, ℓ) with respect toL,
obtaining

L∗(P, ℓ) := arg minLG (P,L, ℓ) = PC⊤

(

CPC⊤ +
1
ℓ

R

)−1

(27)
The corresponding optimal prediction error is given by

Φ f (P, ℓ) := G (P,L∗, ℓ)

= (I −L∗C)P(I −L∗C)⊤ + 1
ℓ L∗R(L∗)⊤

= P−PC⊤
(

CPC⊤ + 1
ℓ R
)−1

CP

(28)

For future use we also define the prediction error variance
update

Φ(P, ℓ) := AΦ f (P, ℓ)A⊤ +Q (29)

Lemma 6 The functionsΦ f (P, ℓ) and Φ(P, ℓ) are concave
as a function of P and convex as a function ofℓ.

In the following we shall also make extensive use of a lower
bound of the Riccati operatorΦ(P, ℓ) as follows. Consider
the convex setP := {P= P⊤ : P≥ Pm,P≤ PM}. We would
like to find a linear function ofP, say G(P, ℓ) such that
G(P, ℓ) ≤ Φ f (P, ℓ) ∀P∈ P.

The matricesPm and PM define the setP over which the
linear lower bounds holds. In the rest of the paper we shall
always usePm = Φ(Pm,N), i.e. the lowest achievable steady
state prediction error variance when allN sensors are uti-
lized, andPM = APMA⊤+Q, i.e. the open loop steady state
variance, which is the upper bound of the state prediction
error when no information is available. It is a standard fact
to show that, providedP∈ P, alsoΦ(P, ℓ) ∈ P.

Of course a trivial (constant) lower bound isG(P, ℓ) =
Φm(ℓ) := Φ(Pm, ℓ). This follows from the fact thatΦ(P, ℓ) is
monotonically non-decreasing inP, i.e. Φ(P2, ℓ) ≥ Φ(P1, ℓ)
holds wheneverP2 ≥ P1.
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A tighter (linear inP) bound can be taken of the form:

L(P, ℓ) = Φ(Pm, ℓ)+
J

∑
j=1

Ψ j(P−Pm)Ψ⊤
j (30)

whereΨ j have to be chosen so thatL(P, ℓ) ≤ Φ(P, ℓ), ∀P∈
P.

The following theorem discusses the choice ofΨ j , j = 1, ..,J
in Eqn. (30):

Theorem 7 Let us define

Ām := A−KmC

Km := AL∗(Pm, ℓ) = APmC⊤
(

APmC⊤ + R
ℓ

)−1 (31)

The linear (in P) functions in Eqn.(30) are lower bounds
for the Riccati updateΦ(P, ℓ) provided J= 1 andΨ1 = αĀm
for a suitableα ∈ [0,1]. The tightest bound in this class is
obtained forΨo

1 := α0Ām where

α0 := arg max
α∈[0,1]

α s.t. L(P, ℓ,α) ≤ Φ(P, ℓ) ∀P∈ P (32)

With a completely analogous argument it can be seen that
the linear lower bound for the filtering update

L
LB
f (P, ℓ) ≤ Φ f (P, ℓ)

can be taken of the form

L
LB
f (P, ℓ) := Φ f (Pm, ℓ)+ α2

0(I −LmC)(P−Pm)(I −LmC)⊤.
(33)

whereLm := L∗(Pm, ℓ) = PmC⊤
(

APmC⊤ + R
ℓ

)−1
. It is useful

to observe that

L
LB(P, ℓ) = AL

LB
f (P, ℓ)A⊤ +Q.

The following lemma gives a very simple expression of this
lower bound for scalar state space systems. The correspond-
ing functions are graphically portrayed in Figure 2.

Lemma 8 For system with scalar state spaces, i.e. n=
dim{x} = 1, the functionL

LB
f (P, ℓ) admits the very simple

closed form expression

L
LB
f (P, ℓ) = Φ f (Pm, ℓ)+ β (P−Pm) (34)

where

β :=
Φ f (PM, ℓ)−Φ f (Pm, ℓ)

PM −Pm

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 2. Graphical representation of bounding functions forscalar
system withA = 0.94,C = 1,Q = 0.1,R= 0.5,N = 6.

7.3 Lower bound for Measurement Fusion (MF)

The following theorem gives a lower bound on the expected
(average) state estimation error for the measurement fusion
approach

Theorem 9 Let PMF and Pf
MF respectively the asymptotic

prediction and filtering state estimation errors4 . Then

E[PMF ] ≥ P̄LB
MF E[Pf

MF ] ≥ P̄f ,LB
MF

where P̄LB
MF is the unique stationary solution of̄PLB

MF =

L
LB(P̄LB

MF ,Eℓ) andP̄f ,LB
MF = L

LB
f (P̄LB

MF ,Eℓ).

7.4 Lower Bound for Infinite Bandwidth Filter (IBF)

The estimator ˆxIBF
t|t is characterized by the variablesτ1

t , ...,τN
t ;

the value ofτ i
t is the number of steps elapsed since the

last packet from nodei has been received at timet. Under
the assumption of identical sensors, the performance of the
estimator ˆxIBF

t|t depends only upon the numbersh0
t ,h

1
t ,h

2
t , ...

wherehi
t can be defined as follows: let us consider, for each

nodei, only the last packet which has been successfully re-
ceived; according to the definition above this has happened
at time t − τ i

t . The variablehm
t represents the number of

these packets which have been received at timet −m. In
formulas:

hm
t :=

N

∑
i=1

δ (τ i
t −m)

4 To be rigorous, the asymptotic variancesPMF andP f
MF should

be defined as the lim-inf of the sequencesPMF
t|t−1 andPMF

t|t . With a
little bit of abuse, we neglect this in the interest of clarity.
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Z21 Z23

Z32 Z33 Z34

Z41 Z42 Z44

Z52

Fig. 3. Schematics for the definition ofhk
t and ℓk

t . The entries
are the received packets; highlighted (yellow) are the lastpackets
received from each sensor node: 3 packets received at timet = 4,
1 at timet = 3 and 1 at timet = 2.

whereδ (·) is the Kronecker delta. Let us now fix the timet;
the IBF estimator ˆxIBF

t|t can be computed using the equations
for the measurement fusion filter assuming that the equiva-
lent number of packetsℓm

t arrived at timet −m is defined,
recursively, by the relation

{

ℓ0
t = h0

t

ℓm
t = ℓm−1

t +hm
t m= 1,2, ...

The definition ofhm
t andℓm

t is graphically illustrated in Fig-
ure 3. It is fairly easy to see that the joint probability den-
sity function of the variables variablesℓm

t can be written in
terms of the conditional densitiesp(ℓm+1

t |ℓm
t , ℓm−1

t , ..., ℓ0
t ) =

p(ℓm+1
t |ℓm

t ), which have the expression

p(ℓm+1
t = ℓ|ℓm

t ) =

(

N− ℓm
t

ℓ− ℓm
t

)

λ N−ℓ(1−λ )ℓ−ℓm
t

whereλ is the packet loss probability, i.e.λ = E[γ i
t = 0].

Based on this we shall now construct a sequence of lower
bounds as follows. Let us now fix an integerk and assume
that

p(ℓk
t = ℓ|ℓk−1

t ) = δ (ℓ−N), (35)

i.e. thatℓk
t = N. This means that at timet − k all previous

measurements from all sensors are available and hence the
state filtering error variance at timet−k is the variance of the
centralized Kalman estimatorPCKF

t+1−k|t−k. For simplicity of

exposition we shall assume that5 t−k is “large” and hence
PCKF

t+1−k|t−k converges toPm, which is the (steady state) pre-
diction error variance for the centralized setting, i.e. when
all measurements are available. Of course this is does not
happen in practice w.p.1, and hence this assumption will
provide a lower bound. LetPf

IBF and PIBF be the (steady
state) state filtering and prediction error variance using the

5 The bounds computed this way will hence be valid fort “large”.

IBF. Let us denote withPf
IBF(t,k, ℓk−1

t , .., ℓ0
t ) the state filter-

ing error variance at timet and withPIBF(t +1,k, ℓk−1
t , .., ℓ0

t )
the state prediction error variance at timet + 1 assuming
the conditional distribution ofℓk

t in (35) (and henceℓk
t = N)

and with subsequent cumulative number of arrived packets
ℓk−1
t , .., ℓ0

t .

It is clear that

P̄f
IBF(k) := E

[

Pf
IBF(t,k, ℓk−1

t , .., ℓ0
t )
]

P̄IBF(k) := E
[

PIBF(t +1,k, ℓk−1
t , .., ℓ0

t )
]

= AP̄f
IBF(k)A⊤ +Q

(36)

are increasing functions ofk and provide a sequence of lower
bounds forE[Pf

IBF ] andE[PIBF ], i.e.

E[Pf
IBF ] = P̄f

IBF(∞) ≥ · · P̄f
IBF(k+1)≥ P̄f

IBF(k) · · ≥ P̄f
IBF(1)

E[PIBF ] = P̄IBF(∞) ≥ · · P̄IBF(k+1)≥ P̄IBF(k) · · ≥ P̄IBF(1)

The following theorem provides computable lower bounds
for the above quantities:

Theorem 10 The matricesP̄f
IBF(k) and P̄IBF(k) defined in

Eqn. (36) are lower bounded bȳPf
IBF(k) ≥ P̄f ,LB

IBF (k) and
P̄IBF(k) ≥ P̄LB

IBF(k) where:

P̄f ,LB
IBF (1) = Φ f (Pm,Eℓ0

t ) = Φ f (Pm,N(1−λ ))

P̄f ,LB
IBF (2) = E

[

L
LB
f (Φ(Pm,E[ℓ1

t |ℓ
0
t ]), ℓ

0
t )
]

P̄f ,LB
IBF (k) = E

[

L
LB
f ◦ · · · ◦L

LB◦Φ(Pm,E[ℓk−1
t |ℓk−2

t ])
]

.

and

P̄LB
IBF(1) = Φ(Pm,Eℓt) = Φ(Pm,N(1−λ ))

P̄LB
IBF(2) = E

[

L
LB(Φ(Pm,E[ℓ1

t |ℓ
0
t ]), ℓ

0
t )
]

P̄LB
IBF(k) = E

[

L
LB ◦ · · · ◦L

LB◦Φ(Pm,E[ℓk−1
t |ℓk−2

t ])
]

.

whereE[ℓk
t |ℓ

k−1
t ] = ℓk−1

t +(1−λ )(N− ℓk−1
t ) and Pm is the

solution of Pm = Φ(Pm,N), i.e. the optimal (steady state)
error variance when measurements from N sensors are re-
ceived at all times.

In practice one can computePf ,LB
IBF (k) for increasing values

of k until convergence.

It is worth stressing that the lower bound for the IBF provides
also a lower bound for MF. Therefore one can use, as a lower
bound for MF, whichever is larger amonḡPf ,LB

MF andP̄f ,LB
IBF .
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Fig. 4. Trace of error variance vs.µQ as defined in Eqn. (37) (µQ ∝ ‖Q‖2
‖R‖2

) computed via Montecarlo runs for three different packet loss

probabilities (λ = 0.25, λ = 0.5 andλ = 0.75). Top: IBF, MF and OPEF. Bottom: KEF, PEF and IBF

8 Complexity Considerations

Besides performance considerations also computational
complexity has to be taken into account when implementing
estimation algorithms. In fact, complexity influences both
computational time as well as energy consumption, which
may be a critical issue when using battery powered devices.
To derive some quantitative results, letn be the size of the
state vector,mi the size of each measurement vectoryi , N
the number of sensors, andk the maximum time elapsed
since all most recent packets are received by the central
node from each sensor. The computational complexity at
the sensor node is none for the MF since the raw measure-
ment is sent, while it isO(max(n2,nmi)) for the EF (KEF,
PEF, OPEF) due to the computation of the state estimates.
At the central node, the computational complexity isO(n3)
for MF since6 it is necessary to invert a matrix of at most
size n, it is O(N3n3k) for KEF and PEF, andO(Nn) for
OPEF since just a sum is required.

9 Simulation Results

We shall consider two simulation setups in order to illustrate
the theoretical findings. In particular:

6 Using the information form of the Kalman filter as in [1]

(1) The results in Section 6 concerning different regimes
in terms of ratio between the model noise varianceQ
and the measurement noise varianceR, are verified on
a specific example in Section 9.1.

(2) The theoretical bounds for IBF and MF computed un-
der the assumption that all sensors are identical and the
dynamics is stable, are illustrated in Section 9.2.

9.1 Comparison under different noise regimes

We shall consider the following simulation example with 7
sensors generated by Eqn. (1) with parameters

A =

[

0.99 1

0 0.99

]

, C =

[

2 0.4 1 1 0.4 1 1

0 0 0 0 0 0 0

]⊤

,

R=diag{10,20,40,0.5,2,1,40},

Q=µQdiag{10−3,10−3}

(37)

The parameterµQ will be varied to study the behavior under
different regimes, i.e. different ratios between the modeland
the measurements noises.

Figure 4 reports the steady state error variance of the first
component of the state as a function ofµQ, where each
point is computed by averaging the (filtering) variancePt|t

10
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Fig. 5. Trace of Error Variance vs. packet loss probabilityλ : Montecarlo average over 1000 experiments (MF and IBF) vs. analytical
bounds. Left: Example 1, Right: Example 2.

over a Montecarlo run of 5000 time steps packet loss se-
quence, i.e. limt→∞ Eγ [Pt|t ]≈

1
T ∑⊤

t=1Pt|t for T = 5000,7 for
packet drop probabilitiesλ := P[γ i

t = 0] ∈ {0.25,0.5,0.75}.
For small values ofµQ, i.e. under the small process noise
regime, the OPEF behaves very similarly to PEF. This is
reasonable since, for small process noise, it make sense to
“trust” the model and hence to propagate estimates in open
loop. Note also that MF is the worst strategy for smallµQ.
This is also in line with the results in Section 6 predict-
ing that PEF is better than MF forQ = 0. On the opposite
regime, i.e. under the small measurement noise, correspond-
ing to large values ofµQ, the MF is almost undistinguishable
from the IBF. Although, this might seem in contrast with
Theorem 3, it is important to remark that Figure 4 shows the
average performance, while Theorem 3 focuses on a single
realization. Therefore, these simulations suggest that from
an empirical perspective, the MF behaves optimally under
the small measurement noise regime. Differently, note how
OPEF performs very poorly in this regime, since it equally
weights old and recent estimates. Finally, it is interesting to
observe that both KEF and PEF perform very well under all
regimes, thus suggesting that how fusion is performed at the
sensor nodes, i.e. the choice of the filter parametersΓi

t and
Gi

t in Eqn. (16), is not too critical, since the central node can
extract most the useful information by taking into account
the exact correlation among all received local estimates, at
the price of high computational cost.

7 The conditional variance given the packet drop sequence{γ i
t }

has been computed in closed form as discussed in Section 5 for
all methods except OPEF. The unconditional variance is obtained
simulating a sufficiently long sequence of packet drop sequence
and averaging the conditional variance over that sequence.The
same could also have been done for the OPEF; however this is
rather involved from a computational point of view and hencethe
variance for OPEF has been computed purely by Monte Carlo
simulations.

MF KEF PEF OPEF

Performance

for ||Q||
||R|| → 0

Good Optimal Optimal Optimal

Performance

for ||R||||Q|| → 0

Almost

optimal

Almost

optimal

Almost

optimal
Very poor

Complexity

at sensor
None Modest Modest Modest

Complexity at

base station
Moderate High High Very low

Table 1
Summary of the results for prosed strategies: Measurement Fusion
(MF), Kalman Estimates Fusion (KEF), Partial Estimate Fusion
(PEF), and Open-loop Partial Estimate Fusion (OPEF).

9.2 Bounds for identical sensors

We shall consider the two examples described by the fol-
lowing parameters:

Example 1

A=

[

0.9 0.1

0 0.9

]

, Ci =[ 1 0 ], Q=diag{10−2,10−1}, Rii =1

for i = 1, . . . ,25.

Example 2:

A=

[

0.99 1

0 0.99

]

, Ci =[ 1 0 ], Q=diag{10−3,10−3}, Rii =1

for i = 1, . . . ,25.

The packet loss probabilityλ is varied in the rangeλ ∈
[0.1,0.9].
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The results of a simulation are reported in Figure 5. The
variances for MF and IBF are computed as in the previous
simulations by averaging the (filtering) variancePt|t over a
Montecarlo run of 1000 time steps. For the example consid-
ered, we stopped atk = 3 for the computation of the lower
bound for IBFP̄LB

IBF(k). Only marginal improvements could
be noticed by increasingk further.

In the specific example, the true performance of the MF al-
gorithm is indistinguishable from its analytical upper bound,
while the two lower bounds become less tight as the packet
loss probability increases.

10 Conclusions

In this paper we showed that it is not possible to design
a bandwidth-limited distributed estimation fusion algorithm
which achieves the same estimation error performance of the
infinite bandwidth filter when random packet loss occurs.
Consequently, we proposed some suboptimal strategies for
which we derived some analytical upper and lower perfor-
mance bounds under different regimes and we studied their
computational complexity, as summarized in Table 1. This
work and [7] suggest that distributed estimation and fusion
with multiple sensors subject to random packet loss require
the development of new design strategies as well as novel
mathematical tools, and much research needs to be done.
Moreover, further research directions include the extension
to more complex communication topologies like trees or
graphs [1], more realistic packet loss models which include
loss correlation and transmission delay, and analytical per-
formance bounds for unstable systems.

Appendix A

The covariance matricesE
[

xtz⊤t,τ
]

and E
[

zt,τ z⊤t,τ
]

can
be computed using a standard state-augmentation argu-
ment as follows: let us define the augmented state vector
st :=

(

xt ,z1
t , ..,z

N
t

)

. By combining Eqn. (1) and Eqn. (16), it
is immediate to see that

st = Ψtst−1 +Bw
t wt−1 +Bv

t vt (A.38)

where

Ψt :=















A 0 . . . 0

G1
t C1AΓ1

t Γ1
t . . . 0

...
...

.. .
...

GN
t CNAΓN

t 0 0 ΓN
t















Bw
t :=















I

G1
t C1

...

GM
t CM















Bv
t :=















0 . . . 0

G1
t . . . 0
...

...
...

0 . . . GM
t















Z1
t

Z1
t

Z2
t

Fig. 6. Illustration of the two scenarios. Scenarioa (top): all packets
have been lost except the last one sent by sensor 1. Scenariob
(bottom): all packets have been lost except the last ones sent by
both sensor 1 and 2.

From this equation the covariance functionΣh,k := E[shs⊤k ]
can be easily computed, starting from the initial condition

Σ0,0 :=















E[x0x⊤0 ] 0 . . . 0

0 0 . . . 0
...

...
.. .

...

0 0 . . . 0















.

Observe now that all the elements ofE
[

xtz⊤t,τ
]

andE
[

zt,τ z⊤t,τ
]

are indeed elements ofΣh,k for suitable values ofh andk.

Appendix B

Proof of Theorem 1.We will prove the theorem by providing
a family of counterexamples: We start by observing that the
optimal fusion strategy at the fusion center is given by:

g∗t (It) := E[xt |It ]

independently of the choice of the functionsf i
t (), i.e.

var(xt − g∗t (It)|It ) ≤ var(xt − gt(It)|It ),∀(gt ,It). Let
us consider the following dynamical systems with two
(identical) sensors:

xt+1 = Axt +wt

y1
t = Cxt +v1

t

y2
t = Cxt +v2

t

wherewt ∈ Rn,y1 ∈ R,y2 ∈ R and x0,wt ,v1
t ,v

2
t are uncor-

related zero-mean white random variables with covariances
var{x0} = P0 > 0, Var{wt} = Q > 0, σv1 = σv2 = r, respec-
tively. We consider, for anyt = n+1, two different packet
arrival scenarios:

a : {γ i
1 = .. = γ i

n = 0, i = 1,2,γ1
n+1 = 1,γ2

n+1 = 0},

b : {γ i
1 = .. = γ i

n = 0, i = 1,2,γ1
n+1 = γ2

n+1 = 1}
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i.e. at timet = n+1 in scenario (a) only the last packet from
the first sensor arrived successfully at the central node, while
in scenario (b) both packets corresponding to timet = n+1
were received but the packets corresponding to times 1, ..,n
were lost.

Let us first consider the expressions for the infinite band-
width filter (IBF): Under scenario (a) we have

x̂IBF,a
t|t = E[xt |y1

k,k≤ t] = ∑t
k=0ga,1

k y1
k ga,1

k ∈ Rn

wherega,1
k are computed through the standard Riccati recur-

sions which we write compactly as

ga,1
k = Ψ(A,C,P0,Q, r,k), (B.39)

which has the following meaning:ga,1
k is the coefficient vec-

tor at timek, obtained from the Riccati recursions for the
model with parametersA,C, model noise varianceQ, mea-
surement noise variancer and initial varianceP0.

Under scenario (b) we have:

x̂IBF,b
t|t = E[xt |y1

k,y
2
k;k≤ t] = ∑2

i=1 ∑t
k=0gb,i

k yi
k gb,i

k ∈ Rn

Note also that, since the two sensors are assumed to be iden-
tical and with independent noises, the estimator in scenario
(b) satisfiesgb,1

k = gb,2
k =: gb

k, ∀k and can be written as

x̂IBF,b
t|t = ∑t

k=02gb
k

y1
k+y2

k
2

This simply means that 2gb
k = 2gb,1

k = 2gb,2
k is the impulse

response of the estimator one would obtain with just one
sensor whose measurement is the mean of the measurements
of the two sensors (and with halved measurement noise vari-
ance).

Thus, with the notation introduced in (B.39), we have that

gb
k = gb,1

k = gb,2
k =

1
2

Ψ(A,C,P0,Q, r/2,k). (B.40)

We start by showing that there do not existlinear functions
of the measurementzi

t = f i
t (y

i
1:t) = ∑t

k=1 α i
t,ky

i
k of sizen (the

state dimension), i.e.zi
t ∈ Rn, that can retrieve the optimal

mean square estimate ˆxIBF
t|t for both the scenarios just illus-

trated. For this to be true the following would have to hold
for some suitable matricesT1,a,T1,b,T2,a ∈ Rn×n:

E[xt |z1
t ] = T1,az1

t = x̂IBF,a
t|t

E[xt |z1
t ,z

2
t ] = T1,bz1

t +T2,bz2
t = x̂IBF,b

t|t

From the first equation we see that, w.l.o.g., we can takez1
t =

x̂IBF,a
t|t = ∑t

k=0ga,1
k y1

k. With a symmetric argument, repeated

for sensor 2, alsoz2
t = ∑t

k=0ga,1
k y2

k holds true. In order for
the second equation to be satisfied, there must exist matrices
T1,b andT2,b such that

T1,b

t

∑
k=0

ga,1
k y1

k +T2,b

t

∑
k=0

ga,1
k y2

k =
t

∑
k=0

2gb
k
y1

k +y2
k

2

which can only happen ifga,1
k = Tgb

k for someT. Note

however thatga,1
k andgb

k satisfy (B.39) and (B.40) respec-
tively. Since the Riccati equation is not linear in the noise
variancer, it is not possible to findT such thatga,1

k =

Ψ(A,C,P0,Q, r,k) = T
2 Ψ(A,C,P0,Q, r/2,k) = Tgb

k, ∀k. For
instance, it is straightforward to verify that, for

A =

[

0.9 1

0 0.9

]

C =
[

1 0
]

andQ = I , r = 1, t = n+1= 3, we have that

min
T∈R2×2

√

√

√

√

3

∑
k=1

‖ga,1
k −Tgb

k‖
2
2 = 0.0698

confirming that it is not possible to findT such thatga,1
k =

Tgb
k for k = 1,2,3.

This concludes the proof that there do not exist linear func-
tions of dimensionn that allow to retrieve the optimal esti-
mate for all possible packet loss sequences.

These results continue to hold even if we consider more
generalnonlinear functionszi

t = f i
t (y

i
1:t). In fact, as shown

in the specific example above, in order to retrieve the opti-
mal estimate, starting fromz1

2 it has to be possible to recon-
struct ∑n+1

k=0 ga,1
k y1

k under scenario (a) and∑n+1
k=0 gb

ky1
k under

scenario (b). Since, as shown above,∄T s.t.ga,1
k = Tgb

k, ∀k≤
n+ 1, the central node can also reconstructy1

1,y
1
2, ..,y

1
n+1

from z1
n+1. This is equivalent to saying that the function

z1
n+1 = f 1

n+1(y
1
1, ..,y

1
n+1) mapsn+1 real numbers inton real

numbers, and that the central node can reconstruct then+1
real numbers from then real numberz1

n+1, which is clearly
impossible8 .

The proof for arbitrary but finite packet sizeℓ, i.e zi
t ∈ Rℓ

can be obtained similarly by properly constructing different

8 Of course one could argue that in an infinite bandwidth setup
there is essentially no limitation on the numberℓ in (3); however,
when bandwidth limitations come into play, resolution require-
ments would of course impose an upper bound onℓ. It would also
be possible to consider “smart” coding schemes which, however,
would have to depend also on the specific packet loss sequence.
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packet loss scenarios for which the gains of the optimal
linear combination of the measurements are linearly inde-
pendent, which means that there do not exists linear func-
tions f i

t () which always recover the optimal mean square
estimatexIBF

t|t . Also similarly to the proof above, this can be

extended to general nonlinear functionsf i
t (). 2

Proof of Theorem 2.We shall give the proof when the matrix
A is invertible. If A is singular, then the proof can be easily
adapted by first considering a basis transformation and sub-
sequently by restricting to the subspace which corresponds
to the non-zero eigenvalues ofA.

Let us first consider the IBF given by

x̂IBF
t|t := E[xt |yi

1:t−τ i
t
, i = 1, ..,N]

= AtE[x0|yi
1:t−τ i

t
, i = 1, ..,N]

If we denote by

O
i
t :=















CiA

CiA2

...

CiAt















Yi
t :=















yi
1

yi
2
...

yi
t















than a standard formula from linear minimum variance es-
timation [2] yields:

x̂IBF
t|t = At

(

∑N
i=1(O

i
t−τ i

t
)⊤R−1

i O i
t−τ i

t
+P−1

0

)−1
·

·∑N
i=1(O

i
t−τ i

t
)⊤R−1

i Yi
t−τ i

t

(B.41)

Note also that thei-th local state estimator, i.e. the best
estimator that thei-th node can construct based solely on its
own measurements, is given by

zi,l
t−τ i

t
:= E[xt−τ i

t
|yi

1:t−τ i
t
]

= At−τ i
t

(

(O i
t−τ i

t
)⊤R−1

i O i
t−τ i

t
+P−1

0

)−1
·

·(O i
t−τ i

t
)⊤R−1

i Yi
t−τ i

t

Therefore, using the assumption thatA is invertible,

x̂IBF
t|t = At

(

∑N
i=1(O

i
t−τ i

t
)⊤R−1

i O i
t−τ i

t
+P−1

0

)−1
·

·∑N
i=1

(

(O i
t−τ i

t
)⊤R−1

i O i
t−τ i

t
+P−1

0

)

A−t+τ i
t zi,l

t−τ i
t

(B.42)
holds true. Since the right hand side is a linear function of

zi,l
t−τ i

t
, also

x̂KEF
t|t := E[xt |z

i,l
t−τ i

t
, i = 1, ..,N]

= E
[

E[xt |yi
1:t−τ i

t
, i = 1, ..,N] |zi,l

t−τ i
t
, i = 1, ..,N

]

= E[x̂IBF
t|t |zi,l

t−τ i
t
, i = 1, ..,N]

= x̂IBF
t|t

holds, thus proving thatPKEF
t|t = PIBF

t|t .

Let us now turn our attention to ˆxPEF
t|t . By first computing

x̂CKF
t|t := E[xt |yi

1:t , i = 1, ..,N] it is simple to observe that the

partial estimatezi
s, s = t − τ i

t (see equations (22), (17)) is
given by

zi
s = As

(

∑N
i=1(O

i
s)
⊤R−1

i O
i
s+P−1

0

)−1
(O i

s)
⊤R−1

i Yi
s

= As
(

∑N
i=1(O

i
s)
⊤R−1

i O i
s+P−1

0

)−1
·

·
(

(O i
s)
⊤R−1

i O i
s+P−1

0

)

A−szi,l
s

The last equality proves thatzi
s are linear and invertible func-

tions ofzi,l
s and therefore

xPEF
t|t := E[xt |zi

t−τ i
t
, i = 1, ..,N]

= E[xt |z
i,l
t−τ i

t
, i = 1, ..,N]

= xKEF
t|t

thus implying alsoPPEF
t|t = PKEF

t|t .

If we now consider the open loop strategy ˆxOPEF
t|t , recall that

x̂OPEF
t|t = ∑N

i=1Aτ i
t zi

t−τ i
t

= At
(

∑N
i=1(O

i
t−τ i

t
)⊤R−1

i O
i
t−τ i

t
+P−1

0

)−1
·

·∑N
i=1(O

i
t−τ i

t
)⊤R−1

i Yi
t−τ i

t

Note now that the last term on the right hand side is indeed
x̂IBF

t|t given in Eqn. (B.41), thus proving that ˆxOPEF
t|t = x̂IBF

t|t .

This yields also the last equalityPOPEF
t|t = PIBF

t|t .

Finally, note that ˆxMF
t|t computes the best estimate given only

the measurements which have indeed reached the fusion
center; hence its variance is strictly larger (for a generic
choice of the dynamics governing the state evolution) than
the variance of ˆxIBF

t|t (IBF), which is the lower bound on the
achievable accuracy for any given packet drop sequence.2

Proof of Theorem 3.We start by showing that there exists
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a scenario for whichPMF
t|t > PPEF

t|t . Let us consider the fol-
lowing systems:

A =

[

1 1

0 1

]

, C1 = [ 1 0 ], Q =

[

1 0

0 1

]

, R= 0

where P0 = I , i.e. we consider a single sensor. Suppose
that γ1

1 = 0,γ1
2 = 1, i.e. the first packet is lost, while the

second is received successfully. It is easy to verify that
x̂IBF

2|2 = x̂PEF
2|2 = α1

1y1
1+α1

2y1
2, where 06= α1

k ∈ R2×1,k = 1,2.

SinceE[y1
1 |y

1
2] 6= y1

1, it follows that x̂MF
2|2 6= x̂IBF

2|2 , therefore

PMF
2|2 > PPEF

2|2 . This result is not too surprising since it is al-

ready known that ˆxIBF
t|t = x̂PEF

t|t is always true when there is
a single sensor [8].

We now prove that there exists a scenario for which
PMF

t|t < PPEF
t|t . Consider the same dynamics of the previous

example to which we add a second sensor with observa-
tion matrixC2 = [0 1]. It is easy to verify that the outputs
of the local filter on each sensor according to the PEF
strategy arez1

t = [y1
t 0]⊤ and z2

t = [0 y2
t ]
⊤. Let us con-

sider the following packet loss sequenceγ1
1 = γ1

2 = γ2
1 =

1, γ2
2 = 0, therefore ˆxIBF

2|2 = E[x2|y1
1,y

1
2,y

2
1] = x̂MF

2|2 , while

x̂PEF
2|2 = E[x2 |z1

2,z
2
1] = E[x2 |y1

2,y
2
1]. It is also possible to

verify that E[y1
1 |y

1
2,y

2
1] 6= y1

1 since the covariance matrix
Σ = E[ξ ξ⊤], where ξ = [y1

1y1
2y2

1]
⊤, is not singular. This

implies that ˆxPEF
2|2 6= x̂IBF

2|2 , thereforePMF
2|2 < PPEF

2|2 . 2

Proof of Lemma 6.Let us first considerΦ f (P, ℓ). Con-
cavity in P follows rather easily from the fact that
Φ f (P, ℓ) = minLG (P,L, ℓ). As far as convexity inℓ, the fol-
lowing argument can be used: assumeh is (positive) real

variable and consider the derivatives
dΦ f (P,ℓ)

dℓ and
d2Φ f (P,ℓ)

dℓ2 .

It is easy to verify that
dΦ f (P,ℓ)

dℓ < 0 and
d2Φ f (P,ℓ)

dℓ2 > 0. The
conclusion forΦ(P, ℓ) follows from the fact thatΦ(P, ℓ) is
an affine function ofΦ f (P, ℓ). This completes the proof.2

Proof of Theorem 7.The structure of the Riccati update
imposes some constraints on the matrixΨ. In particular
Φ(P, ℓ) satisfies

Φ(P, ℓ)−Φ(Pm, ℓ) ≤ Ām(P−Pm)Ā⊤
m (B.43)

whereĀm is defined in Eqn. (31). Note that in order to prove
(B.43)

Φ(P, ℓ) ≤ ĀmPĀ⊤
m +Km

R
ℓ

K⊤
m +Q (B.44)

has been used. It follows from (30) and (B.43) that

L(P, ℓ) ≤ Φ(P, ℓ) ≤ Φ(Pm, ℓ)+ Ām(P−Pm)Ā⊤
m

from whichΨ j have to be chosen so that9

J

∑
j=1

Ψ j(P−Pm)Ψ⊤
j ≤ Ām(P−Pm)Ā⊤

m ∀P∈ P (B.45)

In particular note that whenP−Pm is singular alsoΦ(P, ℓ)−
Φ(Pm, ℓ) (and henceL(P, ℓ)−Φ(Pm, ℓ)) is so.

Consider now rank one increments∆1
P = P−Pm; it follows

that for all∆1
P (positive semidefinite and of rank 1)

J

∑
j=1

Ψ j∆1
PΨ⊤

j ≤ Ām∆1
PĀ⊤

m

must hold. This implies, in particular, that the range ofΨ j∆1
P

coincide, for all j, with the range ofĀm∆1
P. Since∆1

P is an
arbitrary rank 1 positive semidefinite matrix, this implies
that

Ψ j = α j Ām ∀ j ∈ [1,J]

Therefore ∑J
j=1Ψ j(P− Pm)Ψ⊤

j = ∑J
j=1 α j Ām(P− Pm)Ā⊤

m.
Thus, w.l.o.g., we can takeJ = 1 and

Ψ1 = αĀm (B.46)

Moreover, sinceα2Ām(P−Pm)Ām ≤ Ām(P− Pm)Ām must
hold,α ∈ [0,1] follows. At this point we would like to choose
the tightest (linear) lower bound of the form

L(P, ℓ,α) = Φ(Pm, ℓ)+ α2Ām(P−Pm)Ā⊤
m (B.47)

which is equivalent to maximizingα under the constraint
thatL(P, ℓ,α) bounds from belowΦ(P, ℓ) in the setP, i.e.

α0 := arg max
α∈[0,1]

α s.t. L(P, ℓ,α) ≤ Φ(P, ℓ) ∀P∈ P.

Hence the lower bound isLLB(P, ℓ) := L(P, ℓ,α0). 2

Proof of Lemma 8.The proof is just based on the observa-
tion that Eqn. (34) is nothing but the line going through the
points of coordinates(Pm,Φ f (Pm, ℓ)) and (PM,Φ f (PM, ℓ)).
Of course concavity ofΦ f (P, ℓ) guarantees that this line is
belowΦ f (P, ℓ) for all P∈ P. This is indeed the “optimal”
approximation from below, i.e. the linear function inP with
the largest slope which goes trough(Pm,Φ f (Pm, ℓ)) and
always remains belowΦ f (P) ∀P∈ P = [Pm,PM]. 2

Proof of Theorem 9.The (prediction) state estimation error
using the measurement fusion approach satisfies the recur-
sive equationPt+1 = Φ(Pt , ℓt). From convexity ofΦ(P, ℓ) in

9 Note that this is only a necessary condition forL(P, ℓ)≤Φ(P, ℓ)
to hold.

15



ℓ, it follows that

E[Pt+1|Pt ] ≥ Φ(Pt ,Eℓt)

where independence ofℓt andPt has been used. Using the
lower boundΦ(P, ℓ) ≥ L

LB(P, ℓ) it follows that

E[Pt+1|Pt ] ≥ L
LB(Pt ,Eℓt).

SinceL
LB is linear inPt , also

E[Pt+1] ≥ L
LB(EPt ,Eℓt) (B.48)

follows. Using the factLLB(P, ℓ) is non-decreasing as a func-
tion of P, i.e.LLB(P2, ℓ)≥ L

LB(P1, ℓ) wheneverP2 ≥ P1 and
using stationarity ofℓt (implyingEℓt = Eℓ), Eqn. (B.48) can
be iterated yielding

E[PMF ] ≥ P̄LB
MF , P̄LB

MF = L
LB(P̄LB

MF ,Eℓ)

The bound for the filtering solution is easily obtained ob-
serving thatPf

t = Φ f (Pt , ℓt) ≥ L
LB
f (Pt , ℓ) so that

EPf
t ≥ L

LB
f (EPt ,Eℓt)

and therefore

EPf
MF ≥ P̄f ,LB

MF := L
LB
f (P̄LB

MF ,Eℓ).

2

Proof of Proposition 10.For k = 1, PIBF(t + 1,1, ℓ0
t ) =

Φ(Pm, ℓ0
t ). Then, using convexity ofΦ in ℓ0

t it follows that

P̄IBF(1) = EPIBF(t +1,1, ℓ0
t ) ≥ Φ(Pm,Eℓ0

t ).

Whenk = 2,

PIBF(t +1,2, ℓ1
t , ℓ

0
t ) = Φ(Φ(Pm, ℓt−1), ℓt)

≥ L
MF (Φ(Pm, ℓ1

t ), ℓ
0
t )

holds. Using linearity ofLLB and convexity ofΦ in ℓ1
t one

obtains that (a.s.)

E[PIBF(t +1,2, ℓ1
t , ℓ

0
t )|ℓ

0
t ] ≥ L

MF (Φ(Pm,Eℓ1
t |ℓ

0
t ), ℓ

0
t )

from which,

P̄IBF(2) := E[E[PIBF(t,2, ℓ1
t , ℓ

0
t )|ℓ

0
t ]]

≥ E
[

L
MF (Φ(Pm,Eℓ1

t |ℓ
0
t ), ℓ

0
t )
]

The proofs fork > 2 and forPf
IBF(k) follow the same lines

and are therefore omitted. 2

References

[1] A. Agnoli, A. Chiuso, P. D’Errico, A. Pegoraro, and L. Schenato.
Sensor fusion and estimation strategies for data traffic reduction in
rooted wireless sensor networks. InProc. of IEEE ISCCSP’08, pages
677–682, La Valletta, Malta, 2008.

[2] B.D.O. Anderson and J.B. Moore.Optimal Filtering. Prentice Hall,
1979.

[3] Y. Bar-Shalom, H. Chen, and M. Mallick. One-step solution for
the general out-of-sequence measurement problem in tracking. IEEE
Transactions on Aerospace and Electronics Systems, 40(1):27–37,
2004.

[4] Y. Bar-Shalom, X.R. Li, and T. Kirubarajan. Estimation with
Applications to Tracking and Navigation. John Wiley & Sons, Inc.,
2001.

[5] A. Chiuso and L. Schenato. Information fusion strategies from
distributed filters in packet-drop networks. InProc. of CDC 08,
pages 1079–1084, 2008.

[6] A. Chiuso and L. Schenato. Performance bounds for information
fusion strategies in packet-drop networks. InProc. of ECC 09, pages
4326–4331, 2009.

[7] V. Gupta, N. C. Martins, and J. S. Baras. Stabilization over erasure
channels using multiple sensors.IEEE Transactions on Automatic
Control, 57(7):1463–1476, July 2009.

[8] V. Gupta, D. Spanos, B. Hassibi, and R. M. Murray. OptimalLQG
control across a packet-dropping link.Systems and Control Letters,
56(6):439–446, 2007.

[9] J.P. Hespanha, P. Naghshtabrizi, and Y. Xu. A survey of recent
results in networked control systems.Proceedings of the IEEE,
special issue, 95(1):138–162, January 2007.

[10] B.C. Levy, D.A. Castañon, G.C. Verghese, and A.S. Willsky.
A scattering framework for decentralized estimation problems.
Automatica, 19(4):373–384, 1983.

[11] A.S. Matveev and A.V. Savkin. The problem of state estimation via
asynchronous communication channels with irregular transmission
times. IEEE Transactions on Automatic Control, 48(4):670–676,
April 2003.

[12] C. Robinson and P. R. Kumar. Sending the most recent observation
is not optimal in networked control: Linear temporal codingand
towards the design of a control specific transport protocol.In Proc. of
IEEE Conf. on Decision and Control, pages 334–339, New Orleans,
U.S.A., 2007.

[13] L. Schenato. Optimal sensor fusion for distributed sensors subject to
random delay and packet loss. InProc. of IEEE Conf. on Decision
and Control, pages 1547–1552, New Orleans, U.S.A., 2007.

[14] L. Shi, K. H. Johansson, and R.M. Murray. Estimation over wireless
sensor networks: Tradeoff between communication, computation and
estimation qualities. InProc. of IFAC World Congress, volume 17,
Seoul, Korea, 2008.

[15] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla,M.I. Jordan,
and S.S. Sastry. Kalman filtering with intermittent observations. IEEE
Transactions on Automatic Control, pages 1453 – 1464, September
2004.

[16] A.S. Willsky, M.G. Bello, D.A. Castanon, B.C. Levy, andG.C.
Verghese. Combining and updating of local estimates and regional
maps along sets of one-dimensional tracks.IEEE Transactions on
Automatic Control, 27(4):799–813, 1982.

[17] J.D. Wolfe and J.L. Speyer. A low-power filtering schemefor
distributed sensor networks. InProceeding of IEEE Conference on
Decision and Control (CDC’03), pages 6325–6326, 2003.

[18] K.S. Zhang, X. R. Li, and Y.M. Zhu. Optimal update with out-of-
sequence observations for distributed filtering.IEEE Transactions
on Signal Processing, 53(6):1992–2004, 2005.

16


