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Abstract— In this work we address the problem of optimal
estimating the position of each agent in a network from
relative noisy vectorial distances with its neighbors. Although
the problem can be cast as a standard least-squares problem,
the main challenge is to devise scalable algorithms that allow
each agent to estimate its own position by means of only
local communication and bounded complexity, independently
of the network size and topology. We propose a gradient based
algorithm that is guaranteed to have exponentially convergence
rate to the optimal centralized least-square solution. Moreover
we show the convergence also in presence of bounded delays and
packet losses. We finally provide numerical results to support
our work.

I. INTRODUCTION

The recent technological progress in MEMS systems,
wireless communications and digital electronic allowed the
development of small and inexpensive devices capable of
communicating, computing, sensing, interacting with the
environment and storing information. These devices are
promising an unprecedented number of new applications as
swarm robotics, wireless sensor networks, smart energy grid,
smart traffic networks and smart camera networks, which
pose significant technical challenges, among them, scalability
is one of the major. The scalability propriety, for a network,
is intended as the ability to handle a growing number of
nodes without requiring to increase the hardware resources
and to adapt the software algorithms.
In this work we address the problem of designing a scalable
and distributed algorithm that is capable to reconstruct the
optimal estimate of the location of a network of devices from
relative noisy measurements. In particular by scalable we
mean that the computational complexity, bandwith, memory
requirements should be independent of the network size.
By distributed we mean that the algorithm must take into
account the advantages of sharing its data with other devices
but also it has to consider the limited communication capa-
bilities, i.e., a node is allowed to exchange information only
with its neighbors regardless the size of the network.
The problem at hand in this work can be casted as the
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following unconstrained optimization problem

min
x1,...,xN

|E|∑
(i,j)∈E

‖ xi − xj − zij ‖2 (1)

where xi, zij ∈ R` are the unknown position and the relative
noisy measurement, respectively, and E represents all the pair
of nodes for which are available relative measurements.
The solution of this optimization problem becomes a least-
square problem. Several distributed solutions are available in
the literature. In [1], [2] the authors propose a distributed Ja-
cobi solution which requires a synchronous implementation.
Similarly, in [3] the authors propose a coordinate descent
strategy which is suitable for asynchronous implementation
but requires the updating node to receive all the estimated
positions of its neighbors. Differently, in [4] a broadcast
consensus-based algorithm is proposed but the local esti-
mates exhibits an oscillatory behavior around the true value.
A similar approach has been proposed in [5] where the
local ergodic average of the gossip asynchronous algorithm
is proved to converge to the optimal value as 1/k, where k
is the number of iterations. An alternative approach based
on the Kaczmarz method for the solution of linear systems
has been suggested in [6], however the proposed algorithms
either oscillate or converge to the optimal value as 1/k.
The contribution of this work is to provide an asynchronous
algorithm which is scalable, robust to delays and have proven
exponential convergence rate under mild assumption. The
algorithm is based on a standard gradient descent strategy.
To compute the gradient each node is required to store in
memory only a copy of the estimate of all its neighbors.
The proposed algorithm is similar to the algorithm presented
in [7], which requires bidirectional communication among
nodes; on the contrary our strategy is based on broadcast
protocols which require no acknowledge from the neighbors.
Thorough numerical simulations our solution is shown to
outperform the performance of the other algorithms pre-
sented in the literature in terms of speed of convergence
to the optimal solutions and in terms of number of packets
required to be transmitted.

II. PROBLEM FORMULATION

The problem we consider in this paper is that of estimating
N variables x1, . . . , xN from noisy measurements of the
form

zij := xi − xj + nij , i, j ∈ {1, . . . , N}, (2)



where nij is zero-mean measurement noise. Though the
variables are often vector-valued, for simplicity, in this paper
we assume that xi ∈ R, i ∈ {1, . . . , N}.

This estimation problem can be naturally associated with
a undirected measurement graph G = (V ; E) where

(i) V denotes the set of nodes which are labeled 1
through N , being N the number of nodes, i.e., V =
{1, . . . , N} ;

(ii) E is the edge set and consists of all the pairs of nodes
(i, j) such that a noisy measurement of the form (2)
between i and j is available to both node i and node
j.

In the sequel it is convenient to assume that, if zij is the
measurement available at node i then zji = −zij is the
measurement available at node j. Basically we are assuming
that the measurements are symmetrical, meaning that both
agents of a pair know the measurement, with a reverse sign.

Assume that there are M available measurements, i.e.,
|E| = m and assume that the measurements errors on distinct
edges are uncorrelated.

Next we formally state the problem we aim at solving.
To do so we first need some preliminary definitions. Let
x ∈ RN be the vector obtained stacking together all the
variables x1, . . . , xN , i.e., x = [x1, . . . , xN ]T , where given
a vector v with vT we denote its transpose, and let z ∈
RM and n ∈ RM be the vectors obtained stacking together
all the measurements zij and the noises nij , respectively.
Additionally, let Rij > 0 denote the covariance of the zero
mean error nij , i..e, Rij = E[n2ij ], where E denotes the
expectation operator, and let R ∈ RM×M be the diagonal
matrix collecting in its diagonal the covariances of the noises
nij , (i, j) ∈ E , i.e., R = E[nnT]. Finally let 1 be the column
vector with all components equal to one.

Now, on each edge, let us choose an orientation, that is,
let us define a starting node and an ending node, in order
to encode the measurements by using the incidence matrix
A ∈ RM×N of G defined as A = [aei], where aei = 1,−1, 0,
if edge e is incident on node i and directed away from i, is
incident on node i and directed toward it, or is not incident
on node i, respectively. Observe that equation (2) can be
rewritten in a vector form as

z = Ax+ n.

Consider the function J : RN+M → R, defined as

J (x, z) =
1

2

∑
(i,j)∈E

(xi − xj − zij)2

Rij
.

Observe that

J (x, z) =
1

2
(z−Ax)TR−1(z−Ax).

Define the set
χ := argmin

x∈RN

J (x, z) .

The goal is to construct an optimal estimate x∗ of x in a
least square sense, namely, to compute

x∗ ∈ χ (3)

Assume the measurement graph G to be connected, then it
is well known that

χ =
{(
ATR−1A

)†
ATR−1z+ α1, α ∈ R

}
.

Moreover let

x∗opt =
(
ATR−1A

)†
ATR−1z,

then x∗opt is the minimum norm solution of (3), i.e.,

x∗opt = min
x∗∈χ

‖ x∗ ‖ .

Remark II.1 Observe that, just with relative measurements,
determining the x′is is only possible up to an additive
constant. This ambiguity might be avoided by assuming that
a node (say node 1) is used as reference node, i.e., x1 = 0.

III. AN ASYNCHRONOUS GRADIENT-BASED
LOCALIZATION ALGORITHM

To compute an optimal estimate x∗ directly, one needs
all the measurements and their covariances and the topology
of the measurement graph G. In this section the goal is to
compute the optimal solution in a distributed fashion, em-
ploying only local communication. In particular we assume
that a node i and another node j can communicate with each
other only if (i, j) ∈ E . Accordingly a node i is said to be
a neighbor of another node j (and viceversa) if (i, j) ∈ E .
For i ∈ {1, . . . , N}, by Ni we denote the set of neighbors
of node i, namely,

Ni = {j ∈ V such that (i, j) ∈ E} .

In this paper we are interested into solutions with the
following two features:

(i) They are distributed as opposed to centralized solu-
tions, namely, there is no a central unit gathering all
the measurements zij , having global knowledge of
the graph G and computing x∗ directly; instead each
node has at its disposal computational and memory
resources and is allowed to communicate only with its
neighbors in the graph G.

(ii) They are asynchronous, as opposed to synchronous
solutions, namely, there is no a common reference time
which keeps all the updating and transmitting actions
synchronized among all the nodes.

In what follows we introduce a distributed algorithm which
is based on a standard gradient descent strategy and which
employs an asynchronous broadcast communication proto-
col; specifically during each iteration of the algorithm there is
only node which transmits information to all its neighbors in
the graph G. We refer to this algorithm as the asynchronous
gradient-based localization algorithm (denoted hereafter as
a-GL algorithm).

We assume that every node has access to the measurements
on the edges that are incident to it, as well as the associated
covariances. Additionally we assume that node i, i ∈ V ,
stores in memory an estimate x̂i of xi and, for j ∈ Ni, an
estimate x̂(i)j of xj .



Next we formally describes the a-GL algorithm. Let
t0, t1, t2, . . . be the time instants in which the iterations of the
a-GL algorithm occur. Assume at time th node i is activated.
The following actions are performed in order.

(i) Node i updates its estimate x̂i in the following way

x̂i ← x̂i − αi
∑
j∈Ni

x̂i − x̂(i)j − zij
Rij

where αi is a suitable positive real number;
(ii) Node i broadcasts the updated value of the estimate x̂i

to all its neighbors j, j ∈ Ni;
(iii) Node j, j ∈ Ni, updates the estimate x̂(j)i setting it

equal to the value x̂i it has received from node i, i.e.,

x̂
(j)
i ← x̂i

Some explanations are now in order. Observe that the
quantity

∑
j∈Ni

(
x̂i − x̂(i)j − zij

)
/Rij represents the gra-

dient of the function

Ji =
1

2

∑
j∈Ni

(
x̂i − x̂(i)j − zij

)2
Rij

.

Basically, node i updates the value of x̂i moving along a
descent direction of the function Ji. Notice that Ji does not
increase if

0 < αi ≤

∑
j∈Ni

1

Rij

−1

and, in particular, if αi =
(∑

j∈Ni
Rij

)−1
then the mini-

mum of Ji is attained. Indeed in this case we have that

x̂i ←

∑
j∈Ni

1

Rij

−1∑
j∈Ni

x̂
(i)
j + zij

Rij


which corresponds to the unique solution of the problem

argmin
x̂i

1

2

∑
j∈Ni

(
x̂i − x̂(i)j − zij

)2
Rij

.

Next we provide a convenient vector form description of
the a-GL algorithm. To do so, we introduce the following
definitions. Let x̂i(h) and x̂

(j)
i (h), j ∈ Ni, denote the esti-

mates that node i has of xi and of xj , j ∈ Ni, respectively,
just before time instant th. Since we are assuming that there
are no communication delays and packet losses, it follows
that x̂(j)i (h) = x̂j(h), j ∈ Ni. Then

x̂i(h+ 1) =

1− αi
∑
j∈Ni

Rij

 x̂i(h)+

αi
∑
j∈Ni

Rij (x̂j(h) + zij)

while x̂k(h + 1) = x̂k(h), k 6= i. Let us rewrite the above
equation as

x̂i(h+ 1) = piix̂i(h) +
∑
j∈Ni

pij x̂j(h) + ui (4)

where

pij =


1− αi

∑
j∈Ni

Rij if j = i

αiRij if j 6= i, j ∈ Ni
0 otherwise

and where
ui = αi

∑
j∈Ni

Rijzij .

Let P ∈ RN×N be the matrix defined by the weights pij
above defined. Then the updating step at time th can be
written in vector form as

x̂(h+ 1) = (I + eie
T
i (P − I)) x̂(h) + Ui (5)

where the vector Ui ∈ RN is defined as Ui = uiei. Let

Qi = I + eie
T
i (P − I),

and observe that, if

0 < αi ≤

∑
j∈Ni

1

Rij

−1 , ∀ i ∈ V

then the matrix Qi is a stochastic matrix for all i ∈ V . Indeed
all the elements of Qi are nonnegative and it is easy to see
that Qi1 = 1.

Now let us introduce the auxiliary variable

ξ(h) = x̂(h)− x̂∗opt

By exploiting the fact that, for i ∈ {1, . . . , N},

x∗opt = Qix
∗
opt + Ui (6)

we have that the variable ξ satisfies the following recursive
equation

ξ(h+ 1) = Qiξ(h). (7)

Observe that x̂(h) → x∗opt + γ1 if and only if ξ(h) →
γ1. Moreover, since Qi is a stochastic matrix for any i ∈
{1, . . . , N}, we have that (7) represents a N -dimensional
time-varying consensus algorithm.

Remark III.1 It is worth to highlight that our algorithm
has been inspired by the algorithm proposed in [7]. The
main differences are related to the communication protocol.
Specifically, in [7] when a node is activated, say i, firstly it
interrogates its neighbors to obtain their estimates {x̂j}j∈Ni

,
secondly, based on the information received, it updates its
own estimate x̂i. This implies that during this iteration of the
algorithm there are |Ni|+1 transmitted packets (one packet is
related to the broadcast request by node i while the other |Ni|
packets are related to {x̂j}j∈Ni

responses). Instead in the a-
GL algorithm, there is just one packet broadcasted during
each iteration of the algorithm. This leads to a lighter, faster



and energy-saving solution. Additionally in [7] there is no
robustness analysis against packet losses.

In next sections, we analyze the convergence properties
and the robustness to delays and packet losses of the a-GL
algorithm by studying system (7) resorting to the mathemat-
ical tools developed in the literature of the consensus algo-
rithms. In particular we will provide our results considering
two different scenarios which are formally described in the
following definitions.

Definition III.2 (Randomly persistent comm. network)
A network of N nodes is said to be a randomly
persistent communicating network if there exists a N -
upla (β1, . . . , βN ) such that βi > 0, for all i ∈ {1, . . . , N},
and

∑N
i=1 βi = 1, and such that, for all h ∈ N,

P [Ai,h] = βi,

where Ai,h is the event

Ai,h = {the node performing steps 1) and 2) of the

a-GL algorithm at iteration h is node i}

Definition III.3 (Uniformly persistent comm. network)
A network of N nodes is said to be a uniformly persistent
communicating network if there exists a positive integer
number τ such that, for all h ∈ N, each node perform steps
1) and 2) of the a-GL algorithm at least once within the
iteration-interval [h, h+ τ).

IV. CONVERGENCE ANALYSIS IN THE RANDOMLY
PERSISTENT COMMUNICATING SCENARIO

The following result characterizes the convergence prop-
erties of the a-GL algorithm when the network is a randomly
persistent communicating network.

Proposition IV.1 Consider a randomly persistent communi-
cating network of N nodes running the a-GL algorithm over
a connected measurement graph G. Assume the weights αi
are such that

0 < αi ≤

∑
j∈Ni

1

Rij

−1 , ∀ i ∈ V,

and assume that x̂i, i ∈ {1, . . . , N}, x̂(i)j , j ∈ Ni, be
initialized to any real number. Then the following facts hold
true

(i) the evolution h→ x̂(h) converges almost surely to an
optimal solution xopt ∈ χ, i.e., there exists γ ∈ R such
that

P
[
lim
h→∞

x̂(h) = x∗opt + γ1

]
= 1,

(ii) the evolution h→ x̂(h) is exponentially convergent in
mean-square sense, i.e., there exist C > 0 and 0 ≤

ρ < 1 such that

lim
h→∞

E
[
‖x̂(h)− (x∗opt + γ1)‖2

]
≤ CρhE

[
‖x̂(0)− (x∗opt + γ1)‖2

]
.

The proofs of the above proposition and of the following one
are reported in the technical note in [8].

V. ROBUSTNESS TO PACKET LOSSES AND DELAYS IN THE
UNIFORMLY PERSISTENT COMMUNICATING SCENARIO

In section III we have introduced the a-GL algorithm under
the assumptions that
• the communication channels are reliable, i.e., no packet

losses occur; and
• the transmission delays are negligible.

In this section we consider a more realistic scenario where
the above two assumptions are relaxed. We are still able
to prove that the a-GL algorithm converges to an optimal
solution provided that the network is uniformly persistent
communicating and the transmission delays and the frequen-
cies of communication failures satisfy mild conditions which
we formally describe next.

Assumption V.1 (Bounded packet losses) There exists a
positive integer L such that the number of consecutive
communication failures between every pair of neighboring
nodes in the graph G is less than L.

Assumption V.2 (Bounded delay) Assume node i broad-
casts its estimate to its neighbors during iteration h, and, as-
sume that, the communication link (i, j) does not fail. Then,
there exists a positive integer D such that the information
x̂i(h+ 1) is used by node j to perform its local update not
later than iteration h+D.

Loosely speaking Assumption V.1 implies that there can
be no more than L consecutive packet losses between any
pair of nodes i, j belonging to the communication graph.
Differently, Assumption V.2 consider the scenario where the
received packets are not used instantaneously, but are subject
to some delay no greater than D iterations.
This implies that in general x̂(j)i (h) = x̂j(h

′
ij) for some h′ij

such that h − (τL + D) ≤ h′ij ≤ h. It turns out that the
equation update (4) is, in general, modified as

x̂i(h+ 1) = piix̂i(h) +
∑
j∈Ni

pij x̂j(h
′
ij) + ui.

The following proposition characterizes the convergence
proprieties in presence of bounded packet losses and bounded
delay.

Proposition V.3 Consider a uniformly persistent communi-
cating network of N nodes running the a-GL algorithm over
a connected measurement graph G. Let Assumptions V.1 and
V.2 be satisfied. Assume the weights αi are such that

0 < αi <

∑
j∈Ni

1

Rij

−1 , ∀ i ∈ V,



and assume that x̂i, i ∈ {1, . . . , N}, x̂(i)j , j ∈ Ni, be
initialized to any real number. Then the following facts hold
true

(i) the evolution h → x̂(h) asymptotically converges to
an optimal estimate xopt ∈ χ, i.e., there exists γ ∈ R
such that

lim
h→∞

x̂(h) = x∗opt + γ1;

(ii) the convergence is exponential, namely, there exists
C > 0 and 0 ≤ ρ < 1 such that

‖x̂(h)−
(
x∗opt + α1

)
‖ ≤ Cρh‖x̂(0)−

(
x∗opt + γ1

)
‖.

Observe that in Proposition V.3 it is assumed that αi
is strictly smaller than

(∑
j∈Ni

1
Rij

)−1
, while the result

in Proposition IV.1 holds true also if the equality is sat-
isfied. Next we provide a example showing that, if αi =(∑

j∈Ni

1
Rij

)−1
, then the optimal solution is not reached in

presence of constant positive delays.

Example V.4 Consider a network with N = 2 agents and
the following cost function f = 1

2R (x̂1 − x̂2 − z)2, where
z is the noisy measurement. Setting α = R we have the
following two update rules:{

x̂1(h) = x̂
(1)
2 (h) + z

x̂2(h) = x̂
(2)
1 (h)− z

(8)

where {
x̂
(2)
1 (h) = x̂1(h− 1)

x̂
(1)
2 (h) = x̂2(h− 1)

which means that the state of the other agent is known with
one step delay. During the odd iterations node 1 makes the
update, while during even iterations node 2 updates. Starting
from initial conditions equal to zero and assuming that at the
first iteration the agent 1 consider the state of the agent 2
equal to zero, following the update rule (8) we get

h 1 2 3 4 5 . . .
x̂1 0 z z z z . . .
x̂2 0 0 z z 0 . . .

It can be seen from the above table that there is a three
steps oscillatory behavior. The value of the function f keeps
jumping from 0 to z2

2R so there is not convergence to the
optimal set of solutions.

VI. NUMERICAL RESULTS

In this section we provide some simulations implementing
and comparing three different algorithms.

Example VI.1 In the example we consider a random geo-
metric graph generated with N = 50 nodes randomly placed
in the interval [0, 3]. Two nodes can be considered connected,
and consequently they can share their estimates, if they are
sufficiently close. More specifically, in our scenario, two
nodes are connected if |xi − xj | ≤ 0.5. With this choice
the average number of neighbors per node results to be of

about 10.
Every measurement was corrupted by Gaussian noise with
variance σ2 = 10−2. In this example we assumed that the
network was randomly persistent communicating with the
following probabilities to select a node or an edge (when it
was required):

βk =
|Nk|+ 1

2M
; βij =

1

M

With these kind of communication probabilities the Random-
ized Extended Kaczmarz Algorithm, hereafter called REK
algorithm, get the best performances, so to provide a fair
comparison we did not choose the uniform communication
probabilities.
The first algorithm that we considered is the REK presented
in [9], consisting of two different update steps. The first
step is an orthogonal projection of the noisy measurements
onto the column space of the incidence matrix A in order
to bound the measurements error. The second step is similar
to the standard Kaczmarz update. Since a distributed im-
plementation is not formally presented in [9], we propose
the following. More specifically, let s ∈ RM be the current
projection of the noisy measurements onto the column space
of A. Similarly as above, we denote with a little abuse of
notation the e-th entry of s with the corresponding edge,
i.e. se = sij . Then, the REK algorithm proposed in [9] for
general least-squares problems, performs the following local
updates:

s`k(h+1) = s`k(h)+

∑
m∈Nk

(skm(h)−smk(h))
|Nk|+1

, ∀` ∈ Nk

sk`(h+1) = sk`(h)−
∑
m∈Nk

(skm(h)−smk(h))
|Nk|+1

, ∀` ∈ Nk

x̂i(h+ 1) = x̂i(h) +
zij − sij(h)− (x̂i(h)− x̂j(h))

2

x̂j(h+ 1) = x̂j(h)−
zij − sij(h)− (x̂i(h)− x̂j(h))

2

We point out that, since in the updating step only local
information is required, the algorithm is implemented in a
distributed fashion and it exactly requires |Nj |+ 5 commu-
nication rounds to perform an iteration. Specifically the first
|Nj |+ 2 are due to the update of the variable s and the last
3 are needed to update x̂.
The second algorithm, hereafter called a a-CL algorithm,
is proposed in [10]. Since the actual value of neighboring
estimates are not available at each iteration, we assume that
each node stores in its local memory a copy of the neighbors’
variables recorded from the last communication received. For
j ∈ Ni, we denote by x̂(i)j (h) the estimate of xj kept in i’s
local memory at the end of the h-th iteration. During the
h− th iteration a node, say i, broadcast its estimate to all its
neighbors j ∈ Ni, so node j performs the following actions
in order

(i) it sets x̂(j)i (h + 1) = x̂i(h), while for s ∈ Nj \ {i},
x̂
(j)
s is left unchanged, i.e., x̂(j)s (h+ 1) = x̂

(j)
s (h);



(ii) it updates x̂j as

x̂j(h+ 1) := pjj x̂j(h) +
∑
k∈Nj

pjkx̂
(j)
k (h+ 1) + bj .

where pjj , pjk are the elements of the matrix defined
as P = I − εATR−1A and bj is the j-th component
of the vector εATR−1. The parameter ε is chosen
such that 0 < ε < 1/(2dmaxR

−1
min), where Rmin =

min {Rij ; (i, j) ∈ E} and dmax = max {|Ni|, i ∈ V }.
Note that just one packet is transmitted at each iteration of the
a-CL algorithm. The following table summarizes the number
of packets transmitted during each iteration of the algorithms
we are considering.

Algorithm Sent packets per iteration
a-GL 1
a-CL 1
REK |Nj |+ 5

Number of sent packets per iteration for each algorithm.

In Figure 1 we plotted the behavior of the error

J(h) = log (‖A(x̂(h)− x∗)‖) .

Observe that the trajectory of J decreases exponentially.
From the simulation we observe that the a-GL algorithm,
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Fig. 1: Comparison of various algorithm in a random
geometric graph.

together with the a-CL, is the most convenient from the
energy point of view. Moreover the a-GL is also the fastest
algorithm.

Example VI.2 In this example we use the same framework
of the previous example but we consider a circular graph. We
can see that the results are the same of the previous example.

Example VI.3 In this example we assume the same frame-
work of the example VI.1 with the difference that here we are
verifying the capability of the a-GL algorithm to converge
also if the packets received are delayed. However from the
Figure 3 we can see that the algorithm still converge to the
optimal solution but with a slower convergence rate.
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Fig. 2: Comparison of various algorithm in a circular graph.
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Fig. 3: Comparison of various algorithm in a circular graph.

Example VI.4 In this example we compare the perfor-
mances of the algorithm proposed [7], hereafter called BC,
and the a-GL algorithm. We consider a random geometric
graph with N = 20 nodes. In Figure 4 we plot the behavior
of J respect to the number of sent packets. As we can see the
a-GL is much more faster then the BC, so can be considered
the most convenient from an energy point of view.
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a−GL
BC

Fig. 4: Comparison of a-GL and BC w.r.t. the number of
sent packets.

VII. CONCLUSIONS

In this paper we consider the problem of optimally esti-
mating the position of each agent in a network from relative
noisy distances. After having formulated the problem in a



least-square framework, we proposed a revisited and more
efficient version of the algorithm presented in [7]. We proved
that the trajectories generated by the algorithm converges to
the optimal solution exponentially and that the algorithm is
robust against packet losses and bounded delays.
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