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Abstract— In this paper we study different distributed es- each sensor. In particular, the CKF can be obtained as the
timation schemes for stochastic discrete time linear systes  output of a linear filter which uses the LKF estimates as
where the communication between the sensors and the estima- inputs. The idea behind the fusion of LKF estimates rather

tion center is subject to random packet loss. Sensors are pro than th X tivated by th d of
vided with computational and memory resources so that they 1aN theé raw measuremenis was motivated Dy the need o

can potentially perform data processing of the measuremest distributing part of the computational burden of the centra
before sending their information. In particular, we explore estimation center to the sensors. More recently Wolfe et al.
three different strategies. The first, named measurement fsion  [13] showed that the computational load of the central node
(MF), optimally fuses the raw measurements rece.lved so far can be reduced even further by running on each sensor a
from all sensors. The second strategy, hamed optimal partla | | filt hich ¢ tial estimate of the stat
estimate fusion (OPEF), optimally fuses at the central nodéhe ocal niter which genera e_s a partial estimate of the state
last local state estimates received from each sensor. Thesta SO that the central node just need to sum them together
strategy, named open loop partial estimate fusion (OLPEF), to recover the CKF estimate. We refer to this strategy as
simply sums local state estimates received from each sensor partial estimate fusion (PEF). Moreover, this strategysdoe
and replace the lost ones with their open loop prediction. 4t even require uncorrelated measurement noise among
We provide some analytical results about the performance diff ty f 121 Th | dedicated
of these three schemes in special regimes conditions, namel s_ensprs, ! e.ren _y rom [ 1 ere are also de |c§1e
low and high process noise. We also show through numerical distributed estimation algorlthms such as the federateidil
simulations that, although none of the three schemes achies proposed by Carlson [5]. However, the framework adopted
the idea! peﬁormance of a scheme with infinite bandwidth jn all these works did not include packet loss nor delay,
communication between sensors and the central node, the 5,4 the topology was supposed to be known to all sensors
OPEF scheme provides almost ideal performance. . . .
and the central node. Sensor fusion, whose goal is to devise

. INTRODUCTION efficient numerical algorithms to fuse measurements (and
The rapid proliferation of large wireless interconnected©t local estimates) from heterogeneous sensors like sadar
systems capable of sensing and computation is posing séfd GPS with possibly different random delays or missing
eral challenges due to the unavoidable lossy nature of ti&!a, iS also a deeply investigated area, in particular én th
wireless channel. These challenges are particularly avidecONtext of moving target tracking [4]. For example in [3] and
in control and estimation applications since packet logs art4] the authors showed how to perform optimal estimation
random delay degrade the overall system performance, thiffh time-varying delay and out-of-order packets without
motivating the development of novel tools and algorithmd€quiring the storage of large memory buffers and the inver-
as illustrated in the survey [7]. In this work we focus on theion Of many matrices. In [11] the authors provided lower
problem of estimating a stochastic discrete time lineatlesys @"d upper bounds for optimal estimator subject to random
observed by a number of sensors which can communicafieasurement loss, and in [9] those results were extended to

with a central node via a wireless lossy channel. multiple distributed sensors subject to simultaneous g@ack
_ loss and random delay. Finally, the recent paper [10] aeslyz
A. Previous Work some tradeoffs between communication, computation and

There is a vast literature regarding distributed estinmatiestimation performance in multi-hop tree networks.
and sensor fusion with perfect communication links. It isB Motivations
well known that the optimal solution in the standard scemari—*
where all sensors are co-located with the estimation center Differently from distributed estimation with perfect com-
is given by the centralized Kalman filter (CKF) [2]. In the munication and sensor fusion, little attention has beeergiv
seminal papers [12] and [8] it was shown that it is noto fusion of local estimates from multiple sensors subject
necessary to send the raw measurements to the central né@lgandom packet loss and random delay. In fact, it has
to recover the CKF estimate, but it is possible to reconstrubeen shown in [6] that sending the LKF estimates allows the
it from local Kalman filter (LKF) estimates generated bycentral node to construct a better state estimate thanrsgndi
the raw measurements, even in the presence of packet loss.
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lost forever. This observation, which is valid in generalyon [l. PROBLEM FORMULATION

when a single sensor is considered, suggests that Se”dK'.gModeling

a local estimate of the state;, is the right thing to do Wi . di ime i hasi

also in the context of lossy communication. Indeed we will ¢ consider a |s<?rete time linear stochastic systems
show that, when there is no process noise (Q=0), sendilqgserved by sensors:

partial estimates, as suggested in [13], allows to recdwer t Ty = Az +wy (1)
CKF filter as if all measurements up to the latest received G AT S | N )
packet from each node were received at the central node. Ye e T
However, this is not the case when there is process noisehere x € R", y; € R™:, w, and v{ are uncorre-
Moreover, it is not clear how to modify the LKF fusion or lated, zero-mean, white Gaussian noises with covariances
the PEF schemes proposed by [12] and [13] when packei$w,w] | = Q, andE[vi(v{)T] = R;;, i.e. we also allow

are lost, since these strategies rely on the assumptiomlithatfor correlated measurement noise. More compactly, if we
packet will be received. A naive adaptation of these schemdsfine the compound measurement column noise vegter

to include missing packets, would be the use an open lodp;,...,v) € R™ m = Y ,m;, we haveE[vv!] =
estimate based on the last received packet, suggested by &t —s), where thg(i, j)-th block of the matrixR € R™*™
fact thatE[z; |y1,...,Y—r] = A'E[zi—r |y1,...,9e—~) = is [R];; = R;; € R™*™i_ The initial conditionz, is again

ATZy_,1—-, Wherer is the delay of the last packet receiveda zero-mean Gaussian random variable uncorrelated with
by the central node. However, as observed in [1], thithe noises and covarian@zxl] = P,. We also assume
strategy can lead to much worse performance than simpieat R > 0, the pair (4,Q'/?) is reachable andA,C)
measurement fusion (MF), i.e. the strategy based on tli® observable, wher€” = [C{ CI ... C%], which are
transmission of the raw measurements. sufficient conditions for the existence of a stable estimato
The sensors are not directly connected with each other and
can send messages to a common central node through a lossy
communication channel, i.e. there is a non zero probability
that the message is not delivered correctly. We model the
packet dropping events through a binary random variable
C. Contribution vi € {0,1} such that:

. | 0 if packet sent at time by nodei is lost
707\ 1 otherwise

3)
Motivated, by these considerations, in this paper we ex-
plore in more detail the problem of distributed estimation Each sensor is provided with computational and memory
where the communication between the sensors and the eggisources to (possibly) preprocess information beforel-sen
mation center is subject to packet loss. Also we assume thag it to the central node. More formally, at each time instan
sensors are “smart’, i.e. they can preprocess the measufe@ch sensoi sends the preprocessed informatigre R*:
data, e.g. computing local state estimates. We first shotv tha . S ‘ o
with multiple sensors it is not possible to find a distributed 2= fiWi Y5, -5 u) = fi(Wis) 4)
asr;{;g]ag?onvizgé):ggrzz;::;rg:;g?%;g:gl?(;t SLEOSJ;SiZdOSr:deYPereZ is bounded ang/() are causal functions of the local

. : n}easurements. Natural choices afe= yi, i.e. the latest
measurements from each sensor till the last received packe 4 . . S
measurement, or the output of a (time varying) linear filter:

This ideal filter is referred as infinite bandwidth filter i i i
; ; & = F&G 1+ Gy

(IBF). Based on this negative result, we propose three 2 — Hiti + Diy
suboptimal strategies, the first is based on standard nmeasur ¢ ot t9t
ment fusion (MF), the second on the optimal (best lineards for example a local Kalman filter.
fusion of partial state estimate (OPEF), and the last on the The objective is to find the best mean square estimate
simple sum of partial state estimates by substituting tealid given the information available at timeé at the central
current partial state estimate with its open loop estimate node. More formally, let us define the information set
some packets are lost (OLPEF). We prove that the last twh = Uf\;lIg available at the central node, whefg¢ =
strategies can achieve the optimal performance when thefel |vi = 1,k = 1,...,t}, then the best mean square
is no process noise = 0), while in the opposite regime estimate and its corresponding error covariance at theatent
when there is no measurement noige < 0), none of the node are given byi,; = E[z;|Z;] and P, = var(z; —
proposed filters achieve the optimal performance, although; | Z;) = E[(z; — &4¢) (2 — &4:)" | Z¢]. It is evident that
the measurement fusion scheme seems to be very close to dfeo the error covariance;, is random variable since it
optimal in numerical simulations. We also observed througtiepends on the specific packet drop history represented by
numerical simulations that the approach based on optimtéie random variables;. Also, the error covariance is a
fusion of partial estimates (OPEF), although not optimafunction of specific preprocessing strategy defined by the
provides a performance with is very close to the infinitdunctions f(). If we do not constrain the dimension of
bandwidth filter (IBF) in any noise regime and even for higithe messages transmitted by each node to be bounded, then
packet loss rates. an optimal strategy is to send all measurements up to that



instant, i.e.z; = yi.,. Using this strategy the correspondingalso [6&’1’ aé’b] # 7[og, ab 4], ¥y € R. Therefore, since

information sets available at the central node Bre= {@} the estimated}, = Elzz|23,25] = fiz3 + 223 and
if v, =0,Vk=1,....torZ, = {yi, .}, wherer] = zy = v(az,yt + a3 ,y3) for somey, it follows thatai:g‘2 +
) N t * . . .
t —argmax{k|y; = 1,= 1,...,t) is the delay of the last xQ’g. This concludes the proof that there do not exist linear

packet received from nodé at time ¢. In this idealized functions of dimension one that allow to retrieve the optima

situation, the minimum mean square estimate (MMSE) isstimate for all possible packet loss sequences.

given byff\t =E[z: | U, T;] = E[x, |y%t N y{\ft ~; This results continue to hold even if we consider more
-7 ’ t—TiV

we shall also call this estimatdnfinite bandwidth filter generalnonlinearfunctionsz{ = f{(yi.,). In fact, as shown

(IBF). Its error covarianceP’, = Var(z, — 2%, |Z;) is in the specific example above, in order to reconstruct the
: tt. NN A timal estimates® — (vl vl) = ab %! + aboyl |
clearly a lower bound for any linear estimator independentioptimal estimatez = fy(y1,y3) = a;™"y; + Gy y, In

of the preprocessing;() performed by each node for any the first scenario and® = f3(yl,43) = a;"yl + ay"y3
possible packet loss sequence, i.e. in the second, must hold. Since the two pair of coefficients
, , are not parallel, the central node can also reconsiyliafs
Pl < Py, V{0, Y. from z%,z°. This is equivalent to saying that the function

23 = fi(yi,ys) maps two real numbers into a single real
number, and that the central node can reconstruct the two
The next theorem shows that it is real numbelrs from the single real numbéy which is clearly
impossible*.

The proof for arbitrary but finite packet sizei.e 2! € R
gan be obtained similarly by properly constructifg+ 1
different packet loss scenarios for which the gains of the
optimal linear combination of the measurements are ligearl

independent, which means that there do not exists linear

Our objective is to find preprocessing schenfgg):.,) with
bounded size output! which can achieve the lower bound
on error covariancé?t*lt.
not possible:

Theorem 1:Let us consider the state estimate andi;,
defined as above. Then there do not exist (possibly nonline
functionsz} = fi(yt.,) € R* with bounded sizé < oo such
that Pt*|t = Py, for any possible packet loss sequence, i.e.

1110 | Py = t*‘t’ Yy fun_ctionsfg’() which _alyvays recover the optimal mean square
Proof: We will prove the theorem by providing an €Stimatez;,. Also similarly to the proof above, this can be
explicit example. Let us consider the following scalar dy€xtended to general nonlinear functioffg). ]
namical systems with two sensors: The previous theorem states that there is no hope to find a
preprocessing with bounded message size which can achieve
Tel = Ly Wy the error covariancé;;, of the infinite bandwidth filter (IBF)
Yp Tt + v since it is not possible to know in advance what the packet
Y =Tty loss event will be. We will therefore propose two suboptimal
where zo, wy, v}, v? are uncorrelated zero-mean white ranestimation strategies which provide the optimal solution i
dom variables with covariance, = o, = 0,. = 0,. = the special case of perfect communication link, i.e. when
1, respectively. We consider two different packet arrivafhere is no packet loss. The first, referred as measurement
scenarios: fusion (MF), consists in sending the raw measurements:
a:{y =1 == =0}, i =y ,
b:i{n=1=01m=7%=1} a" = Elne|Z},i=1,...,N] (5)

i.e. at timet¢ = 2 in scenario (a) only the second packet o= {nhi=1Lk=1....1

from the first sensor arrived successfully to the centralenodThe second, referred as optimal estimate fusion (OEF),
while in scenario (b) both packets corresponding to timeonsists in sending filtered estimates from each sensor and
t = 2 were received but the packets corresponding to timgien optimally combining the most recent ones from each
t = 1 were lost. We start by showing that there do notensor at the central node:

exist linear functions of the measurement = fi(yi,) = i

R . ; . 2 = Tz, + Giyl
Zzzlo{;ky,g of size one, ez € R, that can retrieve ZOEE  _ Et[a:t |2i t;yt: : N :ZN o
the optimal mean square estimatg, for the two scenarios tft tle—rio A i=1 "t t—ré’6)

just illustrated. In fact, let us consider scenario (a) whic

leads toj:;‘z‘ — Ewo |yl yd] = ay! + alyl, where ;c;;cs:ljétsaeb(;eincr:rc]);cgsegtfict)r;el\r?atr|cé$ and G} which will be
_1,a _1,a ) . . .

ay" # ay” # 0, and we made explicit with the superscript

()¢ that the actual optimal mean square estimate depends [1l. M EASUREMENT FUSION

on the particular packet loss sequence history. Therefore,n this section we briefly summarize how to iteratively
in order to havez;, = E[xz| 2] = (12 equal toZ,,, compute the estimate based on the measurement fusion
_l,a ~1,a

we must haves{[al ;a3 5] = [a;" ay”]. Differently, in
’ ’ 10f course one could argue that in an infinite bandwidth selapet is

scenario (b)’ the th'T?' mear11bsquare2 fsnmﬁigb = essentially no limitation on the numbérin (4); however, when bandwidth
Elx Tl 42 42 = a7yl + ay%yl + av%y? + a> 2, limitations come into play, resolution requirements woafccourse impose

[h 2| vi» y,Q’Lyllj;yQ] 1_1?{11_17(1 vaQ R} Y1 h2 Y2 an upper bound o#. It would also be possible to consider “smart’ coding
where [a;" @, . 7é ylay" & vy € R, 1.e. _t e tWO  gchemes which, however, would have to depend also on théfispeacket
vectors of coefficients are not parallel. This implies thalbss sequence.



strategy. Let us first define the following variables: Besides computing the coefficienfs! one has also to
decide how each node processes its own measurements, i.e.

1 1,1 . .
73? T Yy how I and G are chosen.
C, = T2 G = Vet Before discussing these choices, we first describe how the
: ’ : ’ gains®} can be computed. Let us define:
L C Wi g
YR iR o i Rin ) v t‘_Tt
R; = . . : P, = [@t,...,q)t ] and  z, = :
: . : N
BRI 7 RN Fer

which can be obtained from the centralized matricgs Of course, the optimal fusion coefficients of Eqn. (12) can
and R, and from the lumped column measurement vectde computed as:
v = (yty? ... yM)T by replacing the rows and columns B . =1
corresponding to the lost packet with zeros. It was shown in ¢ =E [xtth] E [Z“Zt»T] (13)
[9] that the state estimate for the measurement fusioreglyat we shall now outline a procedure which allows to com-
is given by: pute the covariance matrices [z;2],| and E [z ,z{.].
MF ~ “MF 7o To this purpose let us define the augmented state vector
= (I-CiLy)A L 7 - . o
I‘EJ;F (I = CelLe) _it—_”t—l +_;yt o (7) st := (74,2}, .., ). Combining equations (1) and (11) it is
PT =Py — Py O (Ci Py Cf + R)'Cu Py 4(8)  immediate to see that
L, = Pt\t—lé?(ctpt\t—lcg + Ry)f 9)
P = APNFAT +Q (10)

St = \I/tSt,1 + Bzu’wtfl + B;}’Ut (14)

where

where the symbot indicates the Moore-Penrose pseudoin-

verse. The previous equations correspond to a time-varying

Kalman filter which depends on the packet loss sequence. U, =
Note that only measurements that have arrived are used : : . :

to the computation of the estimate)’”, i.e. the dummy GNcyAartY o o 1V
zero measurement if, are not used as if they were real

measurements, but are discarded. I 0O ... 0

The measurement fusion strategy has the advantage to be _ GG B Gt ... 0
. t = . .

A 0 ... 0
GIC;AT! Tt ... 0

computed recursively and exactly with the inversion of one t : : . :
matrix of (at most) the size of the lumped measurement GM.C O ' G'M
vector y5;. On the other hand, if a packet is lost, then the v M ¢
information corresponding to the measurement in that gackerom this equation the covariance functiBp i, := E[s),s7 |

is lost forever, while sending filtered version of the outasit can be easily computed, starting from the initial condition
in the optimal estimate fusion (OEF) this information might

. - : ; T
be partially recovered. In fact, as we will see in Section V Elzozg] 0 ... 0
there are noise regimes, namely in the absence of process T 0 0 ... 0
noise, in which the MF performs considerably worse than 0,0 - : Do
OEF. 0 0 ... 0
IV. STATE ESTIMATE FUSION Observe now that all the elements @& [z,z{,] and

In this section we consider the second strategy mentioné|z: .z .| are indeed elements af;, ;. for suitable values
above, named OEF. According to this strategy, e node of h andk.
sends an “estimate” of the state computed via It is also convenient to note that also the conditional

variance of :9FF given the sequencéy'}.—;  ; can be

i T o0 ¢t ;

zi = Tz + Gy (11) computed using the standard formula for the error covaganc
and the central node has to compute the optimal fusion rulevar{j?EFhi s <t} = Var{az,} — ®,E [Zt 2T } o7
t|t s — - STt T

(15)
_ N This equation will be useful in evaluating the performance

gqr " = Elay | Z_ppi=1,...,N] = Z ®iz,_,. (12) of different choices of the local pre-processing stratedjiie
i=1 andGj. Of course it can also be used to monitor on-line the

. i EF
wheret — 7/ is the last time in which the central node hagPerformance of the estlmatd_iﬁt ' OBF
received a packet from node The conditional expectation ~ Note that the error covariance of OEPgﬁ that uses

will be computed assuming a Gaussian medsure only the latest packet received from each sensor node, is
larger than the one that could be obtained from all received

2Alternatively one could think of[- | -] as being the besinear estimator. ~ packets,P;, at the price of a higher computational cost, i.e..



_ where the gains Li’l are the local Kalman filter gains
P, < Py < PPT Wy computed as

The optimal choice of the “local” filter matricdd andG in Pi, = (A-K}'C)P(A-K'C)T+
Eqn. (11) is far from being a trivial task even if topology and KR (K T
statistics of the model are completely known. Therefore, in TR M ( ¢ ) +Q

. . . il 1 i _
order to gain some further intuition, we explore and compare Ly = P/CI(CPICE + Ri) ™
some sensible choices of the matridgsand G;. Kb o= ALY
A. Optimal Partial Estimate Fusion We shall call the optimal estimate based on tzkiéTi’s
t

This strategy is suggested by the observation that, in tfeptimal Kalman estimate fusion (OKEF):
absence of packet losses, one could compute the gains in a

N

centralized manner and distribute the computations to each ;OKEF _ gy, |00 j—1 .. . N]= Z‘I’i’lzi’l
sensor. To be more precise, assume all measurements were t P i
available to a common location, i.e. that there where no (19)
packet losses. We shall denote witfj<*" := E[z,|y},.i = Unfortunately, as discussed in [12], even in the absence of
1,.., N] the centralized Kalman filter (CKF); its evolution is packet losses the optimal estimate cannot be recovered as a
governed by the equations: linear function of thez}’s.

xﬁtKF = Ft:fctcfiﬁil + Lyyy C. Open Loop Partial Estimate Fusion

16
o= (I-LCO)A (18) The third strategy, referred to as open loop partial esémat

fusion (OLPEF), aims at simplifying the optimal partial
estimate fusion; in fact the preprocessing of the measureme
is the same, i.ez} are computed as in the OPEF strategy,

where the gainL; = [L{L? --- L] is the centralized
Kalman filter gain computed as

Py = (A-KCO)P(A-KO)T" +KRK] +Q but it does not compute the optimal linear combination of
L = PCT(CPRCT+R)™! the estimates at the central node.
K = AL 5 = Fuzjy+ Ly
Note now that, defining? to be the solution of Ffo= (I-LCO)A (20)
~OLPEF _ N AT
i i iy Tyt >zt Ry
zp = Pz + Ly, (17) ¢

. COKF i i CCKF N The rationale behind this strategy is that, since in theratse
the CKF estimater; "~ is given byzy " = > ;_, z;. FOr o packet losses; = Y, 21, whenz{ is not available one

these reason we shall call thg¢s “partial estimates”. This could compute an estimate by propagating (in “open loop”)

strategy has been suggested in [13] for distributed estmat the |ast partial estimate!__, using the approximation; ~
to the purpose of reducing the power consumption. Note thﬁt,;zi k
i

Egn. (17) falls in the class Eqn. (11) wifii := F; and un
G? .,(Li) an. (11) withy ! Note that
t = - ]
In the presence of packet losses, ogly ; are available to P, < Py < pt%PEF < pt%LPEF’ N
the central node and, with this information, the best (Iiea ) :
estimate is given by where the last inequality follows from the fact that last

messages are not fused optimally in the OLPEF strategy.
N Remark 1:I1f sensor nodes either appear or disappear

N = Z(I)izi . (18) OLPEF would most probably fail. Differently it is to be
’ tot-} expected that both OPEF and OKEF will be able to com-
pensate for this changes providing sensible estimateg sinc

where the superscrip?”# stands for optimal partial the weightsbi and®?' in Eqn. (18) and Eqn. (19) are chosen

estimate fusion and the coefficienfs are computed as adaptively based on the received packets.
described in the previous section.

i:gtPEF:IE[xﬂzi i=1

t__rti, P

i=1

V. SPECIAL CASES

. . _ A. Small process noise regime (Q=0)
Note that, in the previous strategy, the local filter at

TR An important regime is when the state evolution can be
each node depends upon all the other sensors; this is O%Jgscribed by a deterministic linear map, i.e. when the m®ce
reasonable either if the network topology is fixed or if the y P, I.€- o

i . hoise is very small. We shall study the limiting ca3e= 0,
central node can communicate to each sensor the new filter . . X
. i.e. no process noise. We shall also restrict our attention t
parameters if the network changes.

, . __the case in which the measurement noises are uncorrelated,
Alternatively each sensor could compute the best estimate .

Lo L . . 1.6. R = block diag{ Ry, .., Rn }.

given its own measurements, which is a local in nature, .i.€.

B. Optimal Kalman Filter fusion

21‘,1 - Fiéi,l + Li,l i 3The superscript:! reminds tha_tz;"l is the local estimate of the state at
t o t~t—1 t Yt the i—th sensor, where the gaih®-! is computed using théocal Kalman

Fi = (I-L¥C)A filter equations.



Proposition 1: Let us consider the proposed estimatioriThe last equality proves that! are linear and invertible
schemes, namely MF and OPEF, OLPEF, OKEF and IBfunctions ofzi! and therefore
for @ = 0 and R = block diag{ Ry, .., Ry }. Then

:zrgtPEF = E[zt|z§_71,z 1,., N]
2 t

Pt .= POPEF POKEF POLPEF PAfF _ E[It|ZZ£Tq,a i = 17 ,N]

Proof: We shall give the proof for the caskinvertible. OKEF '

If A is singular the proof can be adapted by first considering

a basis transformation and restricting to the subspacehwhithus implying alsoPQPFF = P?KEF

corresponds to the non-zero eigenvaluesiof

Let us first consider the IBF given by

t[t
If we now consider the open loop strateggLPEF recall
that

o I 7 s ~ N P
It‘t T ]E['rt|y1;t_7—ti71 - 13 3 N] ﬁtLPEF = Zz 1 A tzt T,
= A'Elzolyt, .,i=1,.,N ; -1
[I0|y1:t—7g"l 20 ] — g]zz ) Oz TRfloz 7—;5 +P071) .
If we denote by i TR lyz y '
gﬁ? y:1 Note now that the last term on the right hand side is indeed
o= . yi— | % &7, given in Eqn. (21), thus proving that?-"EF = &7 .
: : This yields also the last equahtl;?OLPEF P;‘It
C; At ye Finally, note thatrf‘f F computes the best estimate given

a standard formula from linear minimum variance estimatio

[2] yields:

t|t = A (vazl(oi—rg)TRfloi—rg + P07

Zi:l (Otlffr} )TRfll/;SlT}

1)_1' (21)

Note also that thé-th local state estimatbiis given by

W
%l = Elz,_.s

;]

= A ((o;_Tg)TRglo;_Tg + po—l)‘l .

(O )TRIY]

Therefore, using the assumption thatis invertible,

. 1 R
i = A (SO TR0 B

sz\il ((Oz,,-g)TRi_loi,Tti + Po_l) At

t—1/;

(22)

only the measurements which have indeed reached the fusion
Eenter hence its variance is strictly larger (for a generic
choice of the dynamics governing the state evolution) than
that of:%*t (IBF), which is the lower bound on the achievable
accuracy for any given packet drop sequence. [ ]

B. Small measurement noise regime (R=0)

Another important regime to be considered is when the
measurement nois® is much smaller as compared to the
process nois&). This is a regime for which only recent
measurements convey relevant information. One might won-
der whether one of the proposed fusion schemes, namely the
MF and the OPEF, can always provide the best achievable
estimatedy,, or, at least, if one is always better then the
other. The next proposition shows that the answer to both
guestions is negative.

Proposition 2: Let us consider the two proposed estima-
tion schemes, namely MF and OPEF, #8r= 0 and@ > 0.

Then there exist scenarios for whigh/” > P{”"" and

holds true. Since the right hand side is a linear function afcenarios for whichP}/# < pOPEF

4,1

z,” _,, also Proof: We start by showing that there exists a scenario
for which PMF > POPEF | et us consider the following
OKEF . t|t t|t
Ty = E[:ct|zt T“’ =1,.,N] systems:
E[t|z 1izl..N] 1 1 0 0
[¢1%e—ri> 7t _ _ _ _
‘%t‘t A_|:O 1:|701_[1 0]? Q_|:O 1:|5R_O

holds, thus proving thaPtﬂKEF Py,

where Py = I, i.e. we consider a single sensor. Suppose
that y{ = 0,74 = 1, i.e. the first packet is lost, while

Let us now turn our attention 07 Z . By first comput- ; . ; ;
. CKF P e y P the second is received successfully. It is easy to verify tha
ing &3,* " = Ela¢|y1,,i = 1,.., N] it is simple to observe . OPEF _ o1yl 4 alyl where0 # ol € R2X1 k =

. . =z
that the partial estimate!, s =t — 7/ (see equations (17), 227 22

(12)) is given by

1,2. SinceE[yi |y3] # yi, it follows that &5/ # @3,,
thereforePMF POPEF This result is not too surprising

2|2 2|2
. _ 4#OPEF ;
o= A (Zz (ONTRTI0 + Py ) (0T Ry Since we already know thaty, = iy is always true
when there is a single sensor [6].
= A° (ZZ L(OVTRTOL + Py ) We now prove that there exists a scenario for which
(0T RO + Pty A-s i pPj[" < P{PPF. Consider the same dynamics of the
previous example to which we add a second sensor with
41.e. the estimator thé-th node can construct based solely on its ownOPS€rvation matrixC, = [0 1]. It is easy to verify that the

measurements.

outputs of the local filter on each sensor according to the



OPEF strategy are; = [y} 0] andz? = [0 y?]”. Let us noise it make sense to “trust” the model and hence propagate
consider the following packet loss sequen¢e= v2 = v# = estimates in open loop. Note also that MF is the worst
1,73 = 0, thereforeis, = E[za|yi,y3,y7] = @3y, while  strategy for smallug; this is also in line with the results
jglgEF = E[xa| 23, 23] = Elz2 | y3,y?]. It is also possible in Section V predicting that OPEF is better than MF for
to verify that E[yl |yd,4?] # y! since the the covariance @ =0 _ _
matrix ¥ = E[¢¢7], where¢ = [y} y 4?]7, is not singular. Figures 2, 3 and 4 show how the error variance varies

This implies that%%oEF 30 thereforePzI‘IgF < P2<|>2PEF_ as function of the packet drop probability. Note in partaul
m thatfor zero packet drop probability OPEF coincide with the

The previous proposition shows how in general none of twBPtimal centralized estimate (no packet drop).
strategies MF and OPEF is superior to the other also in the e consider the following three situations:
limiting regime R = 0. As a consequence, it also shows that « Small process noisé:q = 0.1): as mentioned above,
none of them always achieves the optimal filter performance for small process noise MF is the worst strategy. Also
xrlt‘ the OLPEF performs reasonably well for small to
medium packet drop probability.
VI. SIMULATIONS » Medium process noisg:g = 20): The OLPEF strategy

In order to illustrate and compare the methodologies performs reasonably only for very small packet drop

described above, we consider the following simulation ex-  probability. MF and OKEF are always worse that OPEF.

ample: « Large process noiséuq = 4000):
099 1 For large process noise it is clear that OLPEF if by far
Tip1 = { '0 0.99 ] Tt + wy 23) the worst procedure and also that MF, OKEF and OPEF

have very similar performance. This is reasonable since,
for very high process noise, the latest measurements
where the measurement vecigrhas dimension (i.e. there available essentially carry all the information.

are7 sensors). Th& matrix is given by:

Yy = Cxi+u

Packet drop proability:0.5

0 0 00O 0 0O

The noisesy, andw; are uncorrelated, zero mean Gaussi
white noises with covariances, respectively,

E[viv] ] = R = diag{10, 20, 40, 0.5, 2, 1, 40}

T
02[2 4 1 1 04 1 1]
10

and

Error Variance

0.00L 0
Elwiw/] = 1gQ = nq { 0  0.001 }

The parameten will be varied to study the behavior unde 10
different regimes, i.e. different ratios between the maded
the measurements noises.

All figures report the error variance of the first compone
of the state as a function of either the packet drop proligbi 14 ‘ ‘
or ug. Note that the conditional variance given the pact 1072 10° 10°
drop sequencg~;} has been computed in closed form : Ho
discussed in Section IV for all methods except OLPEF. The
unconditional variance is obtained simulating a suffidient 719 1. Error Variance vsug. The curve relative to OPEF coincide, to

. ny practical purpose, with that corresponding to IBF.

long sequence of packet drop sequence and averaging fihe
conditional variance over that sequence. The same could
also have been done for the OLPEF; however this is rather
involved from the computational point of view and hence the VII. CONCLUSIONS
variance for OLPEF has been computed purely by Monte In this paper we explored the problem of distributed
Carlo simulations. This justifies the fact that, for instanc estimation subject to random packet loss between the sensor
in Figure 2 the red curve, relative to OLPEF, is below theand the central location where the best state estimate is
curve relative to the centralized estimator (no packet dropequired. Although distributed estimation is an old andlwel
for low packet drop probability. In fact this is theoretigal studied problem in the context of perfect communication,
not possible since the centralized estimator has the lowasindom packet loss introduces new challenges. In particula

achievable variance. in the classical schemes adopted in distributed estimation
In Figure 1 we show the behavior of the error variancevith perfect links, all sensors and the central node knowtwha
as a function ofug for the packet drop probabilitP[y; = everyone is doing without communicating, therefore they

0] = 0.5. For small values ofip the OLPEF behaves very choose in advance the best preprocessing and fusion strateg
similarly to OPEF. This is reasonable since, for small pssce Differently, random packet dropping destroys this propert



Error Variance
Error Variance

0.3 0.4 0.5 0.6
Packet drop probability

Fig. 2. Error Variance vs. packet drop probabilityy = 0.1. The curve
relative to OPEF is not visible since it coincide, to any fid purpose,
with that corresponding to IBF.

uQ=20

—*—— OPEF
1 —@®—— OLPEF
CKF
MF
OKEF
IBF

(1]

[2]
(3]

Error Variance

(4]
(5]

0.3 0.4 0.5 0.6
Packet drop probability

(6]

Fig. 3. Error Variance vs. packet drop probabilityy = 20. The curve
relative to OPEF is not visible since it coincide, to any fid purpose,
with that corresponding to IBF.

(7]

(8]

therefore the sensors cannot properly design their prepsac Bl
ing scheme. Nonetheless, we have observed through numer-
ical simulations that optimally fusing partial estimatesri (10]
each sensor provides a performance that is very close to the
ideal performance. This opens up a number of future research
directions. The first is to provide some upper bound on thid1
performance of the OPEF strategy and show that it is not too
far from the ideal performance of the IBF. Another relevanil?]
area of research is to provide numerically efficient aldwnis

to compute the OPEF. In fact, it requires the inversion
of large size matrices which might be too computationally13]
demanding, therefore approximation schemes for OPEF are
ought. Finally, it is not clear how the OPEF scheme can bgy
extended to rooted tree networks, i.e. sensors cannot send
packets directly to the central node, but they have to route
them though other sensors as it typically happens in Wiseles

Hg=4000

0.4 0.5
Packet drop probability

Fig. 4. Error Variance vs. packet drop probabilifygy = 4000. The curve
relative to OPEF is not visible since it coincide, to any fid purpose,
with that corresponding to IBF.

Sensor Networks.
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