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Abstract

Geometric triangulation is at the basis of the estimatiothef3D position of a target from a set of camera measurements.
The problem of optimal estimation (minimizing the, norm) of the target position from multi-view perspectivejective
measurements is typically a hard problem to solve. In liteeathere are different types of algorithms for this pusydssed for
example on the exhaustive check of all the local minima ofaper eigenvalue problem [2], or branch-and-bound tectesiqu
[3]. However, such methods typically become unfeasibleréal time applications when the number of cameras and target
become large, calling for the definition of approximate pihares to solve the reconstruction problem.

In the first part of this paper, linear (fast) algorithms, g@uting an approximate solution to such problems, are deesdri
and compared in simulation. Then, in the second part, a Gausgproximation to the measurement error is used to expres
the reconstruction error's standard deviation as a funatibthe position of the reconstructed point. An upper bouralid
over all the target domain, to this expression is obtainedafoase of interest. Such upper bound allows to compute a eumb
of cameras sufficient to obtain a user defined level of pasiéistimation accuracy.

|. INTRODUCTION AND CAMERA MODEL

The problem of estimating the 3D coordinates of a target frset of sensor measurements, named reconstruction
procedure, is at the basis of motion capture and locali@étexcking systems. In the general framework of sensor owdsy
the problem is usually solved by geometric triangulatiottritateration of measurements [10] and similarly, in thetext of
camera network systems, the reconstruction of the 3D téwgation from the information of two cameras’ image planas c
be attained by means of geometric triangulation of measeme2]. In particular, in this paper, we consider the cddarge
scale systems, such as for example those related to markemnoapture with many subjects (that is hundreds/thousand
of markers and tens/hundreds of cameras): Nowadays, motipture systems are used for a wide range of applications,
going from biomedical to military, from the movie industry the sport disciplines. On the one hand, the request of a more
and more accurate estimation of the target positions isidgai the use of large camera network systems. On the other
hand, the real time use of the system imposes stringent catiqmal requirements.

We assume the camera model as a calibrated pinhole camerefdie, given a point target in the 3D space, the
measurement taken from cameraorresponds to @D positiong; on its viewing sensor (i.e. on its image plane) that is
generated by the intersection of the camera’s image platietixé ray passing through the pointand the camera’s optical
centerQ;, as shown in Fig. 1 together with the reconstruction procedassuming perfect measurements, i.e. infinite sensor
sensibility and no measurement noise).

Fig. 1. Projection of a 3D poind onto the image plane and triangulation between two caméteasurement; is the projection ofp on the image
plane of camerg. The crossing point between two rays related to the samettasgen by different cameras allows to obtain the target'p@&§ition.

Theoretically, the reconstruction procedure could beelyy two measurements only, but the presence of measurement
and quantization noise in addition to specific alignmentdittons, suggest the use of many more measurements for the
target location estimation. Actually, in large motion aagt systems characterized by complex scenarios, the rteaotisn
procedure must rely on several rays, in order to meet thein@gants in terms of accuracy and robustness to the target
localization. Exploiting a large numben of 2D camera measurements (3D rays), indeed:

« the visibility of the targets increase and many more targats be reconstructed,

« the number of ghost target (reconstructed artifacts) dse® since the reconstruction needs to be obtained byex larg

number of 2D measurements,
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« the reconstruction error is reduced.

In detail, let¢ = [z,y,2]" be a 3D target to be reconstructed, then= [u;,v;] " is the measurement on the image plane
of cameraj € [1,...,m], given as follows:
1 U
dj

where P; is the projection matrix associated jfith camera and taking into account the intrinsic and extipsrame-
ters [6] [1], andd, is the distance from the camera to the target plane (assutmenipcal lengthf as known and normalized
to 1). Also, let I; be the image plane and; the target plane (parallel td; and passing through). In practice, being
g; a noisy measurement its prolectlon b is ¢; = ¢, and finallym; is the unit vector along the direction from; to
¢;. Furthermore, leth = [2,7,2]T be the estimated position of the target by the camera netand;; = [uj,vJ]T its
projection on the image plane of camerdobtained with the same procedure described above). Themeconstruction
error on thejth image plane is defined as; = ¢; — §;.

Since now the value of the distanck is unknown, the goal of the reconstruction procedure is timese the 3D
target position exploiting multi-view data on several cameand minimizing the sum of the square (image plane) errors
(reconstruction minimizing thé.o error norm), i. ez o J . Also, to take into account the different level of noise in
the measurements and the possible correlation among thenﬁoltowmg functional®(¢) is introduced:
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wheree =[ e/ e ... e, }T, andW > 0 is a proper weighting matrix.

When the number of cameras is low, optinial reconstruction can be solved by probing all the local mingha proper
eigenvalue problem [2] [8]. However, because of computaticomplexity issues, such method becomes impossible in
practice whenn increases.

Alternatively, an approximate solution can be computed leans of optimization methods [9], although not ensuring to
take to the optimal solution: Usually to reduce the risk ahaéning stuck to local minima an initial approximate sabuti
quite close to the true one has to be provided.

This work is organized in two parts, that reflect the twofotmhiribution the paper aims at: In Secs. Il and lll, different
reconstruction algorithms and their iterative versiores @escribed and compared with respect to three markerkdigtn
case studies and an increasing humber of cameras. Thencin\§e condition for a “good” reconstruction is discussed
and an upper bound to the reconstruction error variancetaradd, which allows to compute the number of cameras needed
to attain a chosen reconstruction performance. Finallgen. V some conclusions are drawn.

Il. TRIANGULATION METHODS

The reconstruction error on the image planecan be back projected on the plalig: The error on the target plang
is related toe; by geometrical similaritye’;, = d;e; . Substituting (1) into the above equation yields:

63» = ( 345 — j¢) = (ijj,3 - pj)(l/; ) (3)
where P; is the matrix formed by the first two rows dt;, while p; 5 corresponds to the third row @?;:
)
P; =
Pj,3

Then, the functiona® computed at becomes:

O = e We =¢" Ad.

.
wheree’ = | ¢/" ¢," ... ¢, " | ,W =DWD, D =diagd;'.dy",...,d;") is the diagonal matrix formed by
the inverse of the values of the distandes}, and A and F; are defined as follows:

A = F'WF

Fj = (quj,?)_pj) 5 j:17"'am7

with F=[ F F ... EI ]



A. Linear-Eigen method

The general solutior@BLE, which minimizes the functionab, can be obtained as the eigenvectorfassociated to
its minimum eigenvalue. Noticeably, this is equivalent tomputing the principal component associated to the minimum
singular value of3:

B=W'Y*D[ F F ... F]

whereW /2 is such thafy = W/2Ww1/2,

Since vectors are expressed in homogeneous coordinaﬂaemslmcomponertf)m(zl) of the obtained solutio, z has
to be normalized td: ¢, is then redefined ag; z = qBLE/éLE(AL).

The valued. ¢ just computed using; = 1, Vj, corresponds to the solution of thénear-Eigen (LE) method [2].

B. Linear-LS method
Since typically motion capture systems are used in closedsarthe case of targets at very large distance (at limit
infinite) from the cameras is quite uncommon. Excluding tasecof points at infinity, it is possible to write as follows:
p=1[0¢" 1]T,Whereg5:[:% i é]T )
The functional® results:0(¢) = [ 7 1 ] A gf , Whered = | & Z

vector, and is a scalar. By simple matrix manipulatiort3,can be rewritten as follows:
O=¢"Ap+a'¢+¢ a+b.

The above equation is a quadratic function, whose minimumbza obtained by imposing the first partial derivative to
be zero, i.e.A¢+a =0, and finally,¢ = —ATa , whereAT is the pseudo-inverse of.

Computing the above estimafewith d; = 1, Vj corresponds to the solutiapy, ;s of the Linear-LS (LLS) method [2].

, A is a3 x 3 matrix,a is a3 x 1 column

C. Optimal Lo

If the correct values ofl;, Vj are known, then the estimatecomputed above corresponds to the optimal soluﬁg}n
of the triangulation problem wittl., norm.

However, if any other informatidnis not available to the algorithm, the correct valuesigf V;j are usually not known.
D. Algebraic method

The Algebraic method aims at estimating bothandd;, Vj: From (3), it follows that:

e}:(djqj*pjé):[—Pﬂqj ] [%} ~0,

ande’=FE [ ¢" |d] dj ... d} ] =0, where
=P ¢ 0
7P2 0 q2 0
E= .
-P,10 0 Um

Similarly to the LE case, the solution vecté@L is obtained as the eigenvector corresponding to the srhallegular
value of E. Then, the last componenty 1, (4) of ¢4z has to be normalized tb: ¢4, is then redefined as follows,;, =

Gar/par(4).
E. lterative methods

Actually, both the Linear-Eigen and the Linear-LS methods e applied iteratively. At each iteration the previous
solution is used to obtain estimatés V; of the values ofi;, Vj. The rationale is that by using values ®f, Vj close to
their correct values, the new solution is supposed to beadto)éopt. This case is nameidierative Linear-Eigen (or iterative
Linear-LS, respectively) method.

Unfortunately, the iterative method (both using Lineagdti or Linear-LS) explained above does not correspond to a
convex problem, thus the algorithm may eventually fall inoaal minimum. However, as shown next in Section Ill, the
results obtained with the iterative method are usually \@oge to the optimal one.

1In some applications more geometrical information aboatttacked objects can be available, e.g. the area of thettarge



IIl. COMPARISON OF TRIANGULATION ALGORITHMS

In this section the triangulation methods reported preslipare compared on three case studies:
o case I: randomly sampled points in target donm&in

o case lI: points distributed close to the epipolar line caing the optical centers of two cameras;
« case lll: points much closer to one or two cameras than to thers

The aim of case | is to simulate the methods in their commorditions of use, instead case Il and Il refer to some
particular, but possibly frequent, practical conditions.

The following methods are compared: the optimal(L-, Opt), LE, LLS, iterative LE (2 and 10 iterations: LE&nd LE),
iterative LSS (2 and 10 iterations: L8&nd LSSy), and the algebraic method. Furthermore, the behavior ehtkthods
for different number of cameras is studied. The results epented for the following values of.: {2, 3,64} cameras. The
cameras are positioned, at the same altitude (5 meter), arcla as shown in Fig. 2. The ray of the circle smeter,
and the domain of targets in case | is the cube (each sidé iseter long) centered at the circle’s center. When= 2
triangulation is obtained using the two cameras in red in Bigivhenm = 3 also another camera is used: That in green
in Fig. 2 in case | and II, while one among the black and the evbite in case lll. Finally, whem = 64 all the cameras
are used.
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Fig. 2. 64 cameras positioned on a circle. Triangulationhodsd are compared using 2 (the red ones), 3 (those in red androang the green, white
and black camera), and 64 cameras.

In each considered condition, the following results areorggul: the root mean square reconstruction error (RMSE) and
the maximum reconstruction error (max) with respect to tbheect target position, the root mean square reconstmctio
error (RMSE,,;) and the maximum reconstruction error (rgX both with respect to the optimdl, reconstruction.

In all the considered cases the measurements are affecterdrg-mean (white) Gaussian noise of covariance(djdg pixel,
where diagl, 1) is the2 x 2 diagonal matrix with(1, 1) on the diagonal. This can be considered as an intermediaiargm
of noise (for high quality motion capture systems it is a éaggnount of noise).

A. Case I: random points

In this case 100 points are randomly sampled (from a unifoistridution) in all the target domain. 100 reconstructions
of each point are obtained from different noisy measuremehthe cameras. The results reported in Table | shows that
in this case all methods obtain quite good results: itegathethods after 2 steps practically converge to the optimal
solution, but LE and LLS results are quite good too. The tesof the algebraic method are acceptable but worse with
respect to those of the other methods.

B. Case Il: almost singular conditions

In this subsection 50 points randomly sampled along theodpiline between cameras in red in Fig. 2 are considered.
100 reconstructions of each point are obtained from differmisy measurements of the cameras. The results are edport
in Table Il. This example represents a geometrical singylaondition for the triangulation problem with 2 camer&m,
as expected, all methods cannot provide any useful solutsdmg 2 cameras. Nevertheless, using 3 non aligned cameras
the results LLS (and iterative LLS) method are good, and te af 64 cameras can improve further the results of LLS
algorithm. Instead the LE method proves to be unstable & dbnditions. Since in non unstable conditions its resukts a
practically the same of LLS (see case | ), hereafter only th® inethod is considered. Finally, the algebraic methodiges/
fair results only when using 64 cameras.



TABLE |

2 cameras
Method | RMSE[mm] | max[mm] [ RMSEq,¢[um] [ maxo,[um]
Lo Opt 2.20 4.26 0 0
LE 2.21 4.15 507 916
LLS 2.21 4.15 507 916
LE2> 2.20 4.26 0.687 1.81
LLSo 2.20 4.26 0.686 1.87
LE1o 2.20 4.26 0.687 1.81
LLS:o 2.20 4.26 0.686 1.87
Algebraic 3.60 6.43 2110 3800
3 cameras
Method | RMSE[mm] | max[mm] | RMSEp,:[pm] [ maxop:[pm]
Lo Opt 1.67 3.25 0 0
LE 2.68 4.18 1640 3010
LLS 2.68 4.18 1640 3010
LE2 1.67 3.25 1.19 2.71
LLSo 1.67 3.25 1.08 2.54
LE1o 1.67 3.25 0.785 1.93
LLSio 1.67 3.25 0.691 1.88
Algebraic 226 489 226000 489000
64 cameras
Method | RMSE[mm] | maximm] [ RMSEp,¢[um] [ maxo,[pm]
T2 Opt 1.22 1.40 0 0
LE 2.21 2.58 1536 1802
LLS 2.21 2.58 1536 1802
LEo 1.22 1.40 0.958 1.45
LLSo 1.22 1.40 0.701 1.15
LEqo 1.22 1.40 0.326 0.537
LLS:o 1.22 1.40 0.138 0.300
Algebraic 14.6 19.6 15000 20000

C. Case Ill: different distances

This is an example of a potentially critical condition foretliterative methods. When the distances between cameras
and target are very different the LS solution may be far from torrect target position. Consequently, iterative LLS/ma
converge on a local minimum. In the 3 cameras case, 1 caméaa fiom the target while 2 are close to it. As shown by
the results reported in Table 1, actually the iterativeS konverged very close to the optimia solution in practical all
the cases. Differently, the algebraic method is not robustifferent distances between cameras and target. Thi# iesn
analogy with a previous example provided in [4].

D. Remarks

While the LLS method provides very reliable results in ak tonsidered (non-singular) examples, the algebraic rdetho
is very unstable in most of the considered conditions. Theridthod often provides results very similar to the LLS method
which however is typically computationally more stable.eTiterative LLS method successfully exploits the initial $.L
solution converging in all the considered cases very closthé optimalL, solution. Furthermore, LLS the solution of
the second iteration, is often already fair. Moreover, gseeted, increasing the number of cameras, the triangulatimr
with respect to the correct target position decreases coesgly.

Motivated by the above considerations, we suggest thateéhative LLS is a good candidate for real scenario appbcasti
In the following section the adopted triangulation methibekative LLS, is assumed to practically always converg¢ht
optimal L, solution.

IV. CONDITIONS FOR ADEQUATE RECONSTRUCTION

A typical design requirement for a motion capture systerhas of reconstructing targets’ positions with a certainuaacy
(usually in terms of Euclidean distance of the reconstdigi@nt with respect to its correct position). Then, the aiinthis
section is that of providing conditions for adlequate reconstruction, e.g. how many cameras have to be used to make sure
that the reconstruction error’s standard deviation is lothen a given threshole

As shown in the previous section, optimal positioning captaetically obtained using a fast linear triangulation noet,
the iterative LLS: After a few steps, the LLS reaches therpgtisolution in almost all the conditions of practical irgstr
in this framework. Then, hereafter the position of a poimorestructed by some cameras will be assumed to be the optimal
(in Ly norm sense) position.

Let camera measurements be affected by an additive zero wigigs Gaussian noise of covarianegl, and consider a
target reconstructed by a set of cameras including carmnefaen the information about the target positiorprovided by



TABLE Il

2 cameras
Method | RMSE[m] | max[m] [ RMSEop,[m] [ maxop:m]
Lo Opt 291 13.2 0 0
LLS 291 13.2 0.70 2.93
LLSo 291 13.2 1.14 6.05
LLSio 291 13.2 1.14 6.05
Algebraic 2.32 5.17 2250 14300
3 cameras
Method | RMSE[mm] | max[mm] | RMSEp,.[pm] [ maxop¢[um]
Lo Opt 411 7.36 0 0
LLS 3.92 7.23 1090 1610
LLSo 4.11 7.36 2.06 5.01
LLS:o 411 7.36 2.48 6.04
Algebraic 272 604 2.71-10° 6.00-10°
64 cameras
Method | RMSE[mm] | maximm] [ RMSEp,¢[um] [ maxo,[pm]
L2 Opt 1.08 1.29 0 0
LLS 2.34 2.71 1780 2140
LLSo 1.08 1.29 0.793 1.20
LLS1o 1.08 1.29 0.0906 0.204
Algebraic 171 44.5 17000 44400
TABLE Il
2 cameras
Method | RMSE[mm] | max[mm] | RMSEp,:[pm] [ maxop:[pm]
Lo Opt 2.17 5.16 0 0
LLS 2.82 5.47 1650 2820
LLSo 2.17 5.16 0.0254 0.0543
LLS:o 2.17 5.16 0.0254 0.0543
Algebraic 11.3 18.2 12100 20600
3 cameras
Method | RMSE[mm] | maximm] [ RMSEp,¢[um] [ maxo,[pm]
L2 Opt 1.84 4.39 0 0
LLS 2.97 5.21 2180 3700
LLSo 1.84 4.39 0.0518 0.114
LLS:o 1.84 4.39 0.0435 0.102
Algebraic 105 330 106000 330000
64 cameras
Method | RMSE[mm] | max[mm] [ RMSEo,¢[um] [ maxo,[um]
Lo Opt 0.104 0.137 0 0
LLS 2.53 3.01 2470 2930
LLSo 0.103 0.137 0.102 0.153
LLSio 0.104 0.137 0.004 0.011
Algebraic 18.9 27.9 18900 27900

cameraj can be modeled as followé):j ~ N(¢,%;(¢)) . The variance:; depends o and on the camera characteristics
as follows:¥; = ;¢ + 02d3¥; ¥ , wherey; is the unit vector of directiors — O;, ¥, is an orthonormal basis of
the planell;, and~y is much larger tham?2d?. Then, the first principal component &f; practically coincides with); and
has singular valug. ThenX; admits the following PCA representation:

. )
Sy~ [ ¢; U, |diagry,o1,02) { o7 } ; (4)
J

Where[ (P ] is a unitary3 x 3 matrix, and typicallyy > o1 > o2 > 0. Notice that¥; = ¥; only for ¢
positioned on the optical axis of camefa Then, the target position reconstructed usingcameras’ measurements is:

b ~ N (9, 2;(¢)) . whereX;(¢) = inv (Z;.”:l E].‘l) - Notice that®;(¢) depends on the point at which it is evaluated.

.
Substituting (4) in the above equation; (¢) = inv (Z;”_l [¢; ¥;]inv (diag(y, o1, 02)) [ %T D .
J
Sincey~! = 0, if ¢ is a properly reconstructed point (in a non-singular confitian, i.e. not all cameras and target aligned):
() ~ inv (z;’;l U, inv (diag(o:, 02)) \IIJ-T)
The above equation is a very good approximation of the uaiceytin the reconstructed position of targetThe reader
is referred to [7] for a detailed experimental validationsath approximation. Then, the goal of the motion capturéegys



can be formulated as follows:
trace(X;(¢)) <€, Vo €D, (5)

whereD is the targets’ domain. Since checking the above conditicer the entire domairD can be quite laborious, an
upper bound of, /trace(Eq;(gb) will be derived in the following for some configurations oténest.

Let d be the maximum feasible value df, for all j. The value ofd is typically imposed by the room size or by the
camera’s maximum visibility distance, i.e. the maximunmtalige at which a target can be detected by the camera.
- _ —1
Considering the worst ca&es2d®> > o, > o9, and Y’ is used instead of;: X (¢) = o2d? (Z}”:l \IJJ\IJJT) . Let
M:(2) indicate thek-th eigenvalue of a generic matri. Furthermore, for each positive (or negative) definite maf
let the eigenvalues be ordered in increasing order \,€=) is the smallest eigenvalue & Then trace(E’ (¢)) can be

computed as follows: trace(E’ ) = o2d? Dok W ,
k\Zaj=1 %3%;
that {\(2) k=13 = {1/ M(E71)} k1.3 for a 3 x 3 positive definite matrix2 [5]. Since [ ¢; ¥, | is unitary, then

Y + W01 =1, and hence: trace{E;g(qb)) =o2d*> Y, . Defining M (¢) = >°7° L i), then:

where such expression has been obtained noticing

m— Ak(z;"lw v))
trace (E;;(éf’)) = oud ;m v

3
< P —— (7)
o om—A3(M(9))
Since{v;} are unit vectors, thed ;" i (M (¢)) = m.
Example 1. Let cameras be placed along a circle of raysimilarly to Fig. 2). Cameras are equally spaced along such
circle. Without loss of generality the camera circle is @assd to be centered on the origin of the Cartesian axes. This

example aims at computing the value of tre(éé) on the originO. By constructionz); = ‘i oj| \of| fﬂ.

Then X, (M(0)) = L (Z] 10; Oj ) Sincem cameras are distributed uniformly along a circle of raythen the

eigenvalues ofz OO are 7’”

on the plane containing the C|rcle Hence, tra(cE;(O) =cd? (2 +2+L)=02d"2 O
In the following subsections some bounds on tr@E% (for all points mD) will be computed assuming that the cameras
are positioned as in the above example.

A. D as a small spherical domain

In this subsection the minimum possible distance of a tdrget the cameras is set foLet A be a semi-positive definite
matrix andz be a vector, if3; < f; then(A+ g-z2 ") — (A+g-zz") > 0 and thus\, (A + grzz ") > A\ (A+goza "), Let

2d?

). 77]‘77:r . / [
1; = ¢—0j, then)y (Zj W) < E Ak (Z n5n; ) , and from (6): trace(Eq;(gb)) <> A (5, (-0 =0T . Because
of the symmetric camera conﬂguratlczjz1 0O; =0, thus:

trace ( (¢ )) <2k S ,\k(md)d)i(fz of) "

moep " and)_7", O; o/ have the followmg sets of eigenvaludsi|¢|?, 0,0}, and (as shown in Example {)ﬁ mr? ,0},
respectively. FlnaIIy, taklng into account of bounds on #igenvalues of a sum of matrices [5]:

302d?
r2/24(r—1)2

Notice that the above bound can be used only if the targetslase enough to the origin (i.e. far enough from cameras).

trace (E;;(d))) < ) . (8)

B. D as a planar domain

In this subsection the domaiR,, is the 2D region limited by the camera circle. Nevertheless, becafiseeasurement
noise,the reconstructed points are 3D points not redtriciday on such 2D region,even if typically they are closetto i

Since{y,} are unit vectors, then, because of the symmetry of the cafign, the maximum value ofs(M (¢)) with
respect top € D, is A3(M(¢)) = max(A3(M(0)), A\3(M(0,))) , whereds(M(0;)) = Xs(M(0,)) Vj" # j. Notice that
wheng = O; then M(¢) = 3=, ;).

2In E;; the noise level is set at its maximum value for all pointsfirand for all cameras, i.e. the information actually providgdeach camera about
the target position is always greater or equal to that useﬁgn



ConsideringO; = [r 0 0] 7, then by geometric considerations the first principal congm has to be aligned with the
horizontal axis, and the value of the corresponding simguddue (which is equal tos (M (0,)) is:
A3(M(01) = S0 (1 — cos(2mh/m)) = m/2 .

Substituting the above expression in (7), then: trz{dédg(gb)) <od* L.

C. D as a semi-spherical domain

Let D, be the semi-sphere of raycentered in the origin and with positivecoordinate.
From geometrical considerations (aiming at maximizinguwagance captured by the first principal componenfitfe)),
the maximum value o3 (M (¢)) with respect tap € Dy is \3(M(¢)) = max(A3(M(0)), \3(M ([0 0 7]"))) .
The value of the maximum eigenvalue in correspondence of the top of the semi-sphere,= [0 0 r]". Because
of the symmetry of the configuration the maximum principainpmnent is aligned with the vertical axis, and the value of

its associated singular value can be computed as followsesi;, = [—cos(2rh/m) — sin(2xh/m) r]T/y/2r , then
2
(sum of the squares of projections ¢fy,} on the principal component vector)z(M ([0 0 7] 7)) = T;ol (\/’57) =
m/2 . Substituting this expression in (7), then:
trace (E’A(d))) < o?d? 5 9)
¢ T om
Notice that this result can be easily extended also to therggi case.

error standard deviation [mm]

L L L L L L |
0 10 20 30 40 50 60 70
number of cameras

Fig. 3. Maximum value of the standard deviation of the retmicted error varying the number of cameras placed in cifelg. 2). Maximum standard
deviation value (red) and its upper bound (blue) computeth 49).

D. Remarks

Interestingly, the computed bounds decrease Wit (similarly to the common variance of a mean estimate). Those
that an upper bound for trac(ej;g(qb)), V¢ € D, has been obtained, then it is possible to compute througlar(Supper
bound to the minimum number of camenasnecessary to have the error standard deviation lower ¢h&ince (8) can be
applied only when the targets are quite close to the ori@hp(actically results to be more useful.

Fig. 3 compares the bound obtained through (9) with the coralues of the error’s standard deviation when cameras
are disposed on a circle of r&y m (as in Fig. 2) and the visibility range of each camera is 10As1.shown in Fig. 3,
both the real variance and the computed upper bound decapaseximatively a<D(1/m). Since the constant factors in
the O(1/m) notation are different for the upper bound and the corredamae, then the discrepancy between the computed
upper bound® on the number of necessary cameras and the number of caneatlysrreeded for a certain error level
increases as becomes smaller.

V. CONCLUSIONS

In the first part of this paper some linear algorithms for getiuo triangulation (minimizing thel, norm) have been
resumed and compared on three cases of interest. Differéotin the other linear methods, the iterative LLS method
has provided reliable results in all the considered cood#i Actually the solutions obtained (in non-singular getnin
conditions) after few steps of the iterative LLS were verysel to the correct targets positions.

In the second part of the paper a Gaussian approximationeofettonstruction error has been introduced. The standard
deviation of the reconstruction error on a poinhhas been explicitly expressed exploiting such approximmafl heoretical
upper bounds on the reconstruction error variance on altdtget domain have been derived in a possible configuration
of the motion capture systems. Finally, the upper bound ¢oréconstruction error allows to obtain an upper bound on the
number of cameras necessary to reconstruct the targetd thre alomain with a user defined accuracy.
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