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Abstract— Adaptive Optics (AO) systems provide a real chal-
lenge to the control engineer in many respects, the foremost of
which are scalability and computational complexity of the con-
trol algorithms. On the other hand, systems theoretic tools can
be applied to look at several problems under new perspectives.
In this paper, we review a recent stochastic realization based
method for turbulence simulation. Then, we investigate the
estimation of the turbulence structure (i.e. the characteristics of
its layers) through the use of a Markov Random Field (MRF)
representation. Finally, we present a subspace algorithm for
the identification of a dynamic model of the turbulence. The
proposed method exploits the previously estimated turbulence
characteristics to perform the first step of classical subspace
identification procedures (Ho-Kalman’s algorithm).

I. INTRODUCTION

Mainly due to the large system dimension and to the real-

time constraint on the control algorithms, AO systems are

a really challenging application in control engineering. On

the other hand, systems and control theory offers a number

of well-established tools that can be used to analyze such

problems using a methodological-based approach that may

offer new solutions. Then, in this paper we present some ap-

plications of control theory on AO systems related problems:

Some of the results have been discussed in previous works,

whereas Section V reports a new approach to the problem

of modeling the turbulence temporal evolution.

The aim of AO systems [1], is that of compensating the

atmospheric turbulence effect (i.e. reducing, and possibly

suppressing, the phase delays due to changes of atmospheric

refraction index) properly controlling a set of deformable

mirrors. Unfortunately, things are made complicated by sev-

eral factors, for instance, just to cite some, only quite noisy

measurements are available, the system dimension (i.e. the

number of phase sensors) is quite large and typically has to

be controlled at quite high sampling frequencies.

Since often real data (from the telescope) are not available,

simulating the turbulence is of particular interest. Thus,

in Section III we first review a recently proposed method

for generating new samples of the turbulence (also called

turbulent phase) [5]. The method is based on a stochastic
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realization approach, which will be similarly used also in

Section V. The main advantage of this algorithm with respect

to standard FFT based methods is that it easily allows for

long sequence simulations.

From a temporal point of view, the turbulence is assumed

to be formed by a set of layers moving independently on each

other. Then, in Section IV we consider the problem of esti-

mating the characteristics of these turbulent phase layers (e.g.

their number, their energies and velocities). Such estimation

is done taking advantage of a MRF spatial representation

of the turbulent phase. The MRF representation allow us

to derive a “spatially whitening filter”, which is used to

compute a spatially “almost white” process e. Provided that

the turbulence is moving with constant velocity, because of

this almost whiteness of e the presence of the layers is

quite apparent in the spatio-temporal correlations of e. The

presented algorithm is a slight modification of that presented

in [6].

Since the control is commonly delayed of two sample

periods (the time needed for image acquisition and phase

measurement [2], [3]) a number of prediction based methods

have been proposed to improve the control performances [2],

[3], [4], [6], [7]. In Section V we consider a model for the

temporal evolution of the turbulent phase: We assume to

have some information about the turbulence (e.g. estimated

similarly to Section IV) which we use to compute the second

order statistical description of the system. Then, similarly

to Section III, we identify the model parameters using a

stochastic realization approach. The resulting algorithm acts

similarly to the Ho-Kalman’s algorithm, but it computes the

system temporal covariances from the statistical description

of the turbulence. Thus, in practice the physical model

presented in Section II acts like a regularization in the iden-

tification procedure. The main advantage of this algorithm

with respect to data-based subspace identification algorithms

is that it does not require to handle large amounts of data

(which in this application may be a big issue).

II. TURBULENCE PHYSICAL MODEL

Let u and v be two unit vectors indicating two orthogonal

spatial directions, as in Fig. 1, and let φ(u, v, t) be the

value of the turbulent phase on the point (u, v) at time

t on the telescope aperture plane, where u and v are the

coordinates of the point along u and v. Without loss of

generality, we assume that the origin of the coordinate system

induced by u and v be in correspondence with the center

of the telescope. The turbulent phase is assumed to be

zero-mean stationary and spatially homogeneous, hence the

covariance between two values of the turbulence, φ(u, v, t)
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and φ(u′, v′, t), depends only on the distance, r, between the

two points: Cφ(r) = E[φ(u, v, t)φ(u′, v′, t)],∀(u, v, u′, v′),
such that r =

√

(u − u′)2 + (v − v′)2.

(a) (b) (c)

Fig. 1. (a) Coordinates on the telescope image domain. (b) Two points,
(u, v) and (u′, v′), separated by a distance r on the telescope aperture
plane. (c) Discrete domain L.

Astronomers usually describe the spatial statistical char-

acteristics of the turbulent phase φ by means of the structure

function, which measures the averaged difference between

the phase at two points, (u, v) and (u′, v′), of the wavefront

separated by a distance r on the aperture plane (Fig. 1),

Dφ(r) =
〈

|φ(u, v, t) − φ(u′, v′, t)|
2
〉

.

The structure function Dφ is related to the covariance func-

tion Cφ(r) as:

Dφ(r) = 2
(

σ2
φ − Cφ(r)

)

, (1)

where σ2
φ is the phase variance.

According to the Von Karman theory, the phase structure

function evaluated at distance r is the following (see [10]):

Dφ(r) =

(

L0

r0

)5/3

c

[

Γ(5/6)

21/6
−

(

2πr

L0

)5/6

K5/6

(

2πr

L0

)

]

,

(2)

where K·(·) is the MacDonald function (modified Bessel

function of the third type), Γ is the Gamma function, and

the constant c is:

c =
21/6Γ(11/6)

π8/3

[

24

5
Γ(6/5)

]5/6

.

From the relation between the structure function and the

covariance (1), the spatial covariance of the phase between

two points at distance r results

Cφ(r) =

(

L0

r0

)5/3
c

2

(

2πr

L0

)5/6

K5/6

(

2πr

L0

)

. (3)

Furthermore, the turbulent phase is supposed to be normally

distributed [8], hence the second order statistics are sufficient

to completely describe its statistical properties.

In order to describe its temporal characteristics, the tur-

bulence is generally modeled as the superposition of a finite

number l of layers. The ith layer models the atmosphere

from an altitude of hi−1 to hi meters, where hl ≥ · · · ≥
hi ≥ hi−1 ≥ · · · ≥ h0 = 0. Let ψi(u, v, t) be the value of

the ith layer at point (u, v) at time t. Then the total turbulent

phase at (u, v) and at time t along the Zenith direction is:

φ(u, v, t) =

l
∑

i=1

γiψi(u, v, t) , (4)

where γi are suitable coefficients associated to the layer en-

ergies. Without loss of generality we assume that
∑l

i=1 γ
2
i =

1.

The layers are assumed to be stationary and characterized

by similar spatial statistics, i.e. the covariance between two

points at distance r of the i-th turbulence layer can be written

as Cψi
(r) = Cφ(r). Furthermore, the layers are assumed to

be independent, hence: E[ψi(u, v, t)ψj(u
′, v′, t′)] = 0 , i 6=

j.
A commonly agreed assumption considers that each layer

translates in front of the telescope pupil with constant

velocity vi (Taylor approximation [1]), thus

ψi(u, v, t+ kTs) = ψi(u− vi,ukTs, v − vi,vkTs, t) , (5)

i = 1, . . . , l, where vi = vi,uu + vi,vv, and kTs is a delay

multiple of the sampling period Ts. The velocity vectors are

assumed to be different for different layers, i.e. vi 6= vj if

i 6= j.
In real applications only a finite number of sensors is

available. These are usually distributed on a grid, thus the

turbulent phase is measured only on a discrete domain L,

which is that of Fig. 1(c), i.e. a sensor is placed at each

node of the grid. Then, measurements are taken using a

Shack-Hartmann device (which introduces also some noise

[1]), and projected on a set of spatial bases (which in this

paper we assume to be the Zernike polynomials, as typically

chosen by astronomers) both for having a compact turbulence

representation and some de-noising. Finally, we call y(t)
the vector containing the measured phases at time t on the

telescope aperture domain L.

We refer to [1] for a detailed description of adaptive optics

systems.

III. ATMOSPHERIC TURBULENCE SIMULATION

Standard methods for turbulence simulation are based on

the use of Fast Fourier Transform (FFT) to generate samples

with reliable statistics. However, such methods generate all

the turbulence samples at the same time, thus limiting the

maximum number of temporal samples to those allowed by

the system memory size, thus making this almost impracti-

cable for long simulations.

Furthermore, the turbulence characteristics typically

(slowly) change over time, thus it is worth to investigate the

possibility of simulating the performances of AO systems

even in different conditions during the same simulation.

A different approach was first proposed in [16]: An

elementary dynamic system was considered for generating

new turbulent phase samples. This allowed the generation

for long sequence simulations (only the current state and the

system matrices are necessary to generate the new samples),

however it exhibits problems in accurately reproducing the

theoretical statistics of the turbulent phase.

Motivated by the above considerations, we proposed a

different dynamic model to simulate the turbulence, where

the matrices of the model where computed by stochastic

realization [5].
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Without loss of generality, let the turbulence be formed

by one layer which moves along the u direction: Since the

layers are independent, the generalization to l layers can be

obtained by simulating them separately and combining them

using (4). Then, generating new turbulent phase samples is

equivalent to properly generating new columns of the phase

screen.

Let y(t) be a vector containing the values of the turbulent

phase on a column of the phase screen (e.g. using Matlab

notation: y(t) = φ(:, t, 1) when t ≤ m). Then, we represent

y(t) as the output of the following linear dynamical system

in state space form:
{

x(t+ 1) = Ax(t) +Ke(t)
y(t) = Cx(t) + e(t)

(6)

where e(t) is a zero mean white noise process with co-

variance matrix Σe = E
[

e(t)e(t)T
]

= R ∈ R
m×m. In

Eq. (6), the state x and the output y vectors have dimensions

respectively n and m, and A ∈ R
n×n, K ∈ R

n×m, C ∈
R
m×n.

Then, pose the computation of {A,C,K,R} as a (partial)

stochastic realization problem: Let Λi be the expected value

of the product between two output samples y(t+i) and y(t),
Λi = E

[

y(t+ i)y(t)T
]

, i = 0, · · · , 2ν − 1, where ν is a

design parameter in the procedure.

Furthermore, considering y(t) as the output of (6) {Λi}
can be written as follows:



















Λ1 = CG
Λ2 = CAG
...

Λ2ν−1 = CA2ν−2G

where G = AΣCT +KR, and Σ = E
[

x(t)x(t)T
]

.

Exploiting the Taylor approximation it is possible to

compute {Λi} from the values of covariance function Eq. (3).

Letting η be the distance traveled in a sample period (pro-

portional to the translation velocity), then Λi can be obtained

as follows:

Λi(h, k) = E [yh(t+ i)yk(t)] = Cφ

(

√

(iη)2 + (h− k)2p2
s

)

where Λi(h, k) is the element at position (h, k) in Λi, yk(t)
is the value of the kth element in y(t), and ps is the spatial

separation between two points in L along the v direction.

Then, the the stochastic realization algorithm proceeds as

a two steps procedure:

1) Compute {Â, Ĉ, Ĝ} in such a way that



















Λ̄1 = ĈĜ ≈ Λ1

Λ̄2 = ĈÂĜ ≈ Λ2

...

Λ̄2ν−1 = ĈÂ2ν−2Ĝ ≈ Λ2ν−1

with the constraint that: {Λ̄i = ĈÂi−1Ĝ} > 0, ∀i ≥
1, i.e. {Λ̄i} has to be a covariance sequence.

2) Compute K̂, R̂ from the solution of the previous step.

To compute {Â, Ĉ, Ĝ}, first we construct the following

Hankel matrix:

H =











Λ1 Λ2 · · · Λν
Λ2 Λ3 · · · Λν+1

...
...

. . .
...

Λν Λν+1 . . . Λ2ν−1











=











C
CA

...

CAν−1











[

G AG . . . Aν−1G
]

.

Notice that the equation Λi = CAi−1G stands only if the

signal is really generated by a linear dynamic model, hence,

when working with real data, the above expression for the

Hankel matrix should be considered as an approximation.

Anyway, from such expression it is quite apparent that it is

possible to compute {Â, Ĉ, Ĝ} from a factorization of H
(e.g. obtained using Singular Value Decomposition (SVD)).

However, to ensure the positivity condition we introduce

some intermediate steps.

In particular, define the normalized Hankel matrix as

follows:

Ĥ = L−1HL−T ,

where L is a Cholesky factor of the following Toeplitz matrix

T ,

T =



















Λ0 Λ1 Λ2 · · · Λν−1

ΛT1 Λ0 Λ1
. . . Λν−2

ΛT2 ΛT1 Λ0
. . . Λν−3

...
. . .

. . .
. . .

...

ΛTν−1 ΛTν−2 ΛTν−3 · · · Λ0



















.

Then, Ĥ can be factorized according to the SVD algo-

rithm:

Ĥ = USV T = US1/2S1/2V T ,

with U, V unitary matrices, and S diagonal matrix whose

elements are the singular values of Ĥ: Since most of the

singular values of Ĥ will be close to zero we consider only

the first n̄ and set the remaining ones to 0:

Ĥ ≈ Un̄Sn̄V
T
n̄ = Un̄S

1/2
n̄ S

1/2
n̄ V Tn̄ .

Thus Ĉ and Ĝ can be computed as follows:
{

Ĉ = ρ1(H)L−TVn̄S
−1/2
n̄

Ĝ = (ρ1(H
T )L−TUn̄S

−1/2
n̄ )T

where the ρ1(·) operator selects the first m rows of a matrix.

The computation of Â can be done similarly by using a

shifted version of H :

σ(H) =











Λ2 Λ3 . . . Λν+1

Λ3 Λ4 . . . Λν+2

...
...

. . .
...

Λν+1 Λν+2 . . . Λ2ν











,
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then,

Â = S
−1/2
n̄ UTn̄ L

−1σ(H)L−TVn̄S
−1/2
n̄ .

To compute K , the Kalman gain, the knowledge of the

steady-state state covariance Σ is needed. It can be shown

that Σ solves the Algebraic Riccati Equation (ARE):

Σ = ÂΣÂT +(Ĝ− ÂΣĈT )(Λ0− ĈΣĈT )−1(ĜT − ĈΣÂT ).

Finally, R̂ = Λ0 − ĈΣĈT , and the Kalman gain is: K̂ =
(Ĝ− ÂΣĈT )R̂−1.

If ν is sufficiently large, it is possible to prove that

computing the parameters Â, Ĉ, R̂, K̂ obtained as described

above, then
{

Λ̄0, Λ̄1, Λ̄2, . . .
}

is a positive sequence [17].

Fig.2 shows a comparison between the stochastic real-

ization approach and the method of Assémat et al. on

reproducing the correct theoretical statistics of the turbulent

phase. For both the methods it has been computed the

asymptotic structure function exploiting the invariant density

of the dynamical system (6).
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Fig. 2. Phase structure function along the wind direction. A comparison
of the theoretical values (dashed line) and those obtained with: (i) the
dynamical model computed via stochastic realization (solid line) (ii) the
method of Assémat et al. (dash-dotted line). The values of the parameters
are set to L0 = 20m, r0 = 8m, D = 16m, ps = 0.25m.

IV. ESTIMATION OF THE ATMOSPHERIC STRUCTURE

FROM PHASE MEASUREMENTS

The knowledge of atmospheric turbulence characteristics

plays an important role in the design of the AO system

control algorithm, thus it is of fundamental importance. In

this section we assume to already have estimates, {L̂0, r̂0},

of the outer-scale and of the Fried parameter and we consider

the problem of estimating the characteristics of the lay-

ers: (l, γ1, . . . , γl, v1,u, . . . , vl,u, v1,v, . . . , vl,v). The resulting

procedure is a modification of that presented in [6].

For simplicity of exposition, in this Section we will assume

to use a perfect sensor, i.e. it provides measurements of the

turbulent phase without superimposed noise.

First, let us consider the spatio-temporal correlation,

cψ,i(u− ū, v − v̄, k̄) = E[ψi(u, v, t+ k̄Ts)ψi(ū, v̄, t)] ,

as a function of u and v (we consider ū, v̄ and k̄ as fixed to

constant values). By the Taylor assumption, (5), the layers

translate over the telescope aperture with constant velocities,

thus cψ,i(u − ū, v − v̄, k̄) has a peak in correspondence of

u = ū+ vi,uk̄Ts, v = v̄ + vi,v k̄Ts.
Since actually the available spatio-temporal correlations

are those of φ, cφ(u − ū, v − v̄, k̄) = E[φ(u, v, t +

k̄Ts)φ(ū, v̄, t)], and cφ(u, v, k) =
∑l

i=1 γ
2
i cψ,i(u, v, k),

∀(u, v, k), then the intuitive idea is that of searching for

peaks in cφ(u − ū, v − v̄, k̄), k = 1, . . . , T̄ , which should

correspond to translating layers.

However, the covariance (3) vanishes not so quickly, hence

the peak founded in cψ,i(vi,uk̄Ts, vi,v k̄Ts, k̄) is not so well

marked in cφ(vi,uk̄Ts, vi,v k̄Ts, k̄): In fact, due to noise, finite

number of samples used in the estimation of covariances

and the combination of elements, {cψ,i(·)}, associated to

different layers, the peaks may be wrongly detected or not

founded at all in cφ(·).
To reduce the effect of these unavoidable bad factors, we

maintain the idea of looking at spatio-temporal correlations,

but we take advantage of a MRF spatial representation of

the turbulent phase.

In accordance with the physical model of the turbulence of

Section II, we model the turbulent phase φ as a homogeneous

and isotropic MRF with circular neighborhood N(·) of radius

d̄. Then, as shown in [14], φ(ū, v̄, t) can be expressed as the

best linear prediction of φ(ū, v̄, t) based on the values of

its neighbors N(ū, v̄) at time t plus an “innovation” process

e(ū, v̄, t). According with the normal distribution of φ, the

best (spatial) linear prediction operator Ê[·] corresponds to

the expectation operator E[·], that is

φ(ū, v̄, t) =
∑

(u,v)∈N(ū,v̄)

a|(ū−u,v̄−v)|φ(u, v, t) + e(ū, v̄, t) ,

(7)

where {ai} are the coefficients which yield the best (spatial)

linear prediction of φ(ū, v̄, t) given the values of its neigh-

bors. Furthermore,

E[e(ū, v̄, t)e(u, v, t)]=







σ2
e (ū, v̄) = (u, v)

−a|(ū−u,v̄−v)|σ
2
e (u, v) ∈ N(ū, v̄)

0 otherwise.
(8)

The terms “spatial innovation” and “spatially almost white”

for e are motivated by (8).

The coefficients {ai} can be computed from the covari-

ance values, (3), as those of the usual best linear predic-

tor [15]. In practice, the exact covariance values are not

available. Nevertheless, it is possible to approximate {ai}
with {âi}, the values computed using {L̂0, r̂0} instead of

{L0, r0}. Then, as long as the estimates {L̂0, r̂0} are quite

good approximations of {L0, r0}, the process eL̂0,r̂0
(ob-

tained from (7) using {âi} instead of {ai}) approximatively

satisfy (8) and results to be useful for the detection of moving

layers.

The considerations made for φ and cφ(·) approximatively

hold also for eL̂0,r̂0
and cL̂0,r̂0

(·), where

cL̂0,r̂0
(u, v, k) = E[eL̂0,r̂0

(u+ū, v+v̄, t+kTs)eL̂0,r̂0
(ū, v̄, t)].
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Thus the following observations are now in order:

• cL̂0,r̂0
(·) has peaks in locations corresponding to the

translating layers.

• Thanks to the “almost whiteness” of eL̂0,r̂0
, the peaks

are much more apparent on c(·) than on cφ(·).
• If a peak in cL̂0,r̂0

(u, v, k̄) corresponds to a real layer,

then it will be visible also in cL̂0,r̂0
(uk/k̄, vk/k̄, k) for

k < k̄.

• Thus,to reduce the influence of noise, we consider also

cp
L̂0,r̂0

(u, v, k̄), the integrated version of cL̂0,r̂0
(·) over

k (from k = 1 to k̄ − 1).

Then, the algorithm iteratively searches for new layers start-

ing from k = k̄ to k = 1: A new layer is detected at step k
if:

1) cL̂0,r̂0
(u, v, k) corresponds to a large peak and

cp
L̂0,r̂0

(u, v, k) is large.

2) cL̂0,r̂0
(u, v, k) is not close to already detected layers

(e.g. disjoint neighborhoods).

3) (u, v) ∈ Lc and, for k < k̄, (u(k+1)/k, v(k+1)/k) /∈
Lc.

In Table I and II we report the detection results

({vi,u, vi,v, γ
2
i } are the true values of the parameters for each

layer, while {v̂i,u, v̂i,v, γ̂
2
i } are the estimated ones) for two

possible choices for the parameters:

(A) d = 8, L0 = 50m, r0 = 0.4m, measurement noise vari-

ance σ2
m = 0.6rad2, three layers with the characteristics

reported in the table, L̂0 = 15.65m, r̂0 = 0.25m.

(B) d = 8, L0 = 22m, r0 = 0.2m, noise variance σ2
m =

0.6rad2, three layers with the characteristics reported in

the table, L̂0 = 14.6m, r̂0 = 0.16m.

These results have been obtained using 1000 turbulence

samples at a sampling frequency of 1 Hz.

TABLE I

DETECTION OF THE LAYERS.

1st layer 2nd layer 3rd layer

vi,u [m/s] 7.00 −16.00 30.00
v̂i,u [m/s] 7.05 −16.11 30.00
vi,v [m/s] 0 0 0
v̂i,v [m/s] 0 0 0
γ2

i 0.50 0.30 0.20
γ̂2

i 0.54 0.26 0.20

TABLE II

DETECTION OF THE LAYERS.

1st layer 2nd layer 3rd layer

vi,u [m/s] 5.00 9.00 24.00
v̂i,u [m/s] 5.00 9.06 24.17
vi,v [m/s] 0 0 0
v̂i,v [m/s] 0 0 0
γ2

i 0.55 0.35 0.10
γ̂2

i 0.48 0.37 0.15

V. SPATIO-TEMPORAL REPRESENTATIONS FOR

PREDICTION

The choice of a proper spatio-temporal representation of

the turbulence plays a fundamental role in determining the

overall AO system performances.

In this Section we present a subspace approach for com-

puting such representation. In particular, with a slight abuse

of notation, we will consider the following dynamic system:
{

x(t+ 1) = Ax(t) +Ke(t)
y(t) = Cx(t) + e(t)

(9)

where y(t) is a modal representation of the turbulent phase

values over the telescope aperture at time t. In fact, con-

sidering y(t) instead of the turbulence values allow us

to reduce the dimensionality of the output. Hereafter we

will assume that such a dimensionality reduction step is

obtained considering a Principal Component Analysis (PCA)

representation of the signal [18], where the second order

statistics of the turbulent phase are computed using (3)

and the estimates {L̂0, r̂0} of the outer-scale and of the

Fried parameter. Nevertheless, the following identification

algorithm can be used also with whatever other choice of

the basis.

Recent works provided proofs of the asymptotic optimality

of the state of the art procedures for subspace system

identification, [19]. Hence it may be worth to consider a

subspace identification method for computing the parameters

in (9). However, in such procedures it is not exploited

any a priori information about the system to regularize

the identification results (they are completely data-based).

Furthermore, some computational difficulties may arise when

handling large systems (both of computational efficiency and

memory requirement).

Motivated by these observations we propose an alternative

method which exploits some already estimated information

about the turbulence (e.g. the turbulent phase structure esti-

mated in Section IV). The idea is to use the statistical model

of the turbulence, (3), (4), (5), and the physical parameters

estimated in Section IV to compute the second order spatio-

temporal statistical characteristics of the turbulent phase.

Then these second order characterization is introduced in a

subspace identification algorithm to compute the parameters

in (9). Thus, in practice the physical model presented in

Section II acts like a regularization in the identification

procedure.

Let U be the matrix composed by the first m components

(those with larger energies) of the PCA spatial representation.

Let U † be the pseudo-inverse of U and φ(t) be the vector

containing the turbulent phase values at time t. Then φ(t) ≈
Uy(t). Furthermore, redefine Λi as Λi = E

[

y(t+ i)y(t)T
]

.

Then the proposed method can be summarized as follows:

• Estimate the turbulent phase characteristics, e.g. the

layers structure (Section IV) and {L0, r0} (for instance

as described in [20]).

• Compute Λi = U †
E

[

φ(t+ i)φ(t)T
]

(U †)T , i =
1, · · · , 2ν − 1, where E

[

φ(t+ i)φ(t)T
]

can be easily

computed from (3), (4), (5) and ν is a design parameter.
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• Compute Λ0 = U †
E

[

φ(t)φ(t)T
]

(U †)T + Rw, where

Rw is the noise variance matrix projected on the spatial

basis U (in fact it is necessary to take into account also

the sensor model [7]).

• Solve the partial stochastic realization problem similarly

to Section III. This step provides us with the desired

estimates of the dynamic model parameters.

Notice that this method is very similar to the early sub-

space identification algorithms ([21],[22],[23],[24]), where

the first step (computing the system covariances) here is

performed taking advantage of the physical statistical char-

acterization of the turbulence.

The main advantage of this procedure is that it is not

necessary to handle large amounts of turbulent phase tem-

poral samples. In fact phase samples are necessary only to

estimate the turbulent phase structure: In our examples of

Section IV we used 1000 samples to estimate the layers

characteristics, while much more thousands should be used

to obtain reliable results in completely data-based subspace

identification algorithms.

On the other hand, the effectiveness of this approach

depends on the reliability of the statistical model presented

in Section II and of the estimates of the turbulence layers

characteristics.

In table III we report the AO system closed-loop per-

formances (Strehl ratios, [1],[7], and mean square values

of the residual error after the correction obtained with the

control) obtained using the identified model to compute the

deformable mirror control in a prediction based approach

([2],[7]). The considered cases are those of Section IV,

and, specifically, we exploited the estimated parameters of

Table I,II. The results are obtained setting the sampling

frequency of the system to 1 KHz. Furthermore, since usually

quite good estimates {L̂0, r̂0} are available, here we set them

to their correct values.

TABLE III

CLOSED-LOOP PERFORMANCES.

Simulation m Strehl ratio (%) Mean square error [rad2]

case (A) 500 71.11 0.3410

case (B) 500 54.23 0.6120

VI. CONCLUSIONS

In this paper we have presented the use of some system

theoretic tools in AO systems: First, we have summarized a

recently proposed method based on stochastic realization to

simulate the turbulent phase.

Then, exploiting a MRF representation of the turbulent

phase we have proposed a procedure to estimate the tur-

bulent phase structure, i.e. the number of layers and their

characterizing parameters.

Finally, taking advantage of the previously estimated tur-

bulent phase characteristics, we have proposed a stochastic

realization based method for modeling the temporal dynamic

of the turbulence. This may be attractive with respect to other

subspace identification algorithms because it provides quite

good results using not so large amounts of data.
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