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Abstract— In ground-based astronomy seeing remains one
of the biggest problem due to the presence of atmospheric
turbulence affecting the radiation from the astronomical object
of interest, along its travel path to the telescope device. The
correction of the turbulence effects at the telescope pupil level,
characterized statistically according to well-accepted models,
is the focus of current generation of adaptive optics systems.
Moreover, the representation of atmospheric turbulence, which
is limited to the phase contribution since the amplitude degra-
dation can be considered as negligible, is obtained through a
modal decomposition. The choice of the modal representation
is therefore a key issue in the turbulence study and the
consequent design of control system to drive the deformation
of the corrective mirrors. In the paper we discuss a possible
solution to the problem, resorting to the Principal Component
Analysis of the atmospheric turbulence, and comparing this
approach to the classically adopted Zernike’s expansion.

I. INTRODUCTION

Nowadays, the exploration of the remote outer space and

the study of astronomical objects is strongly relying on

observations made by ground based telescopes, be they opti-

cal, radio, or other spectrum range telescopes. In particular,

restricting the interest to the category of optical telescopes,

researchers are facing the problem that seeing is one of

the biggest problems for ground-based astronomy, up to

the point that we refer to “astronomical seeing” as to the

presence of blurring and loss of sharpness in images of

astronomical objects, mainly due to the effect of turbulence

in the atmosphere [1]. In actual fact, without resorting

to additional corrections, the theoretical resolution of big

telescopes is hugely degraded by the turbulence encountered

along the line of sight of the device, resulting in images of

scantly defined objects with presence of speckles.

As far as the description of the atmosphere is concerned,

some considerations are in order.

Firstly, due to the intrinsic stochasticity of the turbulence,

the modelling of these atmospheric phenomena is based on

statistical models. Assuming the turbulence to be stationary

the spatial characteristics of the turbulence are temporally

invariant: the Von Karman model of turbulence spatial char-

acteristics will be described in Section II.
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Industriali, Università di Padova, Stradella San Nicola 3, 36100 Vicenza,
Italy angelo.cenedese@unipd.it

Secondly, given a certain light source (the object to be ob-

served) characterized with an emission point spread function

P0, due to the presence of turbulence, the detected P appears

as degraded with respect to the ideal P0, and the degradation

is related to the varying of the refraction index that leads

directly to phase fluctuations while amplitude variations are

brought in as a second-order effect and negligibly affect

the imaging performance. In this sense, we will consider

turbulent phase only.

Finally, there is the need of discretization. The atmosphere

is a continuum, and it is affecting the phase of the radiation

emitted by the object of interest with continuity along the

path travelled by the radiation. To simplify the study, the

turbulence is generally modeled as a superposition of a finite

number l of layers: the ith layer models the atmosphere from

hi−1 to hi meter high, where h0 = 0, as in Fig. 1(a). Each

layer is assumed to translate in front of the telescope pupil

with constant velocity. Moreover each layer is considered to

be independent on the others, hence the overall turbulence

can be taken as a linear combination of single layers effect.

Finally, not only is the turbulence discretized into layers,

but also it is described according to a generalized modal

representation. The wavefront phase Φ(r) can be expressed

as a polynomial expansion, by means of a Zernike’s base.

Quoting from [2]: The Zernike polynomials Zj(r, θ) are an

orthogonal expansion over the unit circle, and have a long

tradition of use in classical optical aberration analysis. They

have been adopted by the AO community as the de facto

standard rightly or wrongly (probably the latter).

This aspect is considered in more detail in Section IV

and raises the issues of studying an alternative approach

to represent the atmospheric turbulence, as done in this

work resorting to the Principal Component Analysis (PCA)

approach and presented in comparison with the Zernike’s

model in Section V.

Astronomers have already considered the use of Karhunen-

Loève bases to represent the turbulent phase: Since the

coefficients of Karhunen-Loève transform are uncorrelated,

they provide an optimal set of bases in the continuous

spatial domain. However the computation of Karhunen-

Loève coefficients is done indirectly: First a finite set of

Zernike coefficients are computed and then Karhunen-Loève

bases are approximated by the matrix that diagonalize the

Zernike coefficients covariance matrix. Since this procedure

can be quite long and gives only an approximated result, we

propose to solve the problem on the discrete domain given

by the wavefront sensors. Indeed in this discrete domain we

can compute the optimal bases using principal component
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analysis.

II. TURBULENCE STATISTICAL MODEL

In this paper we consider a comparison between Zernike

and PCA bases for the spatial representation of the turbu-

lence: Since the spatial characteristics of the turbulence are

assumed to be invariant, then we consider the time as fixed at

a constant value t = t̄. Furthermore to simplify the notation

we will omit t̄ from equations.

Let φ(ri) be the value of the turbulent phase at the point

ri on the aperture plane. Considering the turbulent phase

as a spatial process, it is usually assumed to be a zero-

mean (wide-sense) stationary stochastic process: Thus it is

completely characterized by its second order properties. Its

spatial statistical model is commonly described by means

of the structure function, which measures the averaged

difference between the phase at two points at locations r1

and r2 of the wavefront (see Fig. 1(b)), which are separated

by a distance r,

Dφ(r) =
〈

|φ(r1) − φ(r2)|2
〉

.

The structure function Dφ is related to the covariance func-

tion Cφ(r) = 〈φ(r1), φ(r2)〉, as:

Dφ(r) = 2
(

σ2
φ − Cφ(r)

)

, (1)

where σ2
φ is the phase variance.

According to the Von Karman theory, the phase structure

function evaluated at distance r is the following [4]:

Dφ(r) =

(

L0

r0

)5/3

c

[

Γ(5/6)

21/6
−

(

2πr

L0

)5/6

K5/6

(

2πr

L0

)

]

,

where K·(·) is the MacDonald function (modified Bessel

function of the third type), Γ is the Gamma function, L0 is

the outer scale, r0 is a characteristic parameter called the

Fried parameter [6], and c is a suitable constant 1.

From the relation between the structure function and the

covariance (1), the spatial covariance of the phase between

two points at distance r results

Cφ(r) =

(

L0

r0

)5/3
c

2

(

2πr

L0

)5/6

K5/6

(

2πr

L0

)

. (2)

III. PHASE RECONSTRUCTION

In this section we introduce a statistical model for the

measurement procedure. Exploiting this statistical model we

shall be able to compare performances of different types of

turbulence representations. In particular we will compare the

performances of Zernike polynomials, which are probably

the most used set of bases for turbulent phase representation,

with those of PCA bases. These will be briefly reviewed

respectively in Section IV-A and IV-B.

Fig. 1(b) shows the domain of images formed on the

telescope lens. Since equations derived considering the sim-

plified domain of Fig. 1(c) can easily be extended to the case

1That is c =
21/6Γ(11/6)

π8/3

[

24
5

Γ(6/5)
]5/6

.

(a) (b) (c)

(d) (e) (f)

Fig. 1. (a) Atmospheric turbulence is modeled as a superposition of l
layers. (b) Telescope image domain and coordinates. (c) Telescope image
simplified domain. (d) Continuous line grid: domain L. (e) Dashed line grid:
domain Lsp. (f) Example of subaperture.

of Fig. 1(b), we neglect the central hole of the telescope, thus

we concentrate on the case of Fig. 1(c).

In real applications only a finite number of sensors is

available: These are usually distributed on a grid, thus the

turbulent phase is measured only on a discrete domain L,

which is that in Fig. 1(d), i.e. a sensor is placed at each

node of the grid. Without loss of generality we assume that

sensors are uniformly spaced: The closest neighbors of each

sensor (both along the horizontal and the vertical directions)

are placed at a distance of ps meters.

To reduce noise influence on the measurements, sensor

at point ri usually takes some kind of spatial mean of the

turbulent phase among its neighborhood. We call subaperture

corresponding to ri, the set of points considered by the sensor

placed on ri to take its measurement. To be more precise,

first let Lsp be the grid of Fig. 1(e), then Lsp is decomposed

in |L| subsets, which are the subapertures: The subaperture

corresponding to ri ∈ L is

subap(ri) =

{

rj ∈ Lsp | ri = arg min
ri∗∈L

||ri∗ − rj ||2
}

.

According to the above definition, subapertures are disjoint

sets. An example of subaperture is the set of nodes inside

the square in bold dashed line in Fig. 1(f).

With an abuse of notation let φ and φ̄ be the vectors

containing the turbulent phase values respectively on L and

on Lsp. Notice that L ⊂ Lsp, thus for each i, 1 ≤ i ≤ |L|,
there exists a j, 1 ≤ j ≤ |Lsp|, such that φi, the ith

component of φ, is equal to φ̄j , the jth component of φ̄.

Thus we can define

W (i, j) =

{

1 if φi = φ̄j

0 otherwise.

such that φ = Wφ̄.

First notice that the adaptive optics system doesn’t take

into consideration the phase translation over the entire tele-

scope aperture: Thus we will neglect the current mean of the
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signal. Hence the aim is to estimate ϕ, defined as follows

ϕ = Wφ̄ − 1

|L|







1
...

1







([

1 . . . 1
]

Wφ̄
)

=

(

I − 1

|L|1
)

Wφ̄

where 1 is a |L| × |L‖ matrix of ones.

We assume that the measurement process is linear: That

is the measurement vector y is in fact given by a linear

combination of φ̄, eventually affected by noise

y = H φ̄ + w

where H is the measurement matrix and w is the noise

process. Even if there are several types of noise which can

occur in the measurement process, we shall assume that

their global effect, w, is a zero-mean Gaussian noise, i.e.

w ∼ N (0,Σw). Usually Σw = Iσ2
w. Moreover we assume

w(t) uncorrelated with φ(t′) ∀t′ and with w(t′) ∀t′ 6= t.
Since we cannot access directly to the value of ϕ, we use

the measurement vector y to estimate it. Let ϕ̄(y) indicate

the best, minimum variance, linear estimator of ϕ using y.

Let Σφ̄, Σy, Σϕy be defined as follows:

Σφ̄ = E[φ̄φ̄T ]

Σy = E[yyT ] = HΣφ̄HT + Σw

Σϕy = E[ϕyT ] =
(

I − 1
|L|1

)

WΣφ̄HT

Σϕ = E[ϕϕT ] =
(

I − 1
|L|1

)

WΣφ̄WT
(

I − 1
|L|1

)T

.

The covariance matrix Σφ̄ can be computed from (2) as

follows:

Σφ̄ =

















Σ(1, 1) . . . . . . . . . . . .
Σ(2, 1) . . . . . . . . . . . .

. . . . . . . . . . . . . . .
Σ(i, 1) . . . Σ(i, j) Σ(i, j + 1) . . .

Σ(i + 1, 1) . . . Σ(i + 1, j) . . . . . .
. . . . . . . . . . . . . . .

















where

Σ(i, j) = E[φ̄(i)φ̄(j)] = E [φ(ri)φ(rj)]

= Cφ(|ri − rj |). (3)

Then

ϕ̄(y) = ΣϕyΣ−1
y y

and substituting the explicit expressions for Σϕy and Σ−1
y :

ϕ̄(y) =

(

I − 1

|L|1
)

WΣφ̄HT
(

HΣφ̄HT + Σw

)−1
y (4)

where we used the a priori statistical information about φ̄
(and thus also about ϕ).

In our simulation we consider two cases for the measure-

ment process:

1) The measurement process of φ(r′i) is modeled as a

spatial mean on the subaperture corresponding to r′i
(Fig. 1(f) and Fig. 2(a)), that is:

φ(r′i) ≈





∑

rj∈subap(r′

i)

φ̄(j)





1

|subap(r′i)|
.

Accordingly with the above equation, H is

H(i, j) =

{ 1
|subap(r′

i)|
if rj ∈ subap(r′i)

0 otherwise.
.

2) In this case we simulate the Shack-Hartmann sensor: It

measures the values of phase’s vertical and horizontal

slopes instead of measuring the phase itself. Let the

sets I1(r
′
i), I2(r

′
i), I3(r

′
i), I4(r

′
i) be defined as follows

I1(r
′
i) = {rj ∈ Lsp | rj ∈ subap(r′i), rj is in the

top row of subap(r′i)}

I2(r
′
i) = {rj ∈ Lsp | rj ∈ subap(r′i), rj is in the

bottom row of subap(r′i)}

I3(r
′
i) = {rj ∈ Lsp | rj ∈ subap(r′i), rj is in the

left-border column of subap(r′i)}

I4(r
′
i) = {rj ∈ Lsp | rj ∈ subap(r′i), rj is in the

right-border column of subap(r′i)}
I1(r

′
i), I2(r

′
i), I3(r

′
i), I4(r

′
i) are also shown in Fig.

2(b) and Fig. 2(c). Then the measurement procedure

is assumed to be quadcell-like: Vertical and horizontal

slopes at r′i (which are indicated respectively with

dv(r′i) and dh(r′i)) are approximated by:

dv(r′i) ≈
∑

rj∈I1(r′

i)

φ̄(j)

|I1(r′i)|
−

∑

rj∈I2(r′

i)

φ̄(j)

|I2(r′i)|

dh(r′i) ≈
∑

rj∈I3(r′

i)

φ̄(j)

|I3(r′i)|
−

∑

rj∈I4(r′

i)

φ̄(j)

|I4(r′i)|
.

Thus two measurements are available for each r′i,
corresponding to the estimates of dv(r′i) and dh(r′i).
Let

H1(i, j) =











1
|I1(r′

i)|
if rj ∈ I1(r

′
i)

− 1
|I2(r′

i)|
if rj ∈ I2(r

′
i)

0 otherwise

H2(i, j) =











1
|I3(r′

i)|
if rj ∈ I3(r

′
i)

− 1
|I4(r′

i)|
if rj ∈ I4(r

′
i)

0 otherwise

then H is

H =

[

H1

H2

]

.

Notice that also some other similar statistical models

for the Shack-Hartmann sensor have been considered

in the literature [9] [5].
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(a) (b) (c)

Fig. 2. (a) Spatial mean on the subaperture corresponding to ri. (b) Shack-
Hartmann’s vertical slope estimation. (c) Shack-Hartmann’s horizontal slope
estimation.

Finally we define the (input) signal to noise ratio as

follows: SNR = trace(HΣφ̄HT )/trace(Σw).
Since usually |L| is quite large, a dimensional reduction

step is commonly introduced to reduce both running time

and required storage memory. Instead of using the canonical

basis of R
|L|, a new set of bases C̄ is introduced to represent

ϕ : C̄ should be chosen such that most of signal’s energy

is in fact concentrated in its first N + 1 bases. Hence the

dimensionality reduction step is performed discarding the last

|L| − N − 1 bases of C̄. Depending on the chosen C̄ the

represented signal will be more or less close to the real one.

Assume that the column vectors c0, c1, . . . , c|L|−1 form a

basis of R
|L| thus we can write

C̄ =
[

c0 c1 . . . c|L|−1

]

.

Then a generic vector φ̄ ∈ R
L can be represented as

φ̄ =
∑|L|−1

i=0 ciai where ai, i = 0, . . . , |L| − 1 are suitable

coefficients.

Without loss of generality we will assume c0 =
[

1 . . . 1
]T

and ci ⊥ cj , i = 1, . . . , N , j = N +
1, . . . , |L| − 1. Both ϕ and ϕ̄(y) are orthogonal to c0, i.e.

ϕ ∈ span{c1, . . . , c|L|−1} and ϕ̄(y) ∈ span{c1, . . . , c|L|−1}.

Thus there exist a1, . . . , a|L|−1 and â1, . . . , â|L|−1 such that

ϕ =

|L|−1
∑

i=1

ciai =
[

C Cb

]

[

a
b

]

and

ϕ̄(y) =

|L|−1
∑

i=1

ciâi =
[

C Cb

]

[

â

b̂

]

where C =
[

c1 . . . cN

]

, Cb =
[

cN+1 . . . c|L|−1

]

and a =
[

a1 . . . aN

]T
, â =

[

â1 . . . âN

]T
, b =

[

aN+1 . . . a|L|−1

]T
, b̂ =

[

âN+1 . . . â|L|−1

]T
. Define

ϕ̂(y) as the closest vector to ϕ̄(y) such that ϕ̂(y) ∈
span{c1, . . . , cN}. Then

ϕ̂(y) =
N

∑

i=0

ciâi = Câ (5)

with

â = (CT C)−1CT ϕ̄(y) . (6)

Let C† be the pseudo-inverse of C, i.e. C† = (CT C)−1CT .

Then â = C†ϕ̄(y).
If C̄ is such that most of the energy of the signal is

concentrated on its first bases then ϕ̄(y) ≈ ϕ̂(y).

Finally the relation between ϕ̂(y) and y can be summa-

rized with

ϕ̂(y) = C†ΣϕyΣ−1
y y = Câ = CFy (7)

where

â = Fy (8)

and

F = C†

(

I − 1

|L|1
)

WΣφ̄HT
(

HΣφ̄HT + Σw

)−1
.

Let ã = a− â and η = Cbb, then the representation error

e, due both to considering only N bases instead of |L| and

to noise, can be computed as follows:

e = ϕ − ϕ̂(y) = Ca + Cbb − Câ = Cã + η .

Since η depends only on the chosen set of bases and on

the signal statistical characteristics we will call it projection

error. Notice that a, â, b, η and e are all zero mean processes.

Moreover the columns of C are orthogonal to the column of

Cb. Hence

Σe = E[eeT ] = CE[ããT ]CT + E[ηηT ] = CΣãCT + Ση

where Σã = E[ããT ] = C†Σϕ(C†)T − FΣyFT and Ση =
E[ηηT ] = Σϕ − CC†Σϕ(C†)T CT .

Finally we have

E[‖e‖2] = E[eT e] = trace(Σe). (9)

Hence C̄ should be chosen such that trace(Σe) would be as

small as possible even using few bases, i.e. when N is small.

IV. TURBULENCE REPRESENTATIONS

A. Zernike representation

Zernike polynomials are commonly used to represent

signals defined inside a circle: This makes them particularly

well suited to represent the turbulent phase on the aperture

plane.

Let r, γ (with r ≥ 0, 0 ≤ γ ≤ 2π) be polar coordinates

of R
2, then the generic Zernike polynomial Zi, i ≥ 0, is

defined on R
2 as follows:

Zi(r, γ) =







√
n + 1Rm

n (r)
√

2 cos(mγ) if m 6= 0, i even√
n + 1Rm

n (r)
√

2 sin(mγ) if m 6= 0, i odd√
n + 1Rm

n (r) if m = 0

where

Rm
n (r) =

(n−m)/2
∑

k=0

(−1)k(n − k)!

k!
(

n+m
2 − k

)

!
(

n−m
2 − k

)

!
(r)n−2k

and n, m are two integers uniquely identified by i. Table I

summarize the relation2 between i, n, m and provides some

examples of Zernike polynomials. The integer n, with n ≥ 0,

is called the level of the polynomial. Notice that m ≤ n and

if i1, i2 are on the same level then n − mk, k = 1, 2 are

even and m1 − m2 is even.

2Notice that some authors use different conventions for the relation
between n, m and i. We used the Noll convention [8].
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Zernike polynomial i n m

Z1 = 1 1 0 0
Z2 = 2r cos θ 2 1 1
Z3 = 2r sin θ 3 1 1

Z4 =
√

3(2r2 − 1) 4 2 0

Z5 =
√

6r2 sin(2θ) 5 2 2

Z6 =
√

6r2 cos(2θ) 6 2 2

Z7 =
√

8(3r2 − 2r) sin(θ) 7 3 1

Z8 =
√

8(3r2 − 2r) cos(θ) 8 3 1

Z9 =
√

8r2 sin(3θ) 9 3 3

Z10 =
√

8r2 cos(3θ) 10 3 3

TABLE I

EXAMPLES OF ZERNIKE POLYNOMIALS AND THEIR INDEXES.

Define Π(·) as follows

Π
( r

R

)

=

{

1
πR2 if r ≤ R
0 otherwise

and let δij be the Kronecker function

δij =

{

1 if i = j
0 otherwise

then
∫

R2

Π
( r

R

)

Zi

( r

R
, γ

)

Zj

( r

R
, γ

)

r drdγ = δij

that is the Zernike polynomials forms an orthogonal basis

of the continuous region inside the circle of ray R (where

R in this case is equal to the telescope aperture’s ray).

However, since here we are considering the discrete domain

L, commonly they are not orthogonal.

Let zi = vec
(

{

Zi(r, γ) | r exp(−jγ) ∈ L
}

)

, then using

the Zernike polynomials C = [z2 z3 . . . zN+1], (5) becomes:

ϕ̂(y) =
N+1
∑

i=2

ziâi =
[

z2 . . . zN+1

]

â

where â is still computed with (6).

B. PCA representation

In this section we introduce a representation based on

PCA. Principal component analysis yields an alternative set

of bases: It is well known that if the second order statistics

of the signal are known, the PCA bases take to the best

(minimum error variance) reduced order representation of

the signal.

The signal ϕ is a zero-mean L-dimensional (wide-sense)

stationary random vector, that is ϕ ∼ (0, Σϕ). Then there

exists a unitary3 matrix U =
[

u1 . . . uN . . . u|L|

]

,

such that

Σϕ = UΛUT

with

Λ = diag(λ1 , λ2 , . . . , λ|L|), λ1 ≥ · · · ≥ λ|L| ≥ 0.

3Since Σϕ ∈ R
L×L, UUT = UT U = I .

Moreover since ϕ is orthogonal to c0 it is simple to prove

that λ|L| = 0. Thus
[

c0 u1 . . . uN . . . u|L|−1

]

is

a basis of R
L.

Define x = UT ϕ, then E[xxT ] = Λ. x is called the

vector of principal components of ϕ, while U is the set

of orthogonal bases associated to the principal components.

Principal components provide an optimal (minimum error

variance) dimensionality reduction step: Let ϕ̂ be the ran-

dom vector reconstructed from ϕ by means of the first

N principal components ϕ̂ =
[

u1 . . . uN

]

xN , with

xN =
[

x(1) . . . x(N)
]

. Then

E‖(ϕ − ϕ̂)‖2 = E(ϕ − ϕ̂)T (ϕ − ϕ̂) =

|L|−1
∑

i=N+1

λi.

It is simple to prove that this is the minimum distance

between ϕ and a vector ϕ̂ given by linear combination of

N bases.

Fig. 3 shows the first Zernike polynomials and the first

PCA bases computed for a turbulence where L0 = 16m and

r0 = 1.5m. Since the piston mode Z1 is useless for adaptive

optics purposes, it is not shown.

Fig. 3. Top row: Zernike polynomials Z2, Z3, Z4, Z5, Z6. Bottom row:
The first five PCA bases computed for a particular turbulence. L0 = 16m,
r0 = 1.5m, telescope diameter D = 8m.

V. COMPARISON BETWEEN PCA AND ZERNIKE

REPRESENTATIONS

We can summarize the algorithm of the adaptive optics

system as follows:

1) estimate the current turbulent phase, as described in

Section III;

2) compute the correction contribution to obtain the com-

pensated phases;

3) control the deformable mirrors, i.e. apply to the system

the new correction phases.

The adaptive optics system provides a valuable improve-

ment in telescope performances: Thus both phase reconstruc-

tion (step 1 of the algorithm) and feedback computation (step

2) should be as accurate as possible. For this reason we shall

use a large number of bases, N , to represent accurately the

phases. On the other hand, the high sampling frequency and

the need of an almost immediate phase correction make the

computational time a stringent design parameter. From (8),

the computational complexity of the phase reconstruction

step is O(n|L|). A common assumption [9] [7] is that of

having a linear relation between a and the input u of the

actuators : u = Ga. Let m be the number of actuators, then

the computational complexity of step 2) is O(nm). Thus N
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is linearly proportional to the running time for computing

both the phase reconstruction step and the feedback u:

Hence N should be taken small. Since N cannot be chosen

simultaneously large and small, this translates in the need of

a good set of bases to represent the signal.

As long as representations are compared on the variance of

the projection error η, PCA provides by construction the best

bases. Here we investigate what happens when considering

the representation error e.

We report here the results of some simulations: We

compare Zernike polynomials and PCA bases among three

possible turbulence conditions. In each case we compute (9),

ranging the number of bases from N = 65 to N = 209.

Moreover we compute performances modeling the mea-

surement process both as a spatial mean and as a Shack-

Hartmann sensor (as described in Section III). In figures we

plot the percent error energy, i.e. E[‖e‖2]/E[‖ϕ‖2] · 100 .
The results reported in Fig. 4 are obtained setting the

values of the parameters to: r0 = 1.5m, the telescope

aperture diameter d = 8m, ps = 0.2m, |Lsp/L| = 9,

SNR = 4. Different values for L0 are explored: L0 = 16m,

L0 = 12m, L0 = 20m.

Finally in Fig. 5 we explore the case of very noisy

measurements: SNR = 2. The other parameters are set to:

L0 = 16m, r0 = 1.5m , d = 8m, ps = 0.2m, |Lsp/L| = 9.

VI. CONCLUSIONS

In this paper we have reported a comparison between

Zernike polynomials and PCA bases as representations of

the turbulent phase measured on telescope lens.

Our simulations have shown that the Zernike represen-

tation has to use a significatively larger number of bases

to obtain the same performances of PCA bases. Even if

our comparison here is only static, i.e. without exploiting

the dynamic of the turbulence, in [3] we have considered a

dynamic framework: This confirms the encouraging results

obtained for the static case.

We are confident that the use of PCA bases instead of

Zernike polynomials should allow a significative saving in

terms of running time or an improvement in performances.
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Fig. 4. In solid line the representation errors for PCA bases, in dashed
line those for Zernike polynomials. Both spatial mean (in (a), (c), (e)) and
Shack-Hartmann (in (b), (d), (f)) methods of measurement are simulated.
Different values of L0 are explored: L0 = 16 in (a) and (b), L0 = 12 in
(c) and (d), L0 = 20 in (e) and (f). SNR = 4.
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Fig. 5. In solid line the representation errors for PCA bases, in dashed
line those for Zernike polynomials. Both spatial mean (in (a)) and Shack-
Hartmann (in (b)) methods of measurement are simulated. L0 = 16,
SNR = 2.
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