Topics on geometric integration

Giulia Ortolan

PhD Candidate

Department of Information Engineering, University of Padova

April 18, 2011
Numerical integration

Numerical method

\[x_{k+1} = \Phi(x_k; h) \]

Relevant aspects

- precision of the solution
- computational effort
- preservation of the properties of the exact flow
Numerical integration

Numerical method

\[x_{k+1} = \Phi(x_k; h) \]

Relevant aspects

- precision of the solution
- computational effort
- preservation of the properties of the exact flow

...crucial for long time simulation!
Geometric integrators

Some properties of the continuous systems preserved by the flow are:

- energy
- symmetry
- momentum
- reversibility
- symplectic form
- configuration space

Geometric integrators are built in order to inherit exactly some properties of the continuous equation.

1. Long-time stability of rigid body integrators

2. Numerical integration on homogeneous spaces
Outline

1. Long-time stability of rigid body integrators
Dynamics of a Hamiltonian system

Lagrangian \(L(q, \dot{q}) = \frac{1}{2} \dot{q}^T \mathbb{I} \dot{q} - V(q). \)

\[\delta \int L(q, \dot{q}) dt = 0, \text{ null variations at the endpoints} \]

Equations of motion: \[\frac{d}{dt} \frac{\partial L}{\partial \dot{q}} - \frac{\partial L}{\partial q} = \frac{\partial V}{\partial q}. \]

Legendre transform \(p = \frac{\partial L}{\partial \dot{q}}. \)

Hamiltonian \(H(q, p) = \frac{1}{2} p^T \mathbb{I}^{-1} p + V(q). \)

\[\dot{p} = \frac{\partial H}{\partial q}(q, p) \]

Equations of motion: \[\dot{q} = -\frac{\partial H}{\partial p}(q, p) \]
A *symplectic form* is a non-degenerate skew-symmetric bilinear form on a manifold.
Canonical symplectic form Ω is a unique two-form defined on the cotangent bundle T^*Q:

$$
\Omega = \sum_{i=1}^{n} dq^i \wedge dp_i
$$
Symplecticity of Hamiltonian flow

A *symplectic form* is a non-degenerate skew-symmetric bilinear form on a manifold.

Canonical symplectic form Ω is a unique two-form defined on the cotangent bundle T^*Q:

$$
\Omega = \sum_{i=1}^{n} dq^i \wedge dp_i
$$

The flow $y(t) = \phi_t(y_0)$ of every Hamiltonian system denotes a canonical transformation $\forall \ t > 0$, that is,

$$
\phi_t^* \Omega = \Omega, \ \forall \ t > 0.
$$
Symplectic integrator

Energy behavior
A symplectic integrator is an exact integrator for a modified Hamiltonian system. Thus, a symplectic method of order p nearly preserves the energy of the original system for exponentially long times [Benettin and Giorgilli, 1994]:

$$H(y_n) = H(y_0) + O(h^p), \text{ for } nh \leq e^{h_0/2h}$$

Nearly energy conservation.
Variational integrators

Discrete Lagrangian

\[L_d(q_0, q_1) \approx \int_{t_0}^{t_1} L(q, \dot{q}) dt. \]

Discrete Euler-Lagrange equation (DEL)

\[D_2 L_d(q_{k-1}, q_k) + D_1 L_d(q_k, q_{k+1}) = 0 \]
Variational integrators

Discrete Lagrangian

\[L_d(q_0, q_1) \approx \int_{t_0}^{t_1} L(q, \dot{q}) \, dt. \]

Discrete Euler-Lagrange equation (DEL)

\[D_2 L_d(q_{k-1}, q_k) + D_1 L_d(q_k, q_{k+1}) = 0 \]

Variational integrators yield to:

- symplecticity \((\text{iff})\)
- good energy behavior
- momentum conservation (in presence of symmetry)
Conjugate symplecticity

Conjugate method

\[\Phi_h = \chi_h^{-1} \circ \Psi_h \circ \chi_h, \]

where \(\chi_h(x) = x + O(h^s) \).

Even if a method is not symplectic, it can still be conjugate symplectic, and sharing the same long-time excellent behavior.

In particular, the error on the Hamiltonian again remains bounded over exponentially long times:

\[H(y_n) = H(y_0) + O(h^{\min\{s,p\}}) \text{ for } nh \leq e^{\frac{h_0}{2h}}. \]
Rigid body dynamics of rotation (trivialized)

Lagrangian formulation

The configuration is described by a couple

$$(\mathbf{R}, \mathbf{\omega}) \in T\text{SO}(3) \cong \text{SO}(3) \times \mathfrak{so}(3),$$

where

- $\mathbf{R} \in \text{SO}(3)$ is the attitude;
- $\mathbf{\omega} \in \mathbb{R}^3$ is the body angular velocity.
Rigid body dynamics of rotation (trivialized)

Lagrangian formulation Configuration space $SO(3) \times \mathfrak{s}o(3)$

$$\ell(R, \omega) = \frac{1}{2} \omega^T \mathbb{I} \omega - V(R)$$

\mathbb{I} is the inertia matrix (symmetric positive definite).
Rigid body dynamics of rotation (trivialized)

Lagrangian formulation Configuration space $\text{SO}(3) \times \mathfrak{so}(3)$

$$\ell(R, \omega) = \frac{1}{2} \omega^T \mathbb{I} \omega - V(R)$$

\mathbb{I} is the inertia matrix (symmetric positive definite).
Rigid body dynamics of rotation (trivialized)

Lagrangian formulation Configuration space $\text{SO}(3) \times \mathfrak{so}(3)$

$$\mathcal{L}(\mathbf{R}, \mathbf{\omega}) = \frac{1}{2} \mathbf{\omega}^T \mathbb{I} \mathbf{\omega} - V(\mathbf{R})$$

\mathbb{I} is the inertia matrix (symmetric positive definite).
Lagrangian formulation Configuration space $SO(3) \times \mathfrak{so}(3)$

$$\ell(R, \omega) = \frac{1}{2} \omega^T \mathbb{I} \omega - V(R)$$

Equations of motion:

$$\begin{align*}
\dot{R} &= R \hat{\omega} \\
\mathbb{I} \dot{\omega} + \omega \times \mathbb{I} \omega &= \tau(R).
\end{align*}$$
Lagrangian formulation Configuration space \(\text{SO}(3) \times \mathfrak{so}(3) \)

\[
\ell(R, \omega) = \frac{1}{2} \omega^T \mathbb{I} \omega - V(R)
\]

Equations of motion:

\[
\begin{align*}
\dot{R} &= R \hat{\omega} & \text{← reconstruction equation} \\
\mathbb{I} \dot{\omega} + \omega \times \mathbb{I} \omega &= \tau(R).
\end{align*}
\]
Rigid body dynamics of rotation (trivialized)

Lagrangian formulation Configuration space $\text{SO}(3) \times \text{so}(3)$

$$\ell(R, \omega) = \frac{1}{2} \omega^T \mathbb{I} \omega - V(R)$$

Equations of motion:

$$\begin{cases} \dot{R} = R \hat{\omega} \\ \mathbb{I} \dot{\omega} + \omega \times \mathbb{I} \omega = \tau(R). \end{cases} \leftarrow \text{Euler-Lagrange equation}$$
Lagrangian formulation Configuration space SO(3) \(\times \mathfrak{so}(3) \)

\[
\ell(R, \omega) = \frac{1}{2} \omega^T \mathbb{I} \omega - V(R)
\]

Equations of motion:

\[
\begin{aligned}
\dot{R} &= R \hat{\omega} \\
\mathbb{I} \dot{\omega} + \omega \times \mathbb{I} \omega &= \tau(R).
\end{aligned}
\]

Legendre transform \(\mu = \frac{\partial \ell}{\partial \omega} \in \mathfrak{so}^*(3) \).
Rigid body dynamics of rotation (trivialized)

Lagrangian formulation Configuration space $\text{SO}(3) \times \text{so}(3)$

$$\ell(R, \omega) = \frac{1}{2} \omega^T \mathbb{I} \omega - V(R)$$

Equations of motion:

$$\begin{align*}
\dot{R} &= R \hat{\omega} \\
\mathbb{I} \dot{\omega} + \omega \times \mathbb{I} \omega &= \tau(R).
\end{align*}$$

Legendre transform $\mu = \frac{\partial \ell}{\partial \omega} \in \text{so}^*(3)$.

Hamiltonian formulation

The configuration is described by a couple

$$(R, \mu) \in T^* \text{SO}(3) \cong \text{SO}(3) \times \text{so}^*(3),$$

where

- $R \in \text{SO}(3)$ is the attitude;
- $\mu \in \mathbb{R}^3$ is the body angular momentum.
Rigid body dynamics of rotation (trivialized)

Lagrangian formulation Configuration space $\text{SO}(3) \times \mathfrak{s}\mathfrak{o}(3)$

$$\ell(R, \omega) = \frac{1}{2} \omega^T I \omega - V(R)$$

Equations of motion:

$$\begin{cases} \dot{R} = R \hat{\omega} \\ \dot{\omega} + \omega \times I \omega = \tau(R). \end{cases}$$

Legendre transform $\mu = \frac{\partial \ell}{\partial \omega} \in \mathfrak{s}\mathfrak{o}^*(3)$.

Hamiltonian formulation Phase space $\text{SO}(3) \times \mathfrak{s}\mathfrak{o}^*(3)$.

Equations of motion:

$$\begin{cases} \dot{R} = R \hat{\omega} \\ \dot{\mu} = \text{ad}^* \omega \mu + R \frac{\partial \ell}{\partial R}. \end{cases}$$
Rigid body dynamics of rotation (trivialized)

Lagrangian formulation Configuration space $\text{SO}(3) \times \mathfrak{s}\mathfrak{o}(3)$

$$\ell(R, \omega) = \frac{1}{2} \omega^T \mathbb{I} \omega - V(R)$$

Equations of motion:

$$\begin{cases}
\dot{R} = R \hat{\omega} \\
\mathbb{I} \omega + \omega \times \mathbb{I} \omega = \tau(R).
\end{cases}$$

Legendre transform $\mu = \frac{\partial \ell}{\partial \omega} \in \mathfrak{s}\mathfrak{o}^*(3)$.

Hamiltonian formulation Phase space $\text{SO}(3) \times \mathfrak{s}\mathfrak{o}^*(3)$.

Equations of motion:

$$\begin{cases}
\dot{R} = R \hat{\omega} \\
\mu = \frac{\partial \ell}{\partial \omega} \\
\dot{\mu} = \text{ad}^*_{\omega} \mu + R \frac{\partial \ell}{\partial R}. \quad \leftarrow \text{Lie-Poisson equation}
\end{cases}$$
Rigid body dynamics of rotation (trivialized)

Lagrangian formulation Configuration space $SO(3) \times \mathfrak{so}(3)$

$$\ell(R, \omega) = \frac{1}{2} \omega^T \mathbb{I} \omega - V(R)$$

Equations of motion:

$$\begin{cases}
\dot{R} = R \hat{\omega} \\
\mathbb{I} \dot{\omega} + \omega \times \mathbb{I} \omega = \tau(R).
\end{cases}$$

Legendre transform $\mu = \frac{\partial \ell}{\partial \omega} \in \mathfrak{so}^*(3)$.

Hamiltonian formulation Phase space $SO(3) \times \mathfrak{so}^*(3)$.

Equations of motion:

$$\begin{cases}
\dot{R} = R \hat{\omega} \\
\dot{\mu} = {\text{ad}}^*_{\omega} \mu + R \frac{\partial \ell}{\partial R}.
\end{cases}$$

Energy: $H(R, \mu) = \frac{1}{2} \mu^T \mathbb{I}^{-1} \mu + V(R)$.
Survey: rigid body integrators

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Year</th>
<th>Free rigid body</th>
<th>Rigid body with generic potential</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Symplectic</td>
<td>Energy</td>
</tr>
<tr>
<td>Algo_1</td>
<td>1991</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Austin et al.</td>
<td>1993</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Lewis & Simo</td>
<td>1994</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>RATTLE</td>
<td>1994</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Variational</td>
<td>1998</td>
<td>✓</td>
<td>nearly</td>
</tr>
</tbody>
</table>

Synoptic table of the most relevant rigid body integrators. Their geometric properties are highlighted.
Numerical experiment

Distance function Define \(\text{dist} : \text{SO}(3) \times \text{SO}(3) \rightarrow \mathbb{R} \)

\[
\text{dist}(R_1, R_2) = \sqrt{2 \text{tr}(I - R_2^T R_1)}
\]

Potential energy

\[
V_\alpha(R) = (\text{dist}(R, I) - 1)^2 - \frac{\alpha}{\text{dist}(R, R_m)}.
\]
Numerical experiment

Distance function Define \(\text{dist} : \text{SO}(3) \times \text{SO}(3) \rightarrow \mathbb{R} \)

\[
\text{dist}(\mathbf{R}_1, \mathbf{R}_2) = \sqrt{2 \text{tr}(I - \mathbf{R}_2^T \mathbf{R}_1)}
\]

Potential energy

\[
V_\alpha(\mathbf{R}) = (\text{dist}(\mathbf{R}, I) - 1)^2 - \frac{\alpha}{\text{dist}(\mathbf{R}, \mathbf{R}_m)}.
\]

bounded potential
Numerical experiment

Distance function Define $\text{dist} : \text{SO}(3) \times \text{SO}(3) \to \mathbb{R}$

$$\text{dist}(R_1, R_2) = \sqrt{2 \text{tr}(I - R_2^T R_1)}$$

Potential energy

$$V_\alpha(R) = (\text{dist}(R, I) - 1)^2 - \frac{\alpha}{\text{dist}(R, R_m)}. \quad \text{Coulomb potential}$$
Minimum values for the potential attained in

\[S \overset{\text{def}}{=} \{ \mathbf{R} \in SO(3) : \text{dist}(\mathbf{R}, I) = 1 \}. \]

\(S \times \{0\} \) is stable in the sense of Lyapunov.

Potential field with \(\alpha = 0 \) in the angle/axis representation.
If α is sufficiently small and \mathbf{R}_m is sufficiently far, S gets slightly perturbated into S_{α}, a set of local minima.

$S_{\alpha} \times \{0\}$ inherits the same stability properties.
Tested algorithms

- Explicit Lie-Newmark method (ELN)
- Trapezoidal Lie-Newmark method (TLN)
- Krysl’s explicit Lie-Midpoint algorithm (LIEMID[EA])
- Partitioned Runge-Kutta Munthe-Kaas method (PRK)
- Modified Crouch-Grossman method (MCG)
- Koziara-Bicanic algorithm (NEW3)
- Variational Lie-Verlet algorithm (VLV)
Energy behaviour

We choose the initial rotation near S_α, with small body angular velocity.

Energy behavior with the two algorithms, for different timesteps: $h = 0.125$ [s] and $h = 0.25$ [s].
Conclusions

- (conjugate-)symplecticity as a key property for the long-time behavior of numerical integrators
Conclusions

- (conjugate-)symplecticity as a key property for the long-time behavior of numerical integrators
- easy-to-implement numerical experiment that has proven effective in detecting the possible energy drift of a rigid body integrator
Conclusions

- (conjugate-)symplecticity as a key property for the long-time behavior of numerical integrators
- easy-to-implement numerical experiment that has proven effective in detecting the possible energy drift of a rigid body integrator
- necessity test for (conjugate-)symplecticity
Numerical integration on homogeneous spaces
Introduction

Unitary sphere \mathbb{S}^2

$$\mathbb{S}^2 = \{q \in \mathbb{R}^3 \| q \| = 1\}.$$

Many classical and interesting mechanical systems evolve on the 2-sphere or on a product of 2-spheres.

Examples Double spherical pendulum, interconnection of spherical pendulums, elastic rod.

The configuration of the system on $(\mathbb{S}^2)^n$ is usually described using $2n$ angles or n unitary constraints; these representations should be however avoided, since they yield additional complexity in the computation.
Homogeneous space

Be G a group. A *homogeneous space* for G is a non-empty topological space X on which G acts in a transitive way.

S^2 is a homogeneous space under the action of $\text{SO}(3)$.

Since $\text{SO}(3)$ acts transitively on S^2, we can lift the problem from the configuration space to the action space, that is, we can solve for a trajectory $R(t) \subset \text{SO}(3)$ which generates the actual flow:

$$q(t) = R(t)q(0)$$
Problems arising

The action of $\text{SO}(3)$ on S^2 is **not free**.

Isotropy group

$$\mathcal{H}_q = \{ R \in \text{SO}(3) | Rq = q \}$$

\mathcal{H}_q depends on the current configuration $q \in S^2$. Therefore a given flow on S^2 corresponds to continuous families of flows on $\text{SO}(3)$.

To our knowledge, in literature there exist no methods to describe in a unique way the flow on the quotient space $\text{SO}(3)/\mathcal{H}_q$.
Variational approach

Lagrangian

The configuration is described by \((q_i, \dot{q}_i), \ i = 1, \ldots, n\), where

- \(q_i \in S^2;\)
- \(\dot{q}_i \in T_{q_i}S^2, \ \dot{q}_i \perp q_i.\)

The unit sphere \(S^2\) with the tangent space \(T_qS^2\).
Variational approach

Lagrangian Configuration space $T(S^2)^n$.

$$L(q_1, \ldots, q_n, \dot{q}_1, \ldots, \dot{q}_n) = \sum_{i=1}^{n} \frac{1}{2} \dot{q}_i^T \mathbb{I} \dot{q}_i - V(q_1, \ldots, q_n)$$
Variational approach

Lagrangian Configuration space $T(S^2)^n$.

$$L(q_1, \ldots, q_n, \dot{q}_1, \ldots, \dot{q}_n) = \sum_{i=1}^{n} \frac{1}{2} \dot{q}_i^T \mathbb{I}_i \dot{q}_i - V(q_1, \ldots, q_n)$$

Equations of motion (Lee et al., 2009) on $T(S^2)^n$:

$$\begin{cases}
\mathbb{I}_{ii} \dot{\omega}_i = \sum_{j=1, j\neq i}^{n} \left(\mathbb{I}_{ij} q_i \times (q_j \times \dot{\omega}_j) + \mathbb{I}_{ij} \|\omega_j\|^2 q_i \times q_j \right) - q_i \times \frac{\partial V}{\partial q_i} \\
\dot{q}_i = \omega_i \times q_i
\end{cases}$$

where

$$0 = q_i \cdot \omega_i$$
$$0 = q_i \cdot \dot{\omega}_i$$
Adapting Lie methods

Basic idea:

\[\dot{q}_i(t) = \dot{R}_i(t)q_i(0) \]
\[= \omega_i \times q_i(t) \]
\[= \omega_i \times R_i(t)q_i(0) \]

Dynamics on SO(3):

\[\dot{R}_i = \omega_i \times R_i \]

\[\mathbb{I}_{ij} \omega_i = \sum_{j=1 \atop j \neq i}^n \left(\mathbb{I}_{ij} R_iq_i(0) \times (R_j q_j(0) \times \dot{\omega}_j) + \right. \]
\[\left. + \mathbb{I}_{ij} \|\omega_j\|^2 R_iq_i(0) \times R_j q_j(0) \right) - R_iq_i(0) \times \frac{\partial V}{\partial q_i} \]
Adapting Lie methods

Basic idea:

\[\dot{q}_i(t) = \dot{R}_i(t)q_i(0) \]
\[= \omega_i \times q_i(t) \]
\[= \omega_i \times R_i(t)q_i(0) \]

Dynamics on SO(3):

\[\dot{R}_i = \omega_i \times R_i \]

\[\sum_{j=1}^{n} (\mathbb{I}_{ij} R_i q_i(0) \times (R_j q_j(0) \times \omega_j) + \mathbb{I}_{ij} \| \omega_j \|^2 R_i q_i(0) \times R_j q_j(0)) - R_i q_i(0) \times \frac{\partial V}{\partial q_i} \]

\(\omega_i \) is the spatial angular velocity!
Numerical example

Double spherical pendulum

Numerical results obtained for the double spherical pendulum: energy and the accuracy precision diagram.
Conclusions

- geometric method which preserves the configuration space of the system
Conclusions

- geometric method which preserves the configuration space of the system
- off-the-shelf Lie methods can be used for the integration of Hamiltonian systems on unitary spheres, obtaining arbitrarily high order methods
Conclusions

- geometric method which preserves the configuration space of the system
- off-the-shelf Lie methods can be used for the integration of Hamiltonian systems on unitary spheres, obtaining arbitrarily high order methods

Future work

- under what conditions are the properties of the Lie methods preserved also by the flow on S^2?