Multivariate moment problems with applications to spectral estimation and physical layer security in wireless communications

C. Masiero
Series XXVI
Advisor: Prof. Augusto Ferrante

Ph.D. School in Information Engineering, Department of Information Engineering
University of Padova

April 11th, 2014
Introduction

Generalized multivariate moment problems

- Multivariate spectral estimation
- Physical layer security
Multivariate spectral estimation
Multivariate moment problems with applications to spectral estimation and physical layer security in wireless communications

Framework

- **Hypotheses:** $y = \{y_k; k \in \mathbb{Z}\}$ is a zero mean, \mathbb{R}^m-valued, wide-sense **stationary** and purely non deterministic process

- **Input:** $\{y_k\}_{k=1}^N$ is an available finite data sequence

- **Aim:** Estimate the spectral density $\Phi(e^{j\theta})$ of y

- If Φ is **rational**, we can find a **finitely-parametrized state-space model** for the process

 \[\downarrow \]

 smoothing, filtering, prediction . . .

- Thus, our aim is estimating **rational** spectral densities
Original contribution

Two novel approaches to multivariate spectral estimation:

1. Relative entropy rate estimation
2. Multivariate circulant rational covariance extension

Spectral estimation as a generalized moment problem, that can be solved efficiently by means of convex optimization techniques
Multivariate spectral estimation
Relative entropy rate estimation
THREE-like spectral estimation

We draw inspiration from THREE-like approaches\(^1\):

\[d(\Phi, \Psi) \]

Prior spectral density

\[\Phi_y \]
sample data \(\{y_i\}_{i=1}^N \)

Moment constraints

\[G(z) \]
filter state \(x(t) \)

Estimate \(\hat{\Sigma} \) of \(\Sigma := \mathbb{E}[xx^T] \)

Constrained approximation problem

Multivariate moment problems with applications to spectral estimation and physical layer security in wireless communications

Multivariate spectral estimation

Relative entropy rate estimation

Spectrum approximation problem

Let $G(z)$ and $\Sigma = \Sigma^\top$ given. Compute

$$\hat{\Phi} := \arg\min_{\Phi} d(\Phi, \Psi) \quad \text{such that} \quad \int G \Phi G^* = \Sigma$$

- Key point: choice of $d(\Phi, \Psi)$:
 1. Variational analysis should lead to a computable solution
 2. The solution should have low complexity

- Let y, z be Gaussian processes with densities Φ_y and Φ_z. Then, consider their relative entropy rate

$$d_{RER}(\Phi \parallel \Psi) = \frac{1}{2} \int_{-\pi}^{\pi} \log \det(\Phi_y^{-1} \Phi_z) + \text{Tr} [\Phi_z^{-1}(\Phi_y - \Phi_z)] \frac{d\vartheta}{2\pi}$$

- Set $d(\Phi, \Psi) = d_{RER}(\Phi \parallel \Psi)$. Spectral estimation is recast as a convex optimization problem
RER Spectrum approximation problem

\[\hat{\Phi} := \text{argmin} \ d_{RER}(\Phi \| \Psi) \quad \text{such that} \quad \int G \Phi G^* = \Sigma \]

- The solution of the dual problem, \(\hat{\Lambda} \), exists and it is unique.
- Then,

\[\hat{\Phi} = \left[\Psi^{-1} + G^* \hat{\Lambda} G \right]^{-1}, \quad \deg(\hat{\Phi}) \leq \deg \Psi + 2n \]

while the best one so far available in the multivariate framework is \(\deg \Psi + 4n^2 \)

- \(\hat{\Lambda} \) can be computed via an efficient matricial Newton-like algorithm

Simulation results

Comparison of THREE-like approaches (average estimation error).
Bivariate model; 40^{th} order; $G(z)$ with 4 complex pairs of poles equispaced in $[0, \pi]$ with radius 0.7; Prior: PEM(3) model.
RER: estimate order = 11; Hellinger: estimate order = 19.
Comparison of RER, PEM and N4SID (average estimation error) for short data record ($N = 100$)
Simulation results (cont’d)

Comparison of THREE and RER in detecting spectral lines.

Poles of $G(z)$: $0.95 \pm j0.42$, $0.95 \pm j0.44$, $0.95 \pm j0.46$, $0.95 \pm j0.48$, $0.95 \pm j0.50$
Conclusions

RER (Relative Entropy Rate) estimator

- Spectral estimation as a convex spectrum approximation problem
- The upper bound on the complexity of the solution improves on the best one so far available in the multivariate framework
- The estimator is effective, especially in case of short data records
- The estimator exhibits high resolution features
Multivariate spectral estimation
Multivariate circulant rational covariance extension
Rational covariance extension

Given the sequence $C_k := \mathbb{E}[y(t + k)y^*(t)]$, for $k = 0, \ldots, n$ find C_{n+1}, C_{n+2}, \ldots up to infinity such that

$$\sum_{k=-\infty}^{+\infty} C_k e^{-jk\vartheta}, \quad C_{-k} = C_k^*$$

converges for all $\vartheta \in \mathbb{T}$ to a positive definite spectral density $\Phi(e^{j\vartheta})$ that has the rational form

$$\Phi(e^{j\vartheta}) = P(e^{j\vartheta})Q^{-1}(e^{j\vartheta}).$$
Our contribution

Circulant Rational Covariance Extension

▶ A convex optimization-based approach which provides multivariate rational covariance extension for periodic processes

▶ Efficient approximating procedure for regular multivariate rational covariance extension
Circulant rational covariance extension

- Periodic processes as processes indexed on \mathbb{Z}_{2N}:

Process \tilde{y} defined on \mathbb{Z}, with period $2N$.

- y is the restriction on $[-N+1, N]$ of \tilde{y} if and only if its covariance matrix $\Sigma := \mathbb{E}[yy^*]$ is block-circulant.

\[\Sigma = \begin{bmatrix}
C_0 & C_1^* & \cdots & C_1 \\
C_1 & C_0 & \cdots & C_2 \\
\vdots & \vdots & \ddots & \vdots \\
C_1^* & C_2^* & \cdots & C_0
\end{bmatrix} \]

\[\text{Circ}\{C_0, C_1, \ldots, C_N, C_{N-1}^*, \ldots, C_1^*\} \]
Problem statement

Given the sequence C_k’s with values in $\mathbb{C}^{m \times m}$, for $k = 0, \ldots, n$, for $n < N$, find a rational spectral density $\Phi = PQ^{-1}$ such that

$$\int_{-\pi}^{\pi} e^{jk\vartheta} \Phi(e^{j\vartheta}) d\nu(\vartheta) = \frac{1}{2N} \sum_{h=-N+1}^{N} \zeta_h^k \Phi(\zeta_h) = C_k, \quad k = 0, 1, \ldots, n.$$

Main results:

1. Parametrization of all the solutions in terms of $P(\zeta)$
2. Simultaneous estimation of P and Q based on the available data

- Assumption: $P(\zeta) = p(\zeta)I$
Multivariate moment problems with applications to spectral estimation and physical layer security in wireless communications

Multivariate spectral estimation

Multivariate Circulant Rational Covariance Extension

Multivariate circulant rational covariance extension - 2

Main Theorem

- Assume $P(\zeta) = p(\zeta)I$ is given. There exists a unique $\hat{Q}(\zeta)$ such that $\hat{\Phi}(\zeta) := P(\zeta)\hat{Q}(\zeta)^{-1}$ maximizes the generalized entropy

$$\mathbb{I}_P(\Phi) = \int_{-\pi}^{\pi} P(e^{j\vartheta}) \log \det \Phi(e^{j\vartheta}) d\nu(\vartheta)$$

and solves the circulant covariance extension problem.

- $\hat{Q}(\zeta)$ is the unique minimizer of

$$\mathbb{J}_P(Q) := \langle C, Q \rangle - \int_{-\pi}^{\pi} P(e^{j\vartheta}) \log \det Q(e^{j\vartheta}) d\nu(\vartheta)$$

- $\hat{P}(\zeta)$ and $\hat{Q}(\zeta)$ can be estimated simultaneously by taking into account logarithmic moments, too.
Regular covariance extension by means of circulant rational covariance extension

1. It can be proved that, for $N \to \infty$, the solution of circulant rational covariance extension tends to the solution of regular covariance extension.

2. Circulant rational extension can be implemented efficiently (FFT)

\[\downarrow\]

Circulant rational extension provides a fast approximating procedure for solving regular rational covariance extension problem
Numerical examples: multivariate AR case

MVAR model of order 8

The approximation gets more accurate as $N \to \infty$.

Estimation error
Comparison between AR (N=64, n=12) and ARMA (N=32, n=6)

Determining P from logarithmic moments yields better results.
Bilateral ARMA models

- After solving the circulant rational covariance extension problem we end up with a bilateral ARMA model:

\[
\sum_{k=-n}^{n} Q_k y(t - k) = \sum_{k=-n}^{n} P_k e(t - k), \quad t \in \mathbb{Z}_{2N}
\]

- Open problem: do bilateral ARMA models generalize standard models for reciprocal processes\(^3\)?

\[
\sum_{k=-n}^{n} Q_k y(t - k) = e(t), \quad t \in \mathbb{Z}_{2N}
\]

\(^3\)A.J. Krener et al, B.C. Levy et al, A. Chiuso et al, F.P. Carli et al.
Conclusion

Circulant Rational Covariance Extension

- A first step towards rational covariance extension for multivariate periodic processes
- Fast approximation of regular multivariate rational covariance extension
Future Work

Relative Entropy Rate Estimation

- Application to graphical models

Multivariate Circulant Rational Covariance Extension

- Extension to rational models with general $P(\zeta)$
- Connection with reciprocal models
Thank you for your attention

Determining P from logarithmic moments

- **Aim:** estimate P based on data only
- **Idea:** look for the spectral density Φ which maximizes the entropy gain
 \[
 \int_{-\pi}^{\pi} \log \det \Phi(e^{j\vartheta}) \, d\nu(\vartheta)
 \]
 while satisfying the moment constraints which stem from the available covariance lags and the logarithmic moments
 \[
 \gamma_k = \int_{-\pi}^{\pi} e^{jk\vartheta} \log \det \Phi(e^{j\vartheta}) \, d\nu(\vartheta), \ k = 1, 2, \ldots, n
 \]
- **The problem can be solved by minimizing**
 \[
 \mathbb{J}(P, Q) := \langle C, Q \rangle - \int_{-\pi}^{\pi} P(e^{j\vartheta}) \log \det Q(e^{j\vartheta}) \, d\nu(\vartheta) - \\
 \langle \Gamma, P \rangle + \int_{-\pi}^{\pi} P(e^{j\vartheta}) \log \det P(e^{j\vartheta}) \, d\nu(\vartheta)
 \]
Physical layer security in wireless communication
Introduction

Generalized multivariate moment problems

Multivariate spectral estimation

Physical layer security
Framework

Task
Authenticate the source of a message in a wireless communication scenario
Why physical layer authentication?

- Its performances are not undermined in case the attacker has high computational capabilities.
- It provides theoretical bounds which are not affected by the particular forgery strategy employed by the attacker.
Channel security: a hypothesis testing problem

Aim
Compute theoretical bounds on the region of achievable type I and type II error probabilities.

\[\mathcal{H}_0 : \text{legitimate packet}; \]
\[\mathcal{H}_1 : \text{forged packet}; \]
\[\alpha := \text{false alarm probability}; \]
\[\beta := \text{miss detection probability}; \]
Tightest bound on the error region

- We can prove that **worst case performance** of the security mechanism can be evaluated by computing
 \[
 \inf_{p_{xv} \in Q} \mathcal{D}(p_{xv} \| p_{xy})
 \]

- The **optimal attacking strategy** corresponds to a Gaussian p.d.f. \(p_{xvz} \) with zero mean and covariance matrix

\[
K_{xvz}(Z, C) = \begin{bmatrix}
K_{xx} & K_{xz}K_{zz}^{-1}Z^* & K_{xz} \\
ZK_{zz}^{-1}K_{xz}^* & ZK_{zz}^{-1}Z^* + CC^* & Z^* \\
K_{xz}^* & Z & K_{zz}
\end{bmatrix}
\]

- An **iterative fixed point algorithm** was designed, aiming at solving

\[
\begin{cases}
C^*(k+1) = C^*(k)(Z(k)K_{zz}^{-1}BK_{zz}^{-1}Z^*(k) + C(k)C^*(k))^{-1}A \\
Z^*(k+1) = K_{xx}K_{xx}^{-1}K_{xy} + BK_{zz}^{-1}Z^*(k)(Z(k)K_{zz}^{-1}BK_{zz}^{-1}Z(k))^* + C(k)C^*(k))^{-1}A
\end{cases}
\]

- Extensive simulations suggest that the algorithm always finds a minimum point for the cost function.