Mapping and Coverage Control in Robotics Networks

Andrea Carron

Department of Information Engineering - University of Padova, Italy
URL: http://automatica.dei.unipd.it/people/carronan.html

April 1, 2016
Why Localization and Mapping?
Why Localization and Mapping?
Why Localization and Mapping?
Why Multirobot?

1. Better localization (error $\frac{\sigma}{\sqrt{N}}$),
2. Map building can be N time faster.

But there are some difficulties:

1. Coordination
2. Integration of the information
3. Limited communication
Why Multirobot?

1. Better localization (error $\frac{\sigma}{\sqrt{N}}$),
2. Map building can be N time faster.

But there are some difficulties:

1. Coordination
2. Integration of the information
3. Limited communication

Andrew Howard. “Multi-robot Simultaneous Localization and Mapping using Particle Filters”. In: RSS 15
S. Shen, N. Michael, and V. Kumar. “Autonomous multi-floor indoor navigation with a computationally constrained MAV”. In: ICRA 11
P. Newman, D. Cole, and K. Ho. “Outdoor SLAM using visual appearance and laser ranging”. In: ICRA 06
How to localize the robots?

1. Sensors
2. Sensor fusion
How to localize the robots?

1. Sensors
2. Sensor fusion

A. Carron et al. “Multi-Robot Localization via GPS and Relative Measurements in the Presence of Asynchronous and Lossy Communication”. In: ECC 16
M. Todescato et al. “Distributed Localization from Relative Noisy Measurements: a Robust Gradient Based Approach”. In: ECC 15
A. Carron et al. “Adaptive consensus-based algorithms for fast estimation from relative measurements”. In: IFAC NecSys 13
Thesis Contributions

Localization:
1. efficient
2. distributed
3. heterogeneous measurements

Mapping:
1. efficient
2. applied to coverage control
3. time-varying functions
Multi-robots Client-Server Gaussian Estimation and Coverage Control with Lossy Communications

J. Choi, J. Lee, and S. Oh. “Swarm intelligence for achieving the global maximum using spatio-temporal Gaussian processes”. In: *ACC 08*. 2008

Contributions

1. Estimation from noisy measurements
2. Bounds on the estimation error
3. Robustness
Voronoi Partitions and Coverage

\[\text{Environment } \mathcal{X} \]
Voronoi Partitions and Coverage

Environment \mathcal{X}

Agents x_1, \ldots, x_N
Voronoi Partitions and Coverage

Environment \mathcal{X}

Agents x_1, \ldots, x_N

Voronoi Partitions

$\mathcal{P} = \mathcal{W}(x_1, \ldots, x_N)$
Voronoi Partitions and Coverage

- Environment \mathcal{X}
- Agents x_1, \ldots, x_N
- Voronoi Partitions $\mathcal{P} = \mathcal{W}(x_1, \ldots, x_N)$
- Density Function μ and Centroids $c(\mathcal{P}, \mu)$
Goal

Dispatch the N robots to **optimally cover** the environment \(\mathcal{X} \), namely we want to have many robots where \(\mu(x) \) is large and few where it is small.
Coverage Goal and the Lloyd Algorithm

Goal

Dispatch the N robots to \textbf{optimally cover} the environment \mathcal{X}, namely we want to have many robots where $\mu(x)$ is large and few where it is small.

\[
\min_{\mathcal{P}} H(\mathcal{P}, \mu) = \min_{\mathcal{P}} \sum_{i=1}^{N} \int_{\mathcal{P}_i} \| q - c_i(\mathcal{P}_i) \|^2 \mu(q) dq
\]
Goal

Dispatch the N robots to **optimally cover** the environment \mathcal{X}, namely we want to have many robots where $\mu(x)$ is large and few where it is small.

\[
\min_{\mathcal{P}} H(\mathcal{P}, \mu) = \min_{\mathcal{P}} \sum_{i=1}^{N} \int_{\mathcal{P}_i} ||q - c_i(\mathcal{P}_i)||^2 \mu(q) dq
\]

Solution: Classical Lloyd algorithm

1. compute the centroids of the current partition, e.g. $c(\mathcal{P})$
2. update \mathcal{P} to the partition $\mathcal{W}(c(\mathcal{P}))$

Or more briefly $\mathcal{P}^L(k + 1) = \mathcal{W}(c(\mathcal{P}^L(k)))$.

Andrea Carron (UniPD)
Sensory Function

- **Unknown** function $\mu : \mathcal{X} \subset \mathbb{R}^2 \mapsto \mathbb{R}_+$

- μ is a zero-mean Gaussian random field with covariance $K : \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}_+$

- Radial Mercer Kernels

- $K(x, x) = \lambda$

Figure: Gaussian Process

Figure: Gaussian Kernel
Minimum Variance Estimate

The set $I_k = \{x_i, y_i\}_{i=0}^{m_k}$ represents the complete information set available at the BS at iteration k and $m_k = |I_k|$ is its cardinality.
Minimum Variance Estimate

The set $I_k = \{x_i, y_i\}_{i=0}^{m_k}$ represents the complete information set available at the BS at iteration k and $m_k = |I_k|$ is its cardinality. The minimum variance estimate is

$$\hat{\mu}_k(x) = \mathbb{E}[\mu(x)|I_k] = \sum_{i=1}^{m_k} c_i K(x_i, x), \ x \in \mathcal{X}$$
Minimum Variance Estimate

The set $I_k = \{x_i, y_i\}_{i=0}^{m_k}$ represents the complete information set available at the BS at iteration k and $m_k = |I_k|$ is its cardinality. The minimum variance estimate is

$$\hat{\mu}_k(x) = \mathbb{E} [\mu(x)|I_k] = \sum_{i=1}^{m_k} c_i K(x_i, x), \ x \in \mathcal{X}$$

An index of the accuracy of the estimate is given by the posterior variance

$$V_k(x) = \text{Var} [\mu(x)|I_k]$$
Problem Formulation

Base Station

Andrea Carron (UniPD)
Exploration and Exploitation Dilemma

Goal

The ultimate goal is to position the N robots in the centroids of a good partition that minimizes $H(P, \mu)$. To do so we need to:

1. have a good estimate $\hat{\mu}$ of the sensory function \(\rightarrow \) exploration
2. minimize the cost function $H(P, \mu)$ \(\rightarrow \) exploitation
Exploration and Exploitation Dilemma

Goal

The ultimate goal is to position the N robots in the centroids of a good partition that minimizes $H(\mathcal{P}, \mu)$. To do so we need to:

1. have a good estimate $\hat{\mu}$ of the sensory function \rightarrow exploration
2. minimize the cost function $H(\mathcal{P}, \mu) \rightarrow$ exploitation

Strategy

1. initially promote exploration
2. when the estimate is more accurate transit to exploitation
3. random approach based on the maximum of the posterior variance
rEC - Robots

Collects Measurements

Measurement transmission

Waits new target

Moves to new target

Robot
rEC - Base Station

Collects Measurements

Computes μ and V

Computes P_i, c_i and M_i

Explore or Exploit?
Proposition 1 - Sensory Function Convergence

If:

1. $F(M) : [0, 1] \rightarrow [0, 1]$ continuous and monotonically increasing,
2. $F(M) > 0$ for $M > 0$,
3. $\mathbb{P}[\beta_{i,k} = 1] = \bar{\beta} > 0$,
4. $\mathbb{P}[\gamma_{i,k} = 1] = \bar{\gamma} > 0$.

Then

$$\hat{\mu}_k \xrightarrow{P} \mu.$$
Online Gaussian Estimation

What is the most expensive operation?
Online Gaussian Estimation

What is the most expensive operation?

\[(\bar{K}_{k+1} + \sigma^2 I)^{-1} = \left(\begin{bmatrix} \bar{K}_k & \bar{K}_{k+1,12} \\ \bar{K}^T_{k+1,12} & \bar{K}_{k+1,22} \end{bmatrix} + \sigma^2 I \right)^{-1} \]

How much is its computational complexity?
Online Gaussian Estimation

What is the most expensive operation?

\[
(\bar{K}_{k+1} + \sigma^2 I)^{-1} = \left(\begin{bmatrix} \bar{K}_k & \bar{K}_{k+1,12} \\ \bar{K}_{k+1,12}^T & \bar{K}_{k+1,22} \end{bmatrix} + \sigma^2 I \right)^{-1}
\]

How much is its computational complexity?

Naive: \((\bar{K}_k + \sigma^2 I)^{-1} \rightarrow O(k^3) \)

Schur: \((\bar{K}_{k+1,22} - \bar{K}_{k+1,12}^T (\bar{K}_k + \sigma^2 I)^{-1} \bar{K}_{k+1,12})^{-1} \rightarrow O(k^2) \)
Consider

\[\mathcal{X}_{\text{grid}} := \{ x_{\text{grid},1}, \ldots, x_{\text{grid},m} \} \subset \mathcal{X}. \]

Given the scalar \(\Delta > 0 \), \(\mathcal{X}_{\text{grid}} \) forms a \textit{sampled space} of resolution \(\Delta \) if

\[
\min_{i=1,\ldots,m} \| x_{\text{grid},i} - x \| \leq \Delta, \quad \forall x \in \mathcal{X}.
\]
Consider

\[\mathcal{X}_{\text{grid}} := \{ x_{\text{grid},1}, \ldots, x_{\text{grid},m} \} \subset \mathcal{X}. \]

Given the scalar \(\Delta > 0 \), \(\mathcal{X}_{\text{grid}} \) forms a \textit{sampled space} of resolution \(\Delta \) if

\[\min_{i=1,\ldots,m} \| x_{\text{grid},i} - x \| \leq \Delta, \quad \forall x \in \mathcal{X}. \]

We define the projector operator

\[\mathcal{X} \mapsto \mathcal{X}_{\text{grid}} : \quad x \mapsto \text{proj}(x) = \arg \min_{a \in \mathcal{X}_{\text{grid}}} \| x - a \|. \]
Collect Measurements

Compute μ and V

Compute P_i, c_i and M_i

Explore or Exploit?
If the assumptions of Proposition 3 holds then:

$$\lim_{k \to \infty} V_k(x) = \lambda - k_{\text{grid}}(x)K^{-1}_{\text{grid}} k_{\text{grid}}(x)^\top.$$
Proposition 2 - Posterior Variance

If the assumptions of Proposition 3 holds then:

$$\lim_{k \to \infty} V_k(x) = \lambda - k_{\text{grid}}(x) K_{\text{grid}}^{-1} k_{\text{grid}}(x)^\top.$$

The following simple Δ dependent bound holds

$$\lim_{k \to \infty} V_k(x) \leq \lambda - \frac{K^2(\Delta)}{\lambda}.$$
Convergence Analysis - Sensory Function

Proposition 2 - Posterior Variance

If the assumptions of Proposition 3 holds then:

\[\lim_{k \to \infty} V_k(x) = \lambda - k_{\text{grid}}(x) K_{\text{grid}}^{-1} k_{\text{grid}}(x)^\top. \]

The following simple \(\Delta \) dependent bound holds

\[\lim_{k \to \infty} V_k(x) \leq \lambda - \frac{K^2(\Delta)}{\lambda}. \]

If \(K \) is the Gaussian kernel with \(K(a, b) = \lambda e^{-\frac{||a-b||^2}{\zeta^2}} \), for small \(\Delta \) we have

\[\lim_{k \to \infty} V_k(x) \leq \lambda - \frac{K^2(\Delta)}{\lambda} \approx \frac{\lambda \Delta^2}{\zeta^2}. \]
Simulations Setup

- Team of $N = 8$ robots
- Domain $\mathcal{X} = [0, 1] \times [0, 1]$
- Gaussian kernel $K(x, x') = e^{-\frac{\|x-x'\|^2}{0.002}}$
- Exploration-Exploitation trade-off: $F_\alpha(M) = M^\alpha$
- Sensory function

$$\mu(x) = 5 \left(e^{\frac{-\|x-\mu_1\|^2}{0.04}} + e^{\frac{\|x-\mu_2\|^2}{0.04}} \right)$$

where

$$\mu_1 = \begin{bmatrix} 0.8 \\ 0.2 \end{bmatrix} \quad \mu_2 = \begin{bmatrix} 0.5 \\ 0.7 \end{bmatrix}$$
Voronoi partitions computed using the r-EC Algorithm (black lines) for different sensory function $\mu(x)$. Blue dots indicate the locations of the centroids obtained with the r-EC algorithm.
Andrea Carron (UniPD)
Average Energy

![Average Energy Graph](image-url)

- **Lloyd**
- **r-EC α=0.01**
- **r-EC α=1**
- **r-EC α=10**

Andrea Carron (UniPD)
Mapping and Coverage
April 1, 2016 27 / 34
Comparison between the original r-EC algorithm and the grid based approximation for different total number of points p^2. The table reports the steady state value after 400 iterations and the execution times obtained using the grid based approximation and classic algorithms.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>1.65</td>
<td>0.9836</td>
<td>0.9836</td>
<td>2.3</td>
</tr>
<tr>
<td>16</td>
<td>1.25</td>
<td>0.8418</td>
<td>0.8418</td>
<td>2.4</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>0.5769</td>
<td>0.5766</td>
<td>3.9</td>
</tr>
<tr>
<td>36</td>
<td>0.83</td>
<td>0.3489</td>
<td>0.3481</td>
<td>4.7</td>
</tr>
<tr>
<td>r-EC</td>
<td>–</td>
<td>0.1988</td>
<td>0</td>
<td>865.4</td>
</tr>
</tbody>
</table>
rEC in action!

Andrea Carron (UniPD)
Conclusions and on-going works

The r-EC/r-EC-grid are shown to be:

1. capable to converge to the optimal estimate of μ,
2. robust to packet losses,
3. efficient.

What else can be done?

1. consider time varying μ,
2. consider localization errors.
Competitive - Cooperative RHC game

GOAL: minimize a cost function which depends on your state, your input and the opponent input.

RESULTS: closed form solution given the control parameters and stability analysis.

A. Carron and E. Franco. “Receding Horizon Control of a two-agent system with competitive objectives”. In: ACC 13
A. Carron and E. Franco. “Analytical Solution of a Two Agent Receding Horizon Control Problem with Auto Regressive State Predictions”. In: Automatica [submitted]

A. Carron, R. Patel, and F. Bullo. “Hitting time for doubly-weighted graphs with application to robotic surveillance”. In: *ECC 16*
A. Antonello et al. “A Novel Approach to the Simulation of On-Orbit Rendezvous and Docking Maneuvers in a Laboratory Environment Through the Aid of an Anthropomorphic Robotic Arm”. In: MetroAeroSpace 14

F. Branz et al. “Kinematics and control of redundant robotic arm based on Dielectric Elastomer Actuators”. In: SPIE Smart Structure

F. Branz et al. “Dielectric Elastomer space manipulator: design and testing”. In: IAC 15
Thank you for your attention!