Distributed Synchronization Algorithms for Wireless Sensor Networks

University of Padova
Padova, February 10, 2011

Nicola Varanese
Dipartimento di Elettronica e Informazione, Politecnico di Milano
<varanese@elet.polimi.it>
Acknowledgements

- Double-degree program between PoliMi and New Jersey Institute of Tech. (Newark, NJ)
- PoliMi: Prof. Umberto Spagnolini
- NJIT: Prof. Yeheskel Bar-Ness and Prof. Osvaldo Simeone
Outline

- Motivation
- Synchronization at the physical layer
- Synchronization at the MAC layer
- Conclusions
Synchronization is the simplest form of cooperation and enables more complex cooperative tasks

- Communication Networks:
 synchronization at different layers

- Network Time Protocol - NTP (v3 1991, v4 in draft)
- Industrial Ethernet (EtherCAT), digital cellular systems – timing advance for TDMA (1990’s)
- TDM circuit-switched carrier networks (1970’s - 1980’s)
Synchronization is the simplest form of cooperation and enables more complex cooperative tasks.

- Communication Networks:
 synchronization at different layers

Timing packets:
- Software PLL (linear clock control)
- Kalman tracking
- estimation of clock parameters (phase/frequency/drift)
- other (e.g., nonlinear clock correction)

Electrical/RF signals:
- Analogue Phase-locked Loop (APLL)
- (All) Digital PLL (DPLL)
- analogue/digital Frequency-locked Loop (FLL)
Synchronization is the simplest form of cooperation and enables more complex cooperative tasks.

- **Wireless Sensor** Networks: synchronization at different layers.

Motivation

- **Physical** communication
 - Cooperative communication
 - Time offset
 - Information blocks
 - Distributed space-time code
 - ISI
 - Received block
Motivation

Synchronization is the simplest form of cooperation and enables more complex cooperative tasks.

- **Wireless Sensor** Networks: synchronization at different layers.

MAC: coordinated medium access

![Diagram showing synchronization and collisions in different layers](image-url)
Motivation

Synchronization is the simplest form of cooperation and enables more complex cooperative tasks.

- **Wireless Sensor Networks:** synchronization at different layers

Application: distributed sensing

- $p(x,y;t)$
 - x
 - y
Focus of Major Research Topic

Synchronization is the simplest form of cooperation and enables more complex cooperative tasks

- **Wireless Sensor** Networks: synchronization at different layers

 - APP
 - NET
 - MAC
 - PHY

 2002

 2010

 most of prior art

 time synchronization

 carrier frequency offset (CFO) compensation

 RF Transceiver

 MCU

 software processes
Approach: Clock Control

- Prior Art:
 - estimation of clock parameters [Kumar08][Estrin04]
 - distributed agreement (consensus) algorithms [Simeone07][Schenato09]

- Our approach:
 - control of the local clock
 - via Phase and Frequency-Locked Loops (PLL, FLL)

PLL is the classical approach for wired networks (TDM, NTP, PTP)

what about wireless?
Approach: Clock Control

- Prior Art:
 - estimation of clock parameters
 - distributed agreement algorithms

- Our approach:
 control of the local clock
 via Phase and Frequency-Locked Loops (PLL, FLL)

- Challenges:
 - superposition of radio signals
 - packet collisions
 - energy constraints (low duty cycles)
Approach: Sync Topologies

- **WSN** offer wider flexibility in sync architecture design

- **Prior Art:**
 - *specific* tools for each sync topology, e.g.
 - MS: linear regression (FTSP [Maróti04])
 - MC: distributed consensus (ATS [Schenato09])

- **Our approach:**
 PLL/FLL as a *distributed* clock control tool suitable for *any* sync topology

master-slave (MS): hierarchical

mutually coupled (MC): peer-to-peer

hybrid
Outline

- Motivation

- Synchronization at the physical layer
 - distributed compensation of Carrier Frequency Offsets (CFO)

- Synchronization at the MAC layer

- Conclusions
Distributed CFO Correction

- Sync preamble for CFO estimation
- CFO correction via *distributed-FLL* (D-FLL)
- design of novel Frequency Difference Detector (FDD)
 - *superposition* of preamble signals
 - based on sample auto-correlation
 - nonlinear characteristic

- analysis:
 - frequency *acquisition* (stability and conv. speed)
 - steady-state sync *accuracy*
Frequency Acquisition

- frequency acquisition
 - FDD locking range
 - stability conditions (MC networks)
 - connectivity
 - mutual interference

- comparison with DFT-based FDD for a simple MC network

![Graph showing Average RMS CFO (norm. freq.) vs iterations for DBQC and DFT-based methods with different symbols (L=5, L=21).]
Frequency Tracking

- Steady-state sync accuracy
 - channel noise and frequency instability (WFM)
 - MC and MS topologies

- residual CFO distribution in a MC and MS line network

- FLL bandwidth tuned via loop gain ε

![Diagram](image)

- RMS CFO (norm. freq.)

- MC
- MS

- $\varepsilon = 1$
- $\varepsilon = 0.9$
- $\varepsilon = 0.3$

![Graph](image)
Outline

- Motivation
- Synchronization at the physical layer
- Synchronization at the MAC layer
 - Convergence rate of distributed sync algorithms
 - Steady-state sync accuracy
 - Sync tracking with low duty-cycles
- Conclusions
Super-frame structure

General SF structure for a slotted-access MAC layer:

- **Super-frame**: sync update length period
- **Signaling slot(s)**: beacon slots
- **Data slots**:
- **Time information**:
 - Pulse (frame sync seq.)
 - Time-stamp (hh:mm)
- **Access protocols for signaling slots**
- **NTP/PTP, others**: handshakes
 - **Our case**: broadcast
 - **No timing handshakes**

IEEE 802.15.4/e (ZigBee/SP100)
IEEE 802.11 (Wi-Fi)
ECMA 368 (WiMedia)
Each node employs time info to control the local clock via a PLL:

Analysis of *distributed* PLL:
- time sync *acquisition* (stability and conv. speed)
- steady-state accuracy:
 - *stable* clocks: frequency is constant bw updates
 - *unstable* clocks: frequency changes bw updates

Impact of topology
- MC
- MS

Choice of loop parameters:
- loop gain κ_1
- damping $\zeta(\kappa_1, \kappa_2)$
Outline

- Motivation

- Synchronization at the physical layer

- Synchronization at the MAC layer
 - Convergence rate of distributed sync algorithms
 - Steady-state sync accuracy
 - Sync tracking with low duty-cycles

- Conclusions
Time Sync Acquisition

Time information:

- pulse (frame sync word) → superposition of pulses
- time-stamp → contention or reservation-based transmission
Time Sync Acquisition - Results

- acquisition trivial for MS \(\rightarrow\) analysis focused on MC networks

- *superposition* and *contention*:
 - almost sure convergence condition: convergence *in the mean*

- *reservation*:
 - overhead of signaling slots
Time Sync Acquisition - Results

- Hp: clocks are frequency synchronous
 - Type 1 PLL for time (phase) sync

- $0 < \varepsilon < 1$ ensures stability
- Numerical optimization of loop gain ε for a given square lattice topology:

![Diagram of TOD and loop gain](image)

![Graph of Sync Acquisition Time](image)

- Sync Acquisition Time [sig. slots]
 - Superposition
 - Contention
 - Reservation
Outline

- Motivation
- Synchronization at the physical layer
- Synchronization at the MAC layer
 - Convergence rate of distributed sync algorithms
 - Steady-state sync accuracy
 - Sync tracking with low duty-cycles
- Conclusions
Synchronization Accuracy

- TDMA MAC protocol
 - reservation-based signaling

- Hp: clk frequency is stable
 - linear clock model

- sync accuracy depends on pair-wise offset estimation errors.
 - delivery delays
 - clock precision (quantization)

- network sync posed as a (distributed) linear regression problem
 - distributed type 2 PLL
 - distributed linear regression (DLR)
 - \(Cramér–Rao lower bound \)
Cramér–Rao Lower Bound

- CRLB: lower bound to clock parameter estimation error
 - linear clock model: estimate phase and frequency
 - time offset observations from signaling slots of subsequent super-frames
 - centralized block-estimation model:

\[T_k(t) = \alpha_k t + \beta_k \]

\((\text{absolute time}) \)

\[\xi_{p,f}^2 \geq \rho_{p,f} \cdot \frac{1}{K} \sum_{i=1}^{K} \frac{1}{\mu_i} \]

CRLB for a general topology

CRLB for linear regression of phase/frequency

sync network architecture

Training

\(N \text{ super-frames} \)
CRLB : MS Vs MC

- Cramér–Rao lower bound for general sync architectures (MS, MC, hybrid)
 - MC: error distributed almost uniformly
 - MS: error distributed inhomogeneously - accuracy degrades rapidly moving away from masters

- CRLB for 2D 30x30 square lattice deployment (in μs)
 (Gaussian offset measurement error with 10μs std dev, N=10)
Distributed Linear Regression

- Design of *Distributed linear regression* (DLR) algorithm
 - linear clock model: estimate phase and frequency
 - time translation: \(t = \frac{T_k(t) - \beta_k}{\alpha_k} \)
 - signaling slots employed for training and *distributed fusion*

\[T_k(t) = \alpha_k t + \beta_k \]
Type 2 PLL

- PLL clock control
 - linear clock model → linear clock control
 - PI (type 2) controller: phase and frequency control
 - provides a prediction of the start time of next super-frame wrt local clock

\[T_{SF} = \text{sync update} \]

\[\alpha_k T_{SF} \]

\[T_k(nT_{SF}) : \text{start of next super-frame wrt node k's clock} \]
Lessons Learned

- DLR: closed-form sync accuracy for general networks
- PLL: closed-form sync accuracy for regular MC networks

Effective samples for PLL algorithms [Mengali94]

\[
N_{\text{eff}} = \frac{2}{\frac{\kappa_1}{2} \left(1 + \frac{\kappa_2}{\kappa_1} \right)}
\]

- Regular topology: *ring network*
 - CRB accuracy limit
 \[
 \xi^2_{\text{CRB}} \approx \frac{2\sigma_w^2}{N_{\text{eff}}} \frac{1}{\mu_2}
 \]
 - DLR accuracy
 \[
 \xi^2_{\text{DLR}} \approx \frac{4d\sigma_w^2}{N_{\text{eff}}} \frac{1}{\mu_2}
 \]
 - PLL accuracy
 \[
 \xi^2_{\text{PLL}} \approx \frac{4d\sigma_w^2}{N_{\text{eff}}} \frac{1}{\mu_2} \frac{1}{1 + 4\xi^2}
 \]

- Better connectivity improves accuracy
- Improved noise filtering
Accuracy of MC Networks

- Accuracy of practical algorithms over MC networks
- Line network of 31 nodes, N=1000
- Sub-optimality of both PLL and DLR wrt CRB
 - Price to pay for broadcast signaling

![Diagram showing RMS Sync Error vs Node index with graphs for PLL, DLR, and CRB]
PLL: MC Vs MS

- Fix a desired time (phase) sync accuracy ξ
 - MC: accuracy improves *increasing transmission range*
 - MS/Hybrid: accuracy improves increasing transmission range or *master node density*

- MS/Hybrid: for a given transmission range, *how many master nodes do I need?*

- Line network of 31 nodes, $N=1000$

- MC accuracy rapidly improves with transmission range

![Graph](image-url)

- Number of Master nodes against transmission range (norm.)
 - $\xi = 1\mu s$
 - $\xi = 500\mu s$

N. Varanese, Distributed Synchronization 02/10/2011
Outline

- Motivation
- Synchronization at the physical layer
- Synchronization at the MAC layer
 - Convergence rate of distributed sync algorithms
 - Steady-state sync accuracy
 - Sync tracking with low duty-cycles
- Conclusions
Sync Tracking with Low Duty-Cycles

- TDMA MAC protocol
 - reservation-based signaling

- low duty cycle → infrequent sync updates
 - clock is unstable: temp. changes

- current solution: static temp. compensation (Temp. Compensated Clock - TCC)

- achievable accuracy (lower bound for MS)

\[\xi = 2\alpha_{\text{max}} T_{SF} + \delta \]

- residual frequ. offset
- phase offset estimation accuracy

\[\alpha_{\text{max}} \]

\[T_{SF} \]

\[\delta \]

super-frame = sync update

active period

idle period

frequency offset [ppm]

°C

TCC [Pister ‘07]

tuning-fork XO

-160

40

90

0

-40

-25
Model of an Unstable Clock

- **Hp**: clock frequency is the sum of two indep. random processes
 \[\alpha(nT_{SF}) = \bar{\alpha} + \nu(nT_{SF}) + \psi(nT_{SF}) \]
 - random walk (RWFM)
 - white noise (WFM)

- **WFM**: noise within the oscillator
- **RWFM**: temperature changes, mechanical shocks and vibrations

- **Allan Variance**: a measure of frequency stability
 \[\sigma^2(T_{SF}) = E \left[\alpha(nT_{SF}) - \alpha((n-1)T_{SF}) \right]^2 \]

- **proposed solution**: frequency tracking via:
 - Type 2 PLL
 - **Type 1 PLL+FLL (P/FLL)**

\[T_{SF} = \text{sync update} \]

\[(n-1)T_{SF} \quad nT_{SF} \]

Diagram:
- \[\log \sigma(T_{SF}) \]
- WPM
- WFM \(\propto \frac{1}{T_{SF}} \)
- RWFM \(\propto T_{SF} \)

Graph: nice spot! (Allan intercept)
- weak instability
- strong instability
Type 1 PLL + FLL

Simpler design at the price of increased overhead.
Tracking - Results

- Closed-form tracking accuracy in regular MC networks

\[\xi^2 \approx \frac{1}{K} \sum_{i=2}^{K} \frac{1}{2\mu_i} \left[\left(\rho + \frac{\gamma}{\rho} \right) \frac{\sigma_w^2}{d} + \frac{\sigma_v^2}{\rho} + \frac{\sigma_\eta^2}{\mu_i^2 \gamma \rho} \right] \]

Type 2 PLL

\[\xi^2 \approx \frac{1}{K} \sum_{i=2}^{K} \frac{1}{2\mu_i} \left[\left(\varsigma_1 + \frac{\varsigma_2}{\mu_i} \right) \frac{\sigma_w^2}{d} + \frac{\sigma_v^2}{\varsigma_1} + \frac{\sigma_\eta^2}{\varsigma_2 \varsigma_1 \mu_i} \right] \]

- better connectivity improves sync accuracy

- trade-off between channel noise reduction and frequency tracking

- integral gain \(\varsigma_2 \) proportional to loop gain \(\varsigma_1 \):
 - small \(\varsigma_1 \) improves channel noise rejection
 - large \(\varsigma_1 \) improves tracking accuracy of unstable clocks
Optimal Parameter Adaptation

- Numerical optimization of loop parameters
 - P/FLL: opt. PLL gain $\kappa_p +$ opt. FLL gain κ_f
 - PLL: - optimize jointly l.gain/damping
 - fix damping and optimize l.gain

- MS line network of 30 nodes
- 1°C temp change within 1 hour
- gain increases proportionally with clock instability

![Diagram of Type 2 Controller with phase and frequency corrections]

optimal loop parameters

- $\kappa_1(\zeta), \zeta = 5$
- $\kappa_1(\zeta_{opt})$

$\kappa_P = \kappa_F$

![Graph showing optimal loop parameters over update interval from 1 hour to 1 day]

Growing instability
Tracking Performance

- Average synchronization error for a line MS network of 30 nodes
- 1°C temp change per 1 hour

- adaptive clock control outperforms TCC
- adaptation complexity
 - for optimal performance, PLL requires to jointly adapt damping and loop gain
 - optimization of PLL and FLL branch is independent in a P/FLL
 Simpler design at the price of increased overhead
Outline

- Motivation
- Synchronization at the physical layer
- Synchronization at the MAC layer
- Conclusions
Conclusions

- Advocate network sync via PLL/FLL techniques
 - can be applied at PHY/MAC/APP layer at the protocol stack
 - robust wrt RF signal superposition and packet collisions
 - general-purpose tool for both MS/MC sync architectures
 - allow for improved sync accuracy and tracking performance
 - can be adapted to large update periods (low duty-cycles) WSN based on TDMA

- Best flat (MC) or hierarchical (MS) sync architecture?

MC
- fully decentralized
- robust wrt node failures
- smooth error distribution
- slow convergence

MS
- natural arch. for hierarchical networks
- fast convergence
- error accumulation away from master(s)
- fragile to node failures
Conclusions

This seminar: Design of distributed clock control algorithms

Future work:

• Design algorithms that dynamically adapt loop parameters to
 ▪ topology (connectivity)
 ▪ architecture (MS/MC)
 ▪ duty cycles (energy efficient sync)
 ▪ clock quality (frequency instability)
 ▪ channel error statistics
 → lessons learned from packet-based sync algorithms (NTP)

• Implementation of the designed algorithms
 ▪ improvements to the efficiency of currently employed TDMA MAC protocols
 (e.g., IEEE 802.15.4e)
 ▪ complexity/computational cost
Conclusions

RELATED PUBLICATIONS

Questions ?