Home Publications

Electronic pre-prints of the following publications are available only for personal use and must abide to copyrights of the publisher.   

IEEE-copyright notice: Copyright 199x IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

Elsevier copyrights: pamphlet

IFAC copyrights notice

 

 

Reporitory of past Ph.D. dissertations

Publications Lists     [ all BibTeX ]  

Publications of keyword: FIRB2012
20XX
M. Zorzi. On the Robustness of the Bayes and Wiener Estimators under Model Uncertainty. Automatica, (to appear), 20XX   [BibTeX]  
2017
G. Prando, M. Zorzi, A. Bertoldo, A. Chiuso. Estimating effective connectivity in linear brain network models. 56th IEEE Conference on Decision and Control, pp. accepted, 2017   [BibTeX]  
G. Prando, G. Pillonetto, A. Chiuso. Maximum Entropy Vector Kernels for MIMO system identification. Automatica (accepted as regular paper), 2017    [url] [BibTeX]  
M. Zorzi. Robust Kalman Filtering under Model Perturbations. IEEE Transactions on Automatic Control, vol. 62(6), 2017   [BibTeX]  
M. Zorzi, A. Chiuso. Sparse plus Low rank Network Identification: A Nonparamteric Approach. Automatica, vol. 53(2), 2017   [BibTeX]  
2016
G. Prando, D. Romeres, G. Pillonetto, A. Chiuso. Classical vs. Bayesian methods for linear system identification: point estimators and confidence sets. Proc. of ECC 2016, 2016   [BibTeX]  
T. Chen, G. Pillonetto, A. Chiuso, L. Ljung. DC kernel - a stable generalized first order spline kernel. Proc. of CDC 2016 - accepted, 2016   [BibTeX]  
T. Chen, T. Ardeshiri, F.P. Carli, A. Chiuso, L. Ljung, G. Pillonetto. Maximum entropy properties of discrete-time first-order stable spline kernel. Automatica, 2016   [BibTeX]  
S. Soatto, A. Chiuso. Modeling Visual Representations:Defining Properties and Deep Approximations. International Conference on Learning Representation (ICLR), 2016   [BibTeX]  
D. Romeres, G. Prando, G. Pillonetto, A. Chiuso. On-line Bayesian System Identification. Proc. of ECC 2016, 2016   [BibTeX]  
G. Prando, D. Romeres, A. Chiuso. On-line Identification of Time-Varying Systems: a Bayesian approach. IEEE CDC 2016 - accepted, 2016   [BibTeX]  
D. Romeres, M. Zorzi, R. Camoriano, A. Chiuso. Online semi-parametric learning for inverse dynamics modeling. 55th IEEE Conference on Decision and Control, 2016   [BibTeX]  
A. Chiuso. Regularization and Bayesian Learning in Dynamical Systems: Past, Present and Future. Annual Reviews in Control - in press, 2016    [url] [BibTeX]  
G. Pillonetto, T. Chen, A. Chiuso, G. De nicolao, L. Ljung. Regularized linear system identification using atomic, nuclear and kernel-based norms: the role of the stability constraint. Automatica, 2016    [url] [BibTeX]  
G. Rallo, S. Formentin, A. Chiuso, S. Savaresi. Virtual Reference Feedback Tuning with bayesian regularization. ECC 2016, 2016   [BibTeX]  
2015
M. Zorzi, A. Chiuso. A Bayesian Approach to Sparse plus Low rank Network Identification. IEEE CDC 2015, 2015   [BibTeX]  
M. Zorzi, A. Chiuso. A Bayesian approach to sparse plus low rank network identification. CFE-CMStatistics 2015 Book of Abstracts, 2015    [url] [BibTeX]  
F. Fraccaroli, A. Peruffo, M. Zorzi. A new Lest-Squares Method with Multiple Forgetting Schemes. IEEE CDC 2015, 2015   [BibTeX]  
S. Bonettini, A. Chiuso, M. Prato. A SCALED GRADIENT PROJECTION METHOD FOR BAYESIAN LEARNING IN DYNAMICAL SYSTEMS. SIAM Journal on Scientific Computing (accepted), 2015   [BibTeX]  
M. Zorzi. An Interpretation of the Dual Problem of the THREE-like Approaches. Automatica, vol. 62, pp. 87-92, 2015   [BibTeX]  
D. Romeres, G. Pillonetto, A. Chiuso. Identification of stable models via nonparametric prediction error methods. Proc. of the European Control Conference, 2015    [ abstract ] [BibTeX]  
G. Prando, A. Chiuso. Model reduction for linear Bayesian System Identification. IEEE CDC 2015, 2015   [BibTeX]  
M. Zorzi, B. Levy. On the Convergence of a Risk Sensitive like Filter. IEEE CDC 2015, 2015   [BibTeX]  
K. Tsotsos, A. Chiuso, S. Soatto. Robust Inference for Visual-Inertial Sensor Fusion. ICRA 2015 (accepted), 2015   [BibTeX]  
R. Liegegois, B. Mishra, M. Zorzi, R. Sepulchre. Sparse plus low-rank autoregressive identification in neuroimaging time series. IEEE CDC 2015, 2015   [BibTeX]  
T. Chen, G. Pillonetto, A. Chiuso, L. Ljung. Spectral analysis of the DC kernel for regularized system identification. IEEE CDC 2015, 2015   [BibTeX]  
G. Georgiadis, A. Chiuso, S. Soatto. Texture Representations for Image and Video Synthesis. Proc. of CVPR 2015, 2015   [BibTeX]  
G. Pillonetto, A. Chiuso. Tuning complexity in regularized kernel-based regression and linear system identification: the robustness of the marginal likelihood estimator. Automatica (accepted), 2015   [BibTeX]  
2014
T. Chen, M. Andersen, A. Chiuso, G. Pillonetto, L. Ljung. Anomaly detection in homogenous populations: a sparse multiple kernel-based regularization method. IEEE CDC 2014, 2014   [BibTeX]  
A. Chiuso, G. Pillonetto. Bayesian and nonparametric methods for system identification and model selection. Proc. of ECC 2014, 2014   [BibTeX]  
G. Prando, A. Chiuso, G. Pillonetto. Bayesian and regularization approaches to multivariable linear system identification: the role of rank penalties. Proc. IEEE CDC, 2014   [BibTeX]  
A. Aravkin, J. Burke, A. Chiuso, G. Pillonetto. Convex vs non-convex estimators for regression and sparse estimation: the mean squared error properties of ARD and GLasso. Journal of Machine Learning Research, (15), pp. 1-36, 2014   [BibTeX]  
A. Chiuso, N. Laurenti, L. Schenato, A. Zanella. LQG-like control of scalar systems over communication channels: the role of data losses, delays and SNR limitations. Automatica, vol. 50(12), pp. 3155–3163, 2014    [url] [pdf] [BibTeX]  
A. Chiuso, T. Chen, L. Ljung, G. Pillonetto. On the design of Multiple Kernels for nonparametric linear system identification. IEEE CDC 2014, 2014   [BibTeX]  
A. Chiuso. System Identification Techniques: Convexification, Regularization, Relaxation. Springer Encyclopedia of Systems and Control, 2014   [BibTeX]  
T. Chen, M. Andersen, L. Ljung, A. Chiuso, G. Pillonetto. System identification via sparse multiple kernel-based regularization using sequential convex optimization techniques. IEEE Transactions on Automatic Control, 2014   [BibTeX]  
G. Pillonetto, A. Chiuso. Tuning complexity in kernel-based linear system identification: the robustness of the marginal likelihood estimator. Proc. of ECC 2014, 2014   [BibTeX]  
2013
V. Karasev, A. Chiuso, S. Soatto. Control recognition bounds for visual learning and exploration. Information Theory and Applications Workshop (ITA), 2013, 2013    [ abstract ] [BibTeX]  
T. Chen, A. Chiuso, G. Pillonetto, L. Ljung. Rank-1 kernels for regularized system identification. Proc. of IEEE Conf. on Dec. and Control (CDC2013), 2013   [BibTeX]  
A. Chiuso, T. Chen, L. Ljung, G. Pillonetto. Regularization strategies for nonparametric system identification. Proc. of IEEE Conf. on Dec. and Control (CDC2013), 2013   [BibTeX]  
G. Georgiadis, A. Chiuso, S. Soatto. Texture Compression. Data Compression Conference, 2013   [BibTeX]